Advertisement for orthosearch.org.uk
Results 1 - 20 of 122
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 64 - 64
11 Apr 2023
Steijvers E Xia Z Deganello D
Full Access

Accidents, osteoporosis or cancer can cause severe bone damage requiring grafts to heal. All current grafting methods have disadvantages including scarcity and infection/rejection risks. An alternative is therefore needed. Hydroxyapatite/calcium carbonate (HA/CC) scaffolds mimic the mineral bone composition but lack growth factors present in auto- and allografts, limiting their osteoinductive capacity. We hypothesize that this will increase the osteogenicity and osteoinductivity of scaffolds through the presence of growth factors. The objectives of this study are to develop and mass-produce grafts with enhanced osteoinductive capacity. HA/CC scaffolds were cultured together with umbilical cord mesenchymal stem cells in bioreactors so that they adhere to the surface and deposit growth factors. Cells growing on the scaffolds are confirmed by Alamar blue assays, SEM, and confocal microscopy. ELISA and IHC are used to assess the growth factor content of the finished product. It has been confirmed that cells attach to the scaffolds and proliferate over time when grown in bioreactors. Dynamic seeding of cells is clearly advantageous for cell deposits, equalizing the amount of cells on each scaffold granule. Hydroxyapatite/calcium carbonate scaffolds support cell-growth. This should be confirmed by further research, including Quantification of BMPs and other indicators of osteogenic differentiation such as Runx2, osteocalcin and ALP is pending, and amounts are expected to be increased in enhanced scaffolds and in-vivo implantation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 10 - 10
2 Jan 2024
Tian X Vater C Raina DB Findeisen L Matuszewski L Tägil M Lidgren L Schaser K Disch A Zwingenberger S
Full Access

Although bone morphogenetic protein 2 (BMP-2) has been FDA-approved for spinal fusion for decades, its disadvantages of promoting osteoclast-based bone resorption and suboptimal carrier (absorbable collagen sponge) leading to premature release of the protein limit its clinical applications. Our recent study showed an excellent effect on bone regeneration when BMP-2 and zoledronic acid (ZA) were co-delivered based on a calcium sulphate/hydroxyapatite (CaS/HA) scaffold in a rat critical-size femoral defect model. Therefore, the aim of this study was to evaluate whether local application of BMP-2 and ZA released from a CaS/HA scaffold is favorable for spinal fusion. We hypothesized that CaS/HA mediated controlled co-delivery of rhBMP-2 and ZA could show an improved effect in spinal fusion over BMP-2 alone. 120, 8-week-old male Wistar rats (protocol no. 25-5131/474/38) were randomly divided into six groups in this study (CaS/HA, CaS/HA + BMP-2, CaS/HA + systemic ZA, CaS/HA + local ZA, CaS/HA + BMP-2 + systemic ZA, CaS/HA + BMP-2 + local ZA). A posterolateral spinal fusion at L4 to L5 was performed bilaterally by implanting group-dependent scaffolds. At 3 weeks and 6 weeks, 10 animals per group were euthanized for µCT, histological staining, or mechanical testing. µCT and histological results showed that the CaS/HA + BMP-2 + local ZA group significantly promoted bone regeneration than other treated groups. Biomechanical testing showed breaking force in CaS/HA + BMP + local ZA group was significantly higher than other groups at 6 weeks. In conclusion, the CaS/HA-based biomaterial functionalized with bioactive molecules rhBMP-2 and ZA enhanced bone formation and concomitant spinal fusion outcome. Acknowledgements: Many thanks to Ulrike Heide, Anna-Maria Placht (assistance with surgeries) as well as Suzanne Manthey & Annett Wenke (histology)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 18 - 18
17 Apr 2023
Isa I Fauzi M Yusoff N Sapri S Sahruddin N Damanhuri M Mokhtar S
Full Access

The extracellular matrix (ECM)-based biomaterials provide a platform to mimic the disc microenvironment in facilitating stem cell transplantation for tissue regeneration. However, little is known about in vitro preconditioning human umbilical cord Wharton Jelly-derived mesenchymal stem cells (MSCs) on 3D hyaluronic acid (HA)/type II collagen (COLII) hydrogel for nucleus pulposus (NP) phenotype and pain modulation. We developed a tuneable 3D HA/COLII by fabricating HA/COLII hydrogel at 2 mg/ml COLII and various weight ratios of HA:COLII, 1:9 and 4.5:9. The hydrogel was characterized for degradability, stability, and swelling capacity. The viability of hWJ-MSC encapsulated on hydrogel supplemented with TGF-β3 was assessed. The implantation of HA/COLII hydrogel was done in surgically induced disc injury model of pain in the rat tail. The general health status in rats was monitored. The nociceptive behaviour in rats was performed for mechanical allodynia using von Frey test. The HA/COLII 4.5:9 hydrogel showed higher swelling capacity than weight ratio 1:9, suggesting that a higher amount of HA can absorb a large amount of water. Both HA/COLII 4.5:9 and 1:9 hydrogel formulations had a similar degradation profile, stable to the hydrolytic process. The hWJ-MSC-encapsulated on hydrogel marked higher cell viability with round morphology shape of cells in vitro. The surgically induced disc injury in the rat tail evoked mechanical allodynia, without affecting general health status in rats. The implantation of HA/COLII 1:9 hydrogel was observed to slightly alleviate injury-induced mechanical allodynia. Fine-tuning HA/COLII-based hydrogel provides the optimal swelling capacity, stability, degradability, and non-cytotoxic, mimicking the 3D NP niche in guiding hWJ-MSCs towards NP phenotype. The HA/COLII hydrogel could be employed as an advanced cell delivery system in facilitating stem cell transplantation for intervertebral disc regeneration targeting pain


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 55 - 55
11 Apr 2023
Raina D Markeviciute V Arvidsson L Törnquist E Stravinskas M Kok J Jacobson I Liu Y Tengattini A Sezgin E Vater C Zwingenberger S Isaksson H Tägil M Tarasevicius S Lidgren L
Full Access

Majority of osteoporosis related fractures are treated surgically using metallic fixation devices. Anchorage of fixation devices is sometimes challenging due to poor osteoporotic bone quality that can lead to failure of the fracture fixation. Using a rat osteoporosis model, we employed neutron tomography and histology to study the biological effects of implant augmentation using an isothermally setting calcium sulphate/hydroxyapatite (CaS/HA) biomaterial with synthetic HA particles as recruiting moiety for systemically administered bisphosphonates. Using an osteoporotic sawbones model, we then provide a standardized method for the delivery of the CaS/HA biomaterial at the bone-implant interface for improved mechanical anchorage of a lag-screw commonly used for hip fracture fixation. As a proof-of-concept, the method was then verified in donated femoral heads and in patients with osteoporosis undergoing hip fracture fixation. We show that placing HA particles around a stainless-steel screw in-vivo, systemically administered bisphosphonates could be targeted towards the implant, yielding significantly higher peri-implant bone formation compared to un-augmented controls. In the sawbones model, CaS/HA based lag-screw augmentation led to significant increase (up to 4 times) in peak extraction force with CaS/HA performing at par with PMMA. Micro-CT imaging of the CaS/HA augmented lag-screws in cadaver femoral heads verified that the entire length of the lag-screw threads and the surrounding bone was covered with the CaS/HA material. X-ray images from fracture fixation surgery indicated that the CaS/HA material could be applied at the lag-screw-bone interface without exerting any additional pressure or risk of venous vascular leakage.: We present a new method for augmentation of lag-screws in fragile bone. It is envisaged that this methodcould potentially reduce the risk of fracture fixation failure especially when HA seeking “bone active” drugs are used systemically


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 92 - 92
17 Apr 2023
Raina D Mrkonjic F Tägil M Lidgren L
Full Access

A number of techniques have been developed to improve the immediate mechanical anchorage of implants for enhancing implant longevity. This issue becomes even more relevant in patients with osteoporosis who have fragile bone. We have previously shown that a dynamic hip screw (DHS) can be augmented with a calcium sulphate/hydroxyapatite (CaS/HA) based injectable biomaterial to increase the immediate mechanical anchorage of the DHS system to saw bones with a 400% increase in peak extraction force compared to un-augmented DHS. The results were also at par with bone cement (PMMA). The aim of this study was to investigate the effect of CaS/HA augmentation on the integration of a different fracture fixation device (gamma nail lag-screw) with osteoporotic saw bones. Osteoporotic saw bones (bone volume fraction = 15%) were instrumented with a gamma nail without augmentation (n=8) or augmented (n=8) with a CaS/HA biomaterial (Cerament BVF, Bonesupport AB, Sweden) using a newly developed augmentation method described earlier. The lag-screws from both groups were then pulled out at a displacement rate of 0.5 mm/s until failure. Peak extraction force was recorded for each specimen along with photographs of the screws post-extraction. A non-parametric t-test was used to compare the two groups. CaS/HA augmentation of the lag-screw led to a 650% increase in the peak extraction force compared with the controls (p<0.01). Photographs of the augmented samples shows failure of the saw-bones further away from the implant-bone interface indicating a protective effect of the CaS/HA material. We present a novel method to enhance the immediate mechanical anchorage of a lag-screw to osteoporotic bone and it is also envisaged that CaS/HA augmentation combined with systemic bisphosphonate treatment can lead to new bone formation and aid in the reduction of implant failures and re-operations


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 17 - 17
4 Apr 2023
Queen R Arena S
Full Access

Arthritis is a common and debilitating disease and is associated with an increased fall risk. The purpose of this study was to examine the effect of impacted joint and limb on fall risk as measured by the margin of stability (MOS). There were 110 participants, including healthy controls (HC; n=30), ankle arthritis (AA; n=30), knee arthritis (KA; n=20) and hip arthritis (HA; n=30) patients. All protocols were Institutional Review Board approved and all participants signed informed consent. Participants walked approximately 6 meters at a self-selected pace. MOS was calculated in the foot coordinate system in the anterior/posterior (AP) and medial/lateral (ML) directions at heel strike. A one-way ANOVA was used to examine group effects (HC, AA, KA, HA) on gait speed. A two-way repeated measures ANOVA was used to examine the effects of limb (Non-Surgical, Surgical) and group on AP and ML MOS. HC had the fastest gait speed (1.40±0.24 m/s; p<0.001) when compared to AA (0.85±0.24 m/s), KA (0.94±0.22 m/s) and HA (1.05±0.22 m/s). HA participants had a greater gait speed compared to AA (p=0.004). AP MOS was greater in the surgical limb compared to the non-surgical limb for AA (p<0.001) and HA (p<0.001). AP MOS was smaller in HC compared to AA, KA, and HA, regardless of limb (p<0.030). AP MOS was similar between AA, KA, and HA for the non-surgical limb (p>0.194) and the surgical limb (p>0.096). ML MOS was greater in the surgical compared to non-surgical limb (p=0.003). ML MOS was smaller in KA participants compared to all other groups (p<0.001). Our results demonstrate stability during gait varies between limbs in arthritis patients, with a more conservative pattern for the surgical limb and suggest KA may be at an increased risk of falls with a smaller ML MOS


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 60 - 60
17 Nov 2023
Diaz RL Williams S Jimenez-Cruz D Board T
Full Access

Abstract. BACKGROUND. Hemi-arthroplasty (HA) as a treatment for fractured neck of femur has slightly increased since 2019 and remarkably after the COVID pandemic. The main drawback of the treatment is ongoing cartilage deterioration that may require revision to THR. OBJECTIVE. This study assessed cartilage surface damage in hip HA by reproducing anatomical motion and loading conditions in a hip simulator. METHODS. Experimental design. HA tests were conducted using porcine acetabula and CoCr femoral heads. Five groups (n=4) were included: a control group comprising natural tissue and four HA groups where the acetabula were paired with metal heads to allow radial clearance (RC) classed as small (RC<0.6mm), large (2mm<RC<4mm), extra-large (4mm<RC), and oversized (RC<−0.6mm). Tests were carried out in an anatomical hip simulator that reproduced a simplified twin peak gait cycle, adapted for porcine hip joints, from the ISO 14242 standard for wear of THR prostheses (peak load of 900N). The test length was 6 hours, with photogrammetry taken at 1-hour intervals. Ringers solution was used as a lubricant. RESULTS. No changes were observed in the control group. However, cartilage surface changes were observed in all hemi-arthroplasty groups. Discolouration on the cartilage surface was noticeable at the posterior-superior part of the acetabulum after 1-hour (extra-large and oversized groups). Damage severity and location were characteristic of each clearance group. Of all the groups, the oversized group showed more significant damage. No labrum separation was seen after the simulation. CONCLUSIONS. These results are relevant to understand the effect of femoral head clearance on cartilage damage risk after HA. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Arthroscopic management of femoroacetabular impingement (FAI) has become the mainstay of treatment. However, chondral lesions are frequently encountered and have become a determinant of less favourable outcomes following arthroscopic intervention. The aim of this systematic review and meta-analysis was to assess the outcomes of hip arthroscopy (HA) in patients with FAI and concomitant chondral lesions classified as per Outerbridge. A systematic search was performed using the PRISMA guidelines on four databases including MEDLINE, EMBASE, Cochrane Library and Web of Science. Studies which included HA as the primary intervention for management of FAI and classified chondral lesions according to the Outerbridge classification were included. Patients treated with open procedures, for osteonecrosis, Legg-Calve-Perthes disease, and previous ipsilateral hip fractures were excluded. From a total of 863 articles, twenty-four were included for final analysis. Demographic data, PROMs, and radiological outcomes and rates of conversion to total hip arthroplasty (THA) were collected. Risk of bias was assessed using ROBINS-I. Improved post-operative PROMs included mHHS (mean difference:-2.42; 95%CI:-2.99 to −1.85; p<0.001), NAHS (mean difference:-1.73; 95%CI: −2.23 to −1.23; p<0.001), VAS (mean difference: 2.03; 95%CI: 0.93-3.13; p<0.001). Pooled rate of revision surgery was 10% (95%CI: 7%-14%). Most of this included conversion to THA, with a 7% pooled rate (95%CI: 4%-11%). Patients had worse PROMs if they underwent HA with labral debridement (p=0.015), had Outerbridge 3 and 4 lesions (p=0.012), concomitant lesions of the femoral head and acetabulum lesions (p=0.029). Reconstructive cartilage techniques were superior to microfracture (p=0.042). Even in concomitant lesions of the femoral head and acetabulum, employing either microfracture or cartilage repair/reconstruction provided a benefit in PROMs (p=0.027). Acceptable post-operative outcomes following HA with labral repair/reconstruction and cartilage repair in patients with FAI and concomitant moderate-to-severe chondral lesions, can be achieved. Patients suffering from Outerbridge 3 and 4 lesions, concomitant acetabular rim and femoral head chondral lesions that underwent HA with labral debridement, had worse PROMs. Reconstructive cartilage techniques were superior to microfracture. Even in concomitant acetabular and femoral head chondral lesions, employing either microfracture or cartilage repair/reconstruction was deemed to provide a benefit in PROMs


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 23 - 23
1 Dec 2021
Boyd A Rodzen K Morton M Acheson J McIlhagger A Morgan R Tormey D Dave F Sherlock R Meenan B
Full Access

Abstract. INTRODUCTION. Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer which has found increasing application in orthopaedic implant devices and has a lot of promise for ‘made-to-measure’ implants produced through additive manufacturing [1]. However, a key limitation of PEEK is that it is bioinert and there is a requirement to functionalise its surface to make the material osteoconductive to ensure a more rapid, improved and stable fixation, in vivo. One approach to solving this issue is to modify PEEK with bioactive materials, such as hydroxyapatite (HA). OBJECTIVE. To 3D PEEK/HA composite materials using a Fused Filament Fabrication (FFF) approach to enhance the properties of the PEEK matrix. METHODS. PEEK/HA composites (0–30% w/w HA/PEEK) were 3D printed using a modified Ultimaker 2+ 3D printer. The mechanical, thermal, physical, chemical and in vitro properties of the 3D printed samples were all studied as part of this work. RESULTS. The CT images of both the filament and the 3D printed samples showed that the HA material was evenly dispersed throughout the bulk all the samples. SEM/EDX measurements highlighted that HA was homogenously distributed across the surface. As the HA content of the samples increases, so does the tensile modulus, ranging from 4.2 GPa (PEEK) to 6.1 GPa (30% HA/PEEK) and are significantly higher than datasheet information of injected molded PEEK samples. All materials supported the growth of osteoblast cells on their surface. CONCLUSIONS. The results clearly show that we can successfully and easily 3D print HA/PEEK composite materials up to 30% w/w HA/PEEK. The samples produced have a homogeneous distribution of HA in both the bulk and surface of all the samples, and their mechanical performance of the PEEK is enhanced by the addition of HA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 75 - 75
11 Apr 2023
Hofmann J Bewersdorf T Schmidmaier G Grossner T
Full Access

The novel, highly-sensitive and non-destructive method for the quantification of the osteogenic potential of bone marrow mesenchymal stem cells (BM-MSCs), by the evaluation of its hydroxyapatite (HA), in vitro is 99mTc-HDP-Labelling. 99mTc-HDP (tracer) binds rapidly to HA and this uptake can be visualized and quantified. This study was performed to evaluate if this method is suitable to perform a real-time assessment during an ongoing cell culture and if the radioactive tracer may influence the cells and their ability to differentiate. BM-MSCs (n=3) were cultivated in 35mm-dishes. Groups 1 and 3 received DMEM-LG based osteogenic media while Groups 2 und 4 were non-osteogenic controls. Groups 1 and 2 (multi-labelling) were incubated with 5 MBq 99mTc-HDP for 30min on day 7 (d7) and the bound activity was measured using an activimeter. Subsequently the cell-culture was continued and again labelled with 99mTc-HDP on day 14 and 21 (d14, d21). Groups 3 and 4 (single labelling), cultivation of the respective triplicates, ended on day 7, 14 and 21 (d7, d14, d21) followed by 99mTc-HDP-Labelling. Statistical analysis using one-factor ANOVA (p<0.05). Absolute tracer uptake increased steadily in both osteogenic groups: 1 (d7: 0.315; d14: 1.093; d21: 3.283 MBq) and 3 (d7: 0.208; d14: 0.822; d: 212.437 MBq) and was significantly higher than in the corresponding non-osteogenic control-group (Group 2 and 4) at all timepoints. (p<0.001). No significant negative effect of the radioactive tracer could be revealed in group 1 (multi radioactive labelling on d7, d14, d21) compared to Group 3 (singe labelling). The 99mTc-Uptake of groups 2 and 4 was not significantly different at any time. Our data show that the repeated exposition to 99mTc-HDP has no negative influence on the osteogenic differentiation potential of BM-MSCs. Therefore, the method is capable of determining the amount of HA during an ongoing cell culture


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 100 - 100
1 Mar 2021
Raina D Liu Y Isaksson H Tägil M Lidgren L
Full Access

Targeted delivery of drugs is a major challenge in diseases such as infections and tumors. The aim of this study was to demonstrate that hydroxyapatite (HA) particles can act as a recruiting moiety for various bioactive molecules and as a proof-of-concept demonstrate that the affinity of drugs to hydroxyapatite can exert a biological effect. A bisphosphonate, zoledronic acid (ZA), was used as a model drug. Experiment 1 (ZA seeks HA): Calcium sulphate (CaS)/hydroxyapatite (HA) biomaterial pellets (diameter¸=5 mm, height=2 mm) were implanted in the abdominal muscle pouch of rats. After 2-weeks of implantation, a sub-cutaneous injection of 14C-ZA (0.1 mg/kg) was given. 24 h later, the animals were sacrificed and the uptake of ZA determined in the pellets using scintillation counting. Experiment 2 (Systemically administered ZA seeks HA and exerts a biological effect): A fenestrated implant was filled with the CaS/HA biomaterial and inserted in the proximal tibia of rats. 2-weeks post-op, a subcutaneous injection of ZA (0.1 mg/kg) was given. Animals were sacrificed at 6-weeks post-op. Empty implant was used as a control. Peri-implant bone formation was evaluated using different techniques such as micro-CT, mechanical testing and histology. Welch's t-test was used for mechanical testing and Mann-Whitney U test for micro-CT data analysis. Experiment 1: Uptake of radioactive ZA in the CaS/HA biomaterial was confirmed. Almost no ZA was present in the surrounding muscle. These results show high specific binding between systemically administered ZA and synthetic particulate HA. Experiment 2: Significantly higher peri-implant bone was measured using micro-CT in the group wherein the implant contained the CaS/HA biomaterial and ZA was administered systemically (This study presents a method for biomodulating HA in situ by different bioactive molecules. The approach of implanting a biomaterial capable of recruiting systemically given drugs and thereby activate the material is novel and may present a possibility to treat bone infections or tumors


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 1 - 1
1 Mar 2021
Farii HA
Full Access

Abstract

Purpose

It is becoming apparent that mesenchymal stem cells (MSCs) do not directly contribute to mesenchymal tissue regeneration. Pre-clinical attempts to repair large bone defects in big animal models have been hampered by poor MSCs survival after implantation which impedes their direct or indirect effects. Based on previous work, we hypothesized that a venous axial vascularization of the scaffold supporting MSCs or their combination with fresh bone marrow (BM) aspirate would improve their in vivo survival.

Methods

Cross-shape profile tubular microporous monetite implants (12mm long, 5mm large) as two longitudinal halves were produced by 3D powder printing. They were implanted around the femoral veins of Wistar rats and loaded with 1mL of BM aspirate either alone or supplemented by 107 MSCs. This was compared with BM-free scaffolds loaded only with 107 MSCs. After 8 weeks bone formation were investigated by micro-CT, scanning electron microscopy, histology and immunohistochemistry.


Bone & Joint Research
Vol. 8, Issue 2 | Pages 41 - 48
1 Feb 2019
Busse P Vater C Stiehler M Nowotny J Kasten P Bretschneider H Goodman SB Gelinsky M Zwingenberger S

Objectives. Intra-articular injections of local anaesthetics (LA), glucocorticoids (GC), or hyaluronic acid (HA) are used to treat osteoarthritis (OA). Contrast agents (CA) are needed to prove successful intra-articular injection or aspiration, or to visualize articular structures dynamically during fluoroscopy. Tranexamic acid (TA) is used to control haemostasis and prevent excessive intra-articular bleeding. Despite their common usage, little is known about the cytotoxicity of common drugs injected into joints. Thus, the aim of our study was to investigate the effects of LA, GC, HA, CA, and TA on the viability of primary human chondrocytes and tenocytes in vitro. Methods. Human chondrocytes and tenocytes were cultured in a medium with three different drug dilutions (1:2; 1:10; 1:100). The following drugs were used to investigate cytotoxicity: lidocaine hydrochloride 1%; bupivacaine 0.5%; triamcinolone acetonide; dexamethasone 21-palmitate; TA; iodine contrast media; HA; and distilled water. Normal saline served as a control. After an incubation period of 24 hours, cell numbers and morphology were assessed. Results. Using LA or GC, especially triamcinolone acetonide, a dilution of 1:100 resulted in only a moderate reduction of viability, while a dilution of 1:10 showed significantly fewer cell counts. TA and CA reduced viability significantly at a dilution of 1:2. Higher dilutions did not affect viability. Notably, HA showed no effects of cytotoxicity in all drug dilutions. Conclusion. The toxicity of common intra-articular injectable drugs, assessed by cell viability, is mainly dependent on the dilution of the drug being tested. LA are particularly toxic, whereas HA did not affect cell viability. Cite this article: P. Busse, C. Vater, M. Stiehler, J. Nowotny, P. Kasten, H. Bretschneider, S. B. Goodman, M. Gelinsky, S. Zwingenberger. Cytotoxicity of drugs injected into joints in orthopaedics. Bone Joint Res 2019;8:41–48. DOI: 10.1302/2046-3758.82.BJR-2018-0099.R1


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 39 - 39
1 Dec 2020
Çetin E Daldal İ Eren A Dizakar SÖA Ömeroğlu S Uzuner B Çelik H Saygılı HH Koçkar B Şenköylü A
Full Access

Due to well-known disadvantages of the autologous bone graft, many alternatives have been studied for a reliable spinal fusion. Herein, we aimed to investigate the effects of human recombinant epidermal growth factor (EGF) on posterolateral lumbar fusion in a rat model. 36 male SD rats underwent posterolateral fusion at L4-5 level. They were randomly assigned to 3 groups: Sham control group, Hydoxyapatite β-tricalcium phosphate (HA/β-TCP) group and HA/β-TCP + EGF group. Rats were euthanized at 8 weeks post-surgery. 6 rats from each group were selected for manual palpation examination, micro-computed tomography analysis and histologic analysis; and the rest was used for biomechanical analysis. Based on manual palpation, there was no fusion in the sham control group. Fusion rate was 33.3% in the HA/β-TCP group and 66.7% in the HA/β-TCP + EGF group (p=0.085). Micro-CT results revealed that new bone formation was higher in the HA/β-TCP + EGF group (BV/TV: 40% vs. 65%) (p=0.004). Histologically newly formed bone tissue was more pronounced in the EGF group and compacted and bridging bone spicules were observed. The median maximum bending moment values were 0.51 Nmm (0.42– 0.59), 0.73 Nmm (0.49– 0.88) and 0.91 Nmm (0.66– 1.03) in the sham control, HA/β-TCP and HA/β-TCP + EGF groups, respectively (p=0.013). The median stiffness values were 1.69 N/mm (1.12–2.18), 1.68 N/mm (1.13–2.74) and 3.10 N/mm (1.66–4.40) as in the previous order (p=0.087). This study demonstrates that EGF enhances posterolateral lumbar fusion in the rat model. EGF in combination with ceramic grafts increased the fusion rates


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 100 - 100
1 Dec 2020
Sebastian S Liu Y Sezgin EA Tarasevičius Š Raina DB
Full Access

Background. With promising antibiofilm properties, rifampicin is considered as a cornerstone in the complementary treatment of bone and joint infections. But, achieving an adequate concentration of rifampicin long-term in bone tissue is a challenge. Long-term systemic administration also comes with concomitant side effects. Thus, local delivery of rifampicin in a carrier to ensure the high local concentration of antibiotic in surgical site after intervention due to infection could be a valuable alternative. However, an ideal platform for local delivery of rifampicin is still lacking. A calcium sulphate/hydroxyapatite (CaS/HA) (Cerament, Bonesupport AB, Sweden) biomaterial was used as a local delivery platform. Here we aimed 1) to evaluate the injectability of CaS/HA hand-mixed with rifampicin at various concentrations up to maximum one daily dose used systemically in clinical practice 2) to test a clinically used and commercially available mixing device containing the biphasic ceramic with rifampicin. Materials & Methods. Three different concentrations (100 mg, 300 mg and 600 mg) of rifampicin powder (Rifampicin Ebb, Sanofi S.P.A, Italy) diluted in 5 mL of mixing solution (C-TRU, Bonesupport AB, Sweden) were used. Rifampicin solution was mixed to the CaS/HA powder and the injectability of the CaS/HA plus rifampicin composite was evaluated by extruding 250 µL of paste manually through a graduated 1 mL syringe connected to an 18G needle (Ø=1.2 mm, L=4 cm). Mixing was done with a spatula for 30 s at 22°C ±1°C. Total weight of the paste before and after extrusion were measured. To normalize the amount of composite that remained in the needle and syringe tip after injection, the mean of the paste extruded from the syringe at 3 min was calculated for the tested concentrations (normalized value). Injectability (%) was calculated by dividing the weight of the paste extruded from the syringe with normalized value. Each test was repeated for three times at various time points (3, 5, 7 and 9 min). Additionally, 300 mg rifampicin was chosen to mix with the CaS/HA in a commercially available mixing system, which is used clinically. Results. All three combinations of CaS/HA plus rifampicin (100 mg, 300 mg & 600 mg) could be completely extruded from 1 mL syringes at 3 min. At 5 min, 100 mg & 300 mg could still be injected, whereas 600 mg was uninjectable or solidified. At 7 min, rifampicin 100 mg & 300 mg showed 34% and 11% of injectability respectively. At 9 min, no injectability was observed. The material was completely set within 15 minutes with all concentrations. With commercial mixing system, at the recommended injection time of 4 min, 78% of the CaS/HA plus rifampicin (300 mg) composite could be injected. Conclusions. The injectability was reduced with the increasing concentration of rifampicin. CaS/HA plus rifampicin (100 mg and/or 300 mg) could be used by hand mixing and transferred to a syringe or by using an available mixing system containing the ceramic. For higher concentrations of rifampicin, the rheological properties of the ceramics have to be modified for injectability


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 96 - 96
1 Mar 2021
Chen H Stampoultzis T Papadopoulou A Balabani S Huang J
Full Access

Abstract. Objectives. The objective of this study is to investigate the effect of solvents and rheological properties of PCL/Hydroxyapatite ink on the shape fidelity of the 3D printed scaffolds for bone tissue engineering. Methods. A series of inks were made consisting of 50% (w/v) of polycaprolactone (PCL) filled with 0%, 3.5% and 12.5% (w/V) of hydroxyapatite (HA) in dichloromethane (DCM) and chloroform (CHF). Steady and oscillatory shear rheological tests were performed on a rheometer (Discovery HR-3). Solvent-cast direct ink writing was performed with a custom-made 3D printer for the fabrication of PCL/HA scaffold structures with 2–8 layers. Optical microscope and scanning electron microscopy (SEM) were used to assess the shape fidelity. Results. Shape fidelity of the inks was quantitively assessed on the 3D printed scaffold structures allowing subjective comparisons. The addition of HA particles increased zero-shear viscosity by up to 900%. For oscillatory tests, plateau of storage modulus was observed in the low-frequency region which is attributed to good dispersion of the HA particles inside the matrix that leads to the formation of filler networks, resulting in pseudo-solid behavior and shape fidelity improvement. As the HA concentration increases, the plateau becomes more pronounced and the shape fidelity increases. With the same concentration, all DCM inks also show higher viscosity (from 10% to 200%) and better shape fidelity than CHF inks. As DCM has a lower boiling point (39.6 °C) than CHF (61.2°C), DCM evaporates quicker reducing the fusion and diffusion of deposited ink filaments before solidification which is observed in SEM images. Conclusions. This study reveals insights into using rheological characterizations as a tool for evaluation of shape fidelity of solvent-based DIW inks and also provides fundamental information on the influence of different solvents on the fidelity of 3D printed scaffolds. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Objective. To study the effect of hyaluronic acid (HA) on local anaesthetic chondrotoxicity in vitro. Methods. Chondrocytes were harvested from bovine femoral condyle cartilage and isolated using collagenase-containing media. At 24 hours after seeding 15 000 cells per well onto a 96-well plate, chondrocytes were treated with media (DMEM/F12 + ITS), PBS, 1:1 lidocaine (2%):PBS, 1:1 bupivacaine (0.5%):PBS, 1:1 lidocaine (2%):HA, 1:1 bupivacaine (0. 5%):HA, or 1:1 HA:PBS for one hour. Following treatment, groups had conditions removed and 24-hour incubation. Cell viability was assessed using PrestoBlue and confirmed visually using fluorescence microscopy. Results. Media-treated groups had a mean of 1.55×10. 4. cells/well (. sem. 783). All treated cells showed statistically significant reduced viability when compared with media alone (all p < 0.003). Cells treated with bupivacaine + HA (6.70×10. 3. cells/well (. sem. 1.10×10. 3. )) survived significantly more than bupivacaine (2.44×10. 3. cells/well (. sem . 830)) (p < 0.001). Lidocaine + HA (1.45×10. 3. cells/well (. sem. 596)) was not significantly more cytotoxic than lidocaine (2.24×10. 3. cells/well (. sem. 341)) (p = 0.999). There was no statistical difference between the chondrotoxicities of PBS (8.49×10. 3. cells/well (. sem. 730) cells/well) and HA (4.75×10. 3. cells/well (. sem. 886)) (p = 0.294). Conclusions. HA co-administration reduced anaesthetic cytotoxicity with bupivacaine but not lidocaine, suggesting different mechanisms of injury between the two. Co-administered intra-articular injections of HA with bupivacaine, but not lidocaine, may protect articular chondrocytes from local anaesthetic-associated death. Cite this article: Bone Joint Res 2013;2:270–5


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 72 - 72
1 Nov 2021
Zampogna B
Full Access

Hyaluronic acid (HA) is responsible for the viscoelastic properties of synovial fluid and cartilage. Compared to healthy joints, synovial fluid in osteoarthritic joints contains HA of lower concentration and molecular weight. Hyaluronic acid hybrid complexes are composed by long and short HA chains linked by H bonds. These rheological characteristics and viscoelastic properties were produced by thermal patented process without chemical modification. Chondroitin sulfate (CS) is one of the essential components of the articular cartilage matrix and plays a key role in cartilage's mechanical and elastic properties. Biotechnological chondroitin (CB) is produced through fermentative/biotechnological processes and, unlike CS, is not sulfated. It has been shown that CB to play a more significant role in the phenotypic maintenance of chondrocytes than chondroitin sulfate and increases their viability and proliferation. A recent A Single-Arm, Open-Label, Pilot Study was conducted to evaluate the safety and efficacy of a single-dose intra-articular injection of Hybrid Hyaluronic acid and Sodium Chondroitin in the Treatment of Symptomatic Hip Osteoarthritis. A single injection of HS-SC was well tolerated and safe in the treatment of symptomatic hip OA. The treatment demonstrated a rapid significant improvement in pain (VAS) and function (Lequesne's Index) up to 6 months of follow-up


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 8 - 8
1 Mar 2021
Hulme CH Perry J Roberts S Gallacher P Jermin P Wright KT
Full Access

Abstract. Objectives. The ability to predict which patients will improve following routine surgeries aimed at preventing the progression of osteoarthritis is needed to aid patients being stratified to receive the most appropriate treatment. This study aimed to investigate the potential of a panel of biomarkers for predicting (prior to treatment) the clinical outcome following treatment with microfracture or osteotomy. Methods. Proteins known to relate to OA severity, with predictive value in autologous cell implantation treatment or that had been identified in proteomic analyses (aggrecanase-1/ ADAMTS-4, cartilage oligomeric matrix protein (COMP), hyaluronic acid (HA), Lymphatic Vessel Endothelial Hyaluronan Receptor-1, matrix metalloproteinases-1 and −3, soluble CD14, S100 calcium binding protein A13 and 14-3-3 protein theta) were assessed in the synovial fluid (SF) of 19 and 13 patients prior to microfracture or osteotomy, respectively, using commercial immunoassays. Levels of COMP and HA were measured in the plasma of these patients. To find predictors of postoperative function, multiple linear regression analyses were performed. Results. Linear regression analyses demonstrated that a lower concentration of HA in pre-operative SF was predictive of improved knee function (higher Lysholm score) following microfracture surgery. Further, lower pre-operative activity of ADAMTS-4 in SF was a significant, independent predictor of higher post-operative Lysholm score (improved joint function) following osteotomy surgery. Conclusion. This study is novel in identifying biomarkers with the potential to predict clinical outcome in patients treated with microfracture or osteotomy of the knee. Lower concentrations of HA and undetectable activity of ADAMTS-4 in the joint fluid of individuals with cartilage defects/early-OA may be used in algorithms to stratify patients to the most appropriate surgery. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 99 - 99
1 Nov 2018
Tyrnenopoulou P Rizos E Papadopoulou P Patsikas M Kritsepi-Konstantinou M Papazoglou L Aggeli A Diakakis N
Full Access

The rheological properties of synovial fluid (SF) are largely attributed to the presence of high molecular weight hyaluronic acid (HA). In normal SF, HA has been shown to be an anti-inflammatory molecule able to increase the viscosity and promote endogenous production of HA. The aim of the present report was to investigate the possible effect of HA concentration in rheological properties (elastic modulus, G´ and viscous modulus, G´´) of osteoarthritic equine SF. For this purpose, SF from intercarpal, metacarpophalangeal and distal interphalangeal joint was aspirated by aseptic arthrocentesis from 60 Warmblood horses. For determining HA concentrations in equine SF samples, a commercially available ELISA kit was used. Additionally, full rheological sample characterization was carried out with an AR-G2 rheometer (TA Instruments Ltd., UK) in order to measure the elastic G´ and viscous G´´ moduli, at horse's body (37.5 ºC) temperature. The ANOVA findings revealed statistically significant main effects of the factors Joint Type (p = 0.001), and main effects of covariates Age (p = 0.019) and HA (p < 0.001) on the mean values of logG” and logG' measurements. Interpreting the coefficients of the covariate HA, a positive correlation of HA was detected on the response logG” and logG' measurements. Collectively, these data illustrate the role of HA in equine pathological SF