Accidents, osteoporosis or cancer can cause severe bone damage requiring grafts to heal. All current grafting methods have disadvantages including scarcity and infection/rejection risks. An alternative is therefore needed. Hydroxyapatite/calcium carbonate (HA/CC) scaffolds mimic the mineral bone composition but lack growth factors present in auto- and allografts, limiting their osteoinductive capacity. We hypothesize that this will increase the osteogenicity and osteoinductivity of scaffolds through the presence of growth factors. The objectives of this study are to develop and mass-produce grafts with enhanced osteoinductive capacity.
Although bone morphogenetic protein 2 (BMP-2) has been FDA-approved for spinal fusion for decades, its disadvantages of promoting osteoclast-based bone resorption and suboptimal carrier (absorbable collagen sponge) leading to premature release of the protein limit its clinical applications. Our recent study showed an excellent effect on bone regeneration when BMP-2 and zoledronic acid (ZA) were co-delivered based on a calcium sulphate/hydroxyapatite (CaS/HA) scaffold in a rat critical-size femoral defect model. Therefore, the aim of this study was to evaluate whether local application of BMP-2 and ZA released from a CaS/
The extracellular matrix (ECM)-based biomaterials provide a platform to mimic the disc microenvironment in facilitating stem cell transplantation for tissue regeneration. However, little is known about in vitro preconditioning human umbilical cord Wharton Jelly-derived mesenchymal stem cells (MSCs) on 3D hyaluronic acid (HA)/type II collagen (COLII) hydrogel for nucleus pulposus (NP) phenotype and pain modulation. We developed a tuneable 3D
Majority of osteoporosis related fractures are treated surgically using metallic fixation devices. Anchorage of fixation devices is sometimes challenging due to poor osteoporotic bone quality that can lead to failure of the fracture fixation. Using a rat osteoporosis model, we employed neutron tomography and histology to study the biological effects of implant augmentation using an isothermally setting calcium sulphate/hydroxyapatite (CaS/HA) biomaterial with synthetic
A number of techniques have been developed to improve the immediate mechanical anchorage of implants for enhancing implant longevity. This issue becomes even more relevant in patients with osteoporosis who have fragile bone. We have previously shown that a dynamic hip screw (DHS) can be augmented with a calcium sulphate/hydroxyapatite (CaS/HA) based injectable biomaterial to increase the immediate mechanical anchorage of the DHS system to saw bones with a 400% increase in peak extraction force compared to un-augmented DHS. The results were also at par with bone cement (PMMA). The aim of this study was to investigate the effect of CaS/
Arthritis is a common and debilitating disease and is associated with an increased fall risk. The purpose of this study was to examine the effect of impacted joint and limb on fall risk as measured by the margin of stability (MOS). There were 110 participants, including healthy controls (HC; n=30), ankle arthritis (AA; n=30), knee arthritis (KA; n=20) and hip arthritis (HA; n=30) patients. All protocols were Institutional Review Board approved and all participants signed informed consent. Participants walked approximately 6 meters at a self-selected pace. MOS was calculated in the foot coordinate system in the anterior/posterior (AP) and medial/lateral (ML) directions at heel strike. A one-way ANOVA was used to examine group effects (HC, AA, KA, HA) on gait speed. A two-way repeated measures ANOVA was used to examine the effects of limb (Non-Surgical, Surgical) and group on AP and ML MOS. HC had the fastest gait speed (1.40±0.24 m/s; p<0.001) when compared to AA (0.85±0.24 m/s), KA (0.94±0.22 m/s) and
Abstract. BACKGROUND. Hemi-arthroplasty (HA) as a treatment for fractured neck of femur has slightly increased since 2019 and remarkably after the COVID pandemic. The main drawback of the treatment is ongoing cartilage deterioration that may require revision to THR. OBJECTIVE. This study assessed cartilage surface damage in hip
Arthroscopic management of femoroacetabular impingement (FAI) has become the mainstay of treatment. However, chondral lesions are frequently encountered and have become a determinant of less favourable outcomes following arthroscopic intervention. The aim of this systematic review and meta-analysis was to assess the outcomes of hip arthroscopy (HA) in patients with FAI and concomitant chondral lesions classified as per Outerbridge. A systematic search was performed using the PRISMA guidelines on four databases including MEDLINE, EMBASE, Cochrane Library and Web of Science. Studies which included
Abstract. INTRODUCTION. Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer which has found increasing application in orthopaedic implant devices and has a lot of promise for ‘made-to-measure’ implants produced through additive manufacturing [1]. However, a key limitation of PEEK is that it is bioinert and there is a requirement to functionalise its surface to make the material osteoconductive to ensure a more rapid, improved and stable fixation, in vivo. One approach to solving this issue is to modify PEEK with bioactive materials, such as hydroxyapatite (HA). OBJECTIVE. To 3D PEEK/
The novel, highly-sensitive and non-destructive method for the quantification of the osteogenic potential of bone marrow mesenchymal stem cells (BM-MSCs), by the evaluation of its hydroxyapatite (HA), in vitro is 99mTc-HDP-Labelling. 99mTc-HDP (tracer) binds rapidly to
Targeted delivery of drugs is a major challenge in diseases such as infections and tumors. The aim of this study was to demonstrate that hydroxyapatite (HA) particles can act as a recruiting moiety for various bioactive molecules and as a proof-of-concept demonstrate that the affinity of drugs to hydroxyapatite can exert a biological effect. A bisphosphonate, zoledronic acid (ZA), was used as a model drug. Experiment 1 (ZA seeks HA): Calcium sulphate (CaS)/hydroxyapatite (HA) biomaterial pellets (diameter¸=5 mm, height=2 mm) were implanted in the abdominal muscle pouch of rats. After 2-weeks of implantation, a sub-cutaneous injection of 14C-ZA (0.1 mg/kg) was given. 24 h later, the animals were sacrificed and the uptake of ZA determined in the pellets using scintillation counting. Experiment 2 (Systemically administered ZA seeks
It is becoming apparent that mesenchymal stem cells (MSCs) do not directly contribute to mesenchymal tissue regeneration. Pre-clinical attempts to repair large bone defects in big animal models have been hampered by poor MSCs survival after implantation which impedes their direct or indirect effects. Based on previous work, we hypothesized that a venous axial vascularization of the scaffold supporting MSCs or their combination with fresh bone marrow (BM) aspirate would improve their in vivo survival. Cross-shape profile tubular microporous monetite implants (12mm long, 5mm large) as two longitudinal halves were produced by 3D powder printing. They were implanted around the femoral veins of Wistar rats and loaded with 1mL of BM aspirate either alone or supplemented by 107 MSCs. This was compared with BM-free scaffolds loaded only with 107 MSCs. After 8 weeks bone formation were investigated by micro-CT, scanning electron microscopy, histology and immunohistochemistry.Abstract
Purpose
Methods
Objectives. Intra-articular injections of local anaesthetics (LA), glucocorticoids (GC), or hyaluronic acid (HA) are used to treat osteoarthritis (OA). Contrast agents (CA) are needed to prove successful intra-articular injection or aspiration, or to visualize articular structures dynamically during fluoroscopy. Tranexamic acid (TA) is used to control haemostasis and prevent excessive intra-articular bleeding. Despite their common usage, little is known about the cytotoxicity of common drugs injected into joints. Thus, the aim of our study was to investigate the effects of LA, GC,
Due to well-known disadvantages of the autologous bone graft, many alternatives have been studied for a reliable spinal fusion. Herein, we aimed to investigate the effects of human recombinant epidermal growth factor (EGF) on posterolateral lumbar fusion in a rat model. 36 male SD rats underwent posterolateral fusion at L4-5 level. They were randomly assigned to 3 groups: Sham control group, Hydoxyapatite β-tricalcium phosphate (HA/β-TCP) group and
Background. With promising antibiofilm properties, rifampicin is considered as a cornerstone in the complementary treatment of bone and joint infections. But, achieving an adequate concentration of rifampicin long-term in bone tissue is a challenge. Long-term systemic administration also comes with concomitant side effects. Thus, local delivery of rifampicin in a carrier to ensure the high local concentration of antibiotic in surgical site after intervention due to infection could be a valuable alternative. However, an ideal platform for local delivery of rifampicin is still lacking. A calcium sulphate/hydroxyapatite (CaS/HA) (Cerament, Bonesupport AB, Sweden) biomaterial was used as a local delivery platform. Here we aimed 1) to evaluate the injectability of CaS/
Abstract. Objectives. The objective of this study is to investigate the effect of solvents and rheological properties of PCL/Hydroxyapatite ink on the shape fidelity of the 3D printed scaffolds for bone tissue engineering. Methods. A series of inks were made consisting of 50% (w/v) of polycaprolactone (PCL) filled with 0%, 3.5% and 12.5% (w/V) of hydroxyapatite (HA) in dichloromethane (DCM) and chloroform (CHF). Steady and oscillatory shear rheological tests were performed on a rheometer (Discovery HR-3). Solvent-cast direct ink writing was performed with a custom-made 3D printer for the fabrication of PCL/
Objective. To study the effect of hyaluronic acid (HA) on local anaesthetic
chondrotoxicity in vitro. Methods. Chondrocytes were harvested from bovine femoral condyle cartilage
and isolated using collagenase-containing media. At 24 hours after
seeding 15 000 cells per well onto a 96-well plate, chondrocytes
were treated with media (DMEM/F12 + ITS), PBS, 1:1 lidocaine (2%):PBS,
1:1 bupivacaine (0.5%):PBS, 1:1 lidocaine (2%):
Hyaluronic acid (HA) is responsible for the viscoelastic properties of synovial fluid and cartilage. Compared to healthy joints, synovial fluid in osteoarthritic joints contains
Abstract. Objectives. The ability to predict which patients will improve following routine surgeries aimed at preventing the progression of osteoarthritis is needed to aid patients being stratified to receive the most appropriate treatment. This study aimed to investigate the potential of a panel of biomarkers for predicting (prior to treatment) the clinical outcome following treatment with microfracture or osteotomy. Methods. Proteins known to relate to OA severity, with predictive value in autologous cell implantation treatment or that had been identified in proteomic analyses (aggrecanase-1/ ADAMTS-4, cartilage oligomeric matrix protein (COMP), hyaluronic acid (HA), Lymphatic Vessel Endothelial Hyaluronan Receptor-1, matrix metalloproteinases-1 and −3, soluble CD14, S100 calcium binding protein A13 and 14-3-3 protein theta) were assessed in the synovial fluid (SF) of 19 and 13 patients prior to microfracture or osteotomy, respectively, using commercial immunoassays. Levels of COMP and
The rheological properties of synovial fluid (SF) are largely attributed to the presence of high molecular weight hyaluronic acid (HA). In normal SF,