The purpose of this study is toevaluate the clinical and radiologic results after high flexiontotal knee arthroplasty, Lospa®(Corentec Inc.) with 10mm cutting of posterior femoral condyle and LPS-Flex®(Zimmer Inc.) with 12.5mm cutting of posterior femoral condyle.(Fig. 1) We prospectively compared 205 knees in 128 patients who underwent arthroplasty usingLospa®(groupA) and 63 knees in 48 patients who underwentarthroplasty using NexGen LPS-Flex®(group B) from September 2010 to March 2012 at Department of Orthopaedic Surgery, Sun General Hospital (Daejeon, Korea). Mean follow-up period was 33 months(24–42) in group A and 33months(23–45) in group B, and mean age was 69.5 in group A, 70.4 in group B. The radiologic analysis included the change of mechanical axis deviation and femoro-tibial angle, implant position (α,β,γ,δ)(Fig 2). The clinical results were evaluated according to Hospital for special surgery (HSS), Knee society score (KSS), and range of motion.Purpose
Materials and Methods
‘High flexion’ polyethylene tibial tray inserts are available from total knee replacement (TKR) manufacturers. There is currently no published data available that examines how much extra knee flexion these new implants give or if there are any wear consequences for the change in design. The
Introduction.
Increasingly,
Femoroacetabular impingement (FAI) deformities are a potential precursor to hip osteoarthritis and an important contributor to non-arthritic hip pain. Some hips with FAI deformities develop symptoms of pain in the hip and groin that are primarily position related. The reason for pain generation in these hips is unclear. Understanding potential impingement mechanisms in FAI hips will help us understand pain generation. Impingement between the femoral head-neck contour and acetabular rim has been proposed as a pathomechanism in FAI hips. This proposed pathomechanism has not been quantified with direct measurements in physiological postures. Research question: Is femoroacetabular clearance different in symptomatic FAI hips compared to asymptomatic FAI and control hips in sitting flexion, adduction, and internal rotation (FADIR) and squatting postures?. We recruited 33 participants: 9 with symptomatic FAI, 13 with asymptomatic FAI, and 11 controls from the Investigation of Mobility, Physical Activity, and Knowledge Translation in Hip Pain (IMAKT-HIP) cohort. We scanned each participant's study hip in sitting FADIR and squatting postures using an upright open MRI scanner (MROpen, Paramed, Genoa, Italy). We quantified femoroacetabular clearance in sitting FADIR and squatting using beta angle measurements which have been shown to be a reliable surrogate for acetabular rim pressures. We chose sitting FADIR and squatting because they represent, respectively, passive and active maneuvers that involve
Introduction. Total-knee-arthroplasty (TKA) is used to restore knee function and is a well-established treatment of osteoarthritis. Along with the widely used fixed bearing TKA design, some surgeons opt to use mobile bearing designs. The mobile-bearing TKA is believed to allow for more freedom in placement of the tibial plate, greater range of motion in internal-external (IE) rotation and greater constraint through the articular surface. This current study evaluates 1) the kinematics of a high constraint three condyle mobile bearing TKA, 2) the insert rotation relative to the tibia, and 3) compares them with the intact knee joint kinematics during laxity tests and activities-of-daily-living (lunge, level walking, stairs down). We hypothesize that 1) in contrast to the intact state the anterior-posterior (AP) stability of the implanted joint increases when increasing compression level while 2) maintaining the IE mobility, and that 3) the high constraint does not prevent differential femorotibial rollback during lunge. Methods. Six fresh-frozen human cadaveric knee joints with a mean donor age of 64.5 (±2.4) years and BMI of 23.3 (±7.3) were tested on a robot (KR140, KUKA) in two different states: 1) intact, 2) after implantation of a three condyle mobile bearing TKA. The tibia plateau and the insert of each tested specimen were equipped with a sensor to measure the insert rotation during testing. Laxity tests were done at extension and under flexion (15°, 30°, 45°, 60° 90°, 120°) by applying subsequent forces in AP and medial-lateral (ML) of ±100N and moments in IE and varus-valgus (VV) rotation (6Nm/4Nm, 12 Nm/-). Testing was performed under low (44N) and weight bearing compression (500N). Loading during the lunge, level walking and stairs descent activity was based on in-vivo data. Resulting data was averaged and compared with the kinematics of the intact knee. Results. Increasing the joint compression resulted in a 90% reduced AP laxity (increased stability) for the implanted case while the intact knee laxity stayed similar. In high compression the implanted IE mobility was reduced by 45% for low and mid flexion angles and by 20% for
Introduction. Revision total knee arthroplasy (TKA) has been often used with a metal block augmentation for patients with poor bone quality. However, bone resorption beneath metal block augmentation has been still reported and little information about the reasons of the occurrence of bone resorption is available. The aim of the current study is to identify a possibility of the potential occurrence of bone resorption beneath metal block augmentation, through evaluation of strain distribution beneath metal block augmentation in revision TKA with metal block augmentation, during
Introduction. Revision total knee arthroplasty (TKA) has been often used with a metal block augmentation for patients with poor bone quality. However, bone defects are frequently detected in revision TKA used with metal block augmentation. This study focused on identification of a potential possibility of the bone defect occurrence through the evaluation of the strain distribution on the cortical bone of the tibia implanted revision TKA with metal block augmentation, during
Accurate in vivo knee joint contact forces are required for joint simulator protocols and finite element models during the development and testing of total knee replacements (Varadarajan et al., 2008.) More accurate knowledge of knee joint contact forces during
Introduction. Positive expectations can increase compliance with treatment and realistic expectations may reduce postoperative dissatisfaction. Recently there are articles regarding expectations of patients from their TKA in western literature and only few articles based on Korean populations which don't encompass the whole spectrum of expectations in Korean patients. In all those articles based on pre-operative expectation, results were applied to whole expectation category uniformly not differentially. We aimed to document the pre-operative expectations in Korean patients undergoing total knee replacement using an established survey form and to determine whether expectations were influenced by socio-demographic factors and socio-demographic factors influences expectation items in particular category uniformly or differentially. Methods. Expectations regarding 19 items in the Knee Replacement Expectation Survey form were investigated in 228 patients scheduled for total knee replacement. The levels and distribution patterns of individual and summated expectation of five expectation categories; relief from pain, baseline activity,
Background:. The safety implications of achieving
Introduction. Ability to accommodate increased range of motion is a design objective of many modern TKA prostheses. One challenge that any “high-flex friendly” prosthesis has to overcome is to manage the femorotibial contact stress at higher flexion angle, especially in the polyethylene tibial insert. When knee flexion angle increases, the femorotibial contact area tends to decrease thus the contact stress increases. For a high-flex design, considerations should be taken to control the contact stress to reduce the risk of early damage or failure on the tibial insert. This study evaluated the effect of femoral implant design on
1. Introduction. Such a Total Knee Arthroplasty (TKA) that is capable of making
Purpose. To compare and analyze the long term follow up clinical & radiological result after utilization of fixed-type & rotating-type implant for
The natural knee allows multi-planar freedoms of rotation and translation, while retaining stability in the antero-posterior direction. It allows flexion with roll back, and medial, lateral and central rotation movements. The natural femoral condyles of the knee are spiral, therefore inducing a side to side translatory movement during flexion and extension. Incorporating all these features is vital in successful knee replacement design. The different knee designs currently in use demonstrate different deficiencies in knee function. A study of 150 Posterior Cruciate (PCL) Retaining Total Knee Replacements [1] has shown that in 72% of knees direct impingement of the tibial insert posteriorly against the back of the femur was responsible for blocking further flexion. The mean pre-operative range of flexion was 105° and post-operative was 105.9°. For every 2mm decrease in posterior condylar offset, the maximum flexion was reduced by 12.2°. The major disadvantage of the Posterior Stabilised (PS) Total Knee Replacement is gross anterior to posterior mid-flexion instability [2]. The Medial Rotation Total Knee Replacement is good in mid-flexion but not in
Introduction. Achieving
Objective. To evaluate the clinical and functional outcomes obtained by combination of high-flexion Freedom® Total Knee System (TKS) and mini-subvastus approach in total knee replacement patients. Method. This is a retrospective, observational, real world study conducted at Mumbai in India from 2011 to 2016. All patients who were above the age of 18 and operated for total knee replacement (TKR) with mini-subvastus approach using Freedom (Maxx Medical) by the senior author were included. The Implant survivorship was the survey endpoint; primary endpoint was range of motion (ROM); and secondary endpoints were AKSS (American Knee Society Score) and WOMAC (Western Ontario and McMaster Universities Osteoarthritis) scores collected pre- and post-operatively. Results. 184 patients with 242 knees (126 unilateral and 58 bilateral) were operated with high-flexion TKS. Average age of patients was 70 ± 6.2 years. The mean ROM increased from 99.4°±10.44° (50°-120°) preoperatively to 116.78°±8.18° (88°–140°) postoperatively (p<0.001). Clinical and functional AKSS scores improved from 60.83±5.12 to 91.16±2.19 (p<0.001) and 65.35±3.52 to 99.13±4.61 (p<0.001) respectively. There average WOMAC pain scores improved from 12.12±1.72 to 0.066±0.37 (<0.0001). Moreover, post-operative WOMAC stiffness and function scores depicted significant improvement from 4.43±0.97 to 0.03±0.26 (p<0.0001) and 0.03±0.26 to 0.18±1.21 (p<0.0001) respectively at a mean follow-up of 3.71 ± 0.98 years. Implant survivorship was 100%. Conclusion. High-flexion Freedom® TKS demonstrated a satisfactory clinical and functional improvements including
Introduction. Traditional applied loading of the knee joint in experimental testing of RTKR components is usually confined to replicating the tibiofemoral joint alone. The second joint in the knee, the patellofemoral joint, can experience forces of up to 9.7 times body weight during normal daily living activities (Schindler and Scott 2011). It follows that with such high forces being transferred, particularly in
Total knee arthroplasty has been the main treatment method among advanced osteoarthritis (OA) patients. The main post-operative evaluation considers the level of pain, stability and range of motion (ROM). The knee flexion level is one of the most important categories in the total knee arthroplasty patient's satisfaction in Asian countries due to consistent habits of floor-sitting, squating, kneeling and cross legged sitting. In this study, we discovered that the posterior capsular release enabled the further flexion angles by 14 degrees compared to the average ROM without posterior release group. Our objective was to increase the ROM using the conventional total knee arthroplasty by the posterior capsular release. Posterior capsular release is being used in order to manage the flexion contraction. Although the
Knowledge of joint kinematics in the lower limb is important for understanding joint injuries and diseases and evaluating treatment outcomes. However, limited information is available about the joint kinematics required for