Advertisement for orthosearch.org.uk
Results 1 - 20 of 122
Results per page:
Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims

Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients.

Methods

A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 77 - 77
19 Aug 2024
Fu H Singh G H C Lam J Yan CH Cheung A Chan PK Chiu KY
Full Access

Hip precautions following total hip arthroplasty (THA) limits flexion, adduction and internal rotation, yet these precautions cause unnecessary psychological stress. This study aims to assess bony and implant impingement using virtual models from actual patient's bony morphology and spinopelvic parameters to deduce whether hip precautions are necessary with precise implant positioning in the Asian population. Individualized sitting and standing sacral slope data of robotic THAs performed at two tertiary referral centers in Hong Kong was inputted into the simulation system based on patients’ pre-operative sitting and standing lumbar spine X-rays. Three-dimensional dynamic models were reconstructed using the Stryker Mako THA 4.0 software to assess bony and implant impingement both anteriorly and posteriorly, with default cup placement at 40° inclination and 20° anteversion. Femoral anteversion followed individual patient's native version. A 36mm hip ball was chosen for all cups equal or above 48mm and 32mm for those below. Anterior impingement was assessed by hip flexion and posterior impingement was assessed by hip extension. 113 patients were included. At neutral rotation and adduction, no patients had anterior implant impingement at hip flexion of 100°. 1.7% had impingement at 110°, 3.5% had impingement at 120°, 9.7% had impingement at 130°. With 20° of internal rotation and adduction, 0.8% had anterior implant impingement at hip flexion of 90°, 7.1% had impingement at 100° and 18.5% had impingement at 110°. With the hip externally rotated by 20°, 0.8% of patients had posterior implant impingement, and 8.8% bony impingement at 0° extension. With enabling technology allowing accurate component positioning, hip precautions without limiting forward flexion in neutral position is safe given precise implant positioning and adequate osteophyte removal. Patients should only be cautioned about combined internal rotation, adduction with flexion


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 6 - 6
7 Jun 2023
Declercq J Vandeputte F Corten K
Full Access

Tenotomy of the iliopsoas tendon has been described as an effective procedure to treat refractive groin pain induced by iliopsoas tendinitis. However, the procedure forces the rectus femoris to act as the primary hip flexor and little is known about the long-term effects of this procedure on the peri-articular muscle envelope (PAME). Studies suggest that iliopsoas tenotomy results in atrophy of the iliopsoas and decreased hip flexion strength with poorer outcomes, increasing the susceptibility for secondary tendinopathy. The aim of this study is to describe changes in the PAME following psoas release. All patients who presented for clinical examination at our hospital between 2016 and 2021 were retrospectively reviewed. Patients who presented after psoas tenotomy with groin pain and who were unable to actively lift the leg against gravity, were included. Pelvic MRI was taken. Qualitative muscle evaluation was done with the Quartile classification system. Quantitative muscle evaluation was done by establishing the cross-sectional area (CSA). Two independent observers evaluated the ipsi- and contralateral PAME twice. The muscles were evaluated on the level: iliacus, psoas, gluteus minimus-medius-maximus, rectus femoris, tensor fasciae lata, piriformis, obturator externus and internus. For the qualitative evaluation, the intra- and inter-observer reliability was calculated by using kappastatistics. A Bland-Altman analysis was used to evaluate the intra- and inter-observer reliability for the quantitative evaluation. The Wilcoxon test was used to evaluate the changes between the ipsi- and contra-lateral side. 17 patients were included in the study. Following psoas tenotomy, CSA reduced in the ipsilateral gluteus maximus, if compared with the contralateral side. Fatty degeneration occurred in the tensor fascia latae. Both CSA reduction and fatty degeneration was seen for psoas, iliacus, gluteus minimus, piriformis, obturator externus and internus. No CSA reduction and fatty degeneration was seen for gluteus medius and rectus femoris. Conclusions/Discussion. Following psoas tenotomy, the PAME of the hip shows atrophy and fatty degeneration. These changes can lead to detrimental functional problems and may be associated with debilitating rectus femoris tendinopathy. In patients with psoas tendinopathy, some caution is advised when considering an iliopsoas tenotomy


Bone & Joint Open
Vol. 2, Issue 11 | Pages 988 - 996
26 Nov 2021
Mohtajeb M Cibere J Mony M Zhang H Sullivan E Hunt MA Wilson DR

Aims. Cam and pincer morphologies are potential precursors to hip osteoarthritis and important contributors to non-arthritic hip pain. However, only some hips with these pathomorphologies develop symptoms and joint degeneration, and it is not clear why. Anterior impingement between the femoral head-neck contour and acetabular rim in positions of hip flexion combined with rotation is a proposed pathomechanism in these hips, but this has not been studied in active postures. Our aim was to assess the anterior impingement pathomechanism in both active and passive postures with high hip flexion that are thought to provoke impingement. Methods. We recruited nine participants with cam and/or pincer morphologies and with pain, 13 participants with cam and/or pincer morphologies and without pain, and 11 controls from a population-based cohort. We scanned hips in active squatting and passive sitting flexion, adduction, and internal rotation using open MRI and quantified anterior femoroacetabular clearance using the β angle. Results. In squatting, we found significantly decreased anterior femoroacetabular clearance in painful hips with cam and/or pincer morphologies (mean -11.3° (SD 19.2°)) compared to pain-free hips with cam and/or pincer morphologies (mean 8.5° (SD 14.6°); p = 0.022) and controls (mean 18.6° (SD 8.5°); p < 0.001). In sitting flexion, adduction, and internal rotation, we found significantly decreased anterior clearance in both painful (mean -15.2° (SD 15.3°); p = 0.002) and painfree hips (mean -4.7° (SD 13°); p = 0.010) with cam and/pincer morphologies compared to the controls (mean 7.1° (SD 5.9°)). Conclusion. Our results support the anterior femoroacetabular impingement pathomechanism in hips with cam and/or pincer morphologies and highlight the effect of posture on this pathomechanism. Cite this article: Bone Jt Open 2021;2(11):988–996


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims. Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model. Methods. A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed. Results. In flexion, an overall impingement rate of 2.3% was detected for flexed-seated, squatting, forward-bending, and criss-cross-sitting positions, and 4.7% for the ankle-over-knee position. In extension, most hips (60.5%) were found to impinge at or prior to 50° of external rotation (pivoting). Many of these impingement events were due to a prominent ischium. The mean maximum external rotation prior to impingement was 45.9° (15° to 80°) and 57.9° (20° to 90°) prior to prosthetic impingement. No impingement was found in standing, sitting, crossing ankles, seiza, and downward dog. Conclusion. This study demonstrated that positions of daily living tested in a CT-based 3D model show high rates of impingement. Simulating additional positions through 3D modelling is a low-cost method of potentially improving outcomes without compromising patient safety. By incorporating CT-based 3D modelling of positions of daily living into routine preoperative protocols for THA, there is the potential to lower the risk of postoperative impingement events. Cite this article: Bone Jt Open 2023;4(6):416–423


The Bone & Joint Journal
Vol. 101-B, Issue 11 | Pages 1459 - 1463
1 Nov 2019
Enishi T Yagi H Higuchi T Takeuchi M Sato R Yoshioka S Nakamura M Nakano S

Aims. Rotational acetabular osteotomy (RAO) is an effective joint-preserving surgical treatment for acetabular dysplasia. The purpose of this study was to investigate changes in muscle strength, gait speed, and clinical outcome in the operated hip after RAO over a one-year period using a standard protocol for rehabilitation. Patients and Methods. A total of 57 patients underwent RAO for acetabular dysplasia. Changes in muscle strength of the operated hip, 10 m gait speed, Japanese Orthopaedic Association (JOA) hip score, and factors correlated with hip muscle strength after RAO were retrospectively analyzed. Results. Three months postoperatively, the strength of the operated hip in flexion and abduction and gait speed had decreased from their preoperative levels. After six months, the strength of flexion and abduction had recovered to their preoperative level, as had gait speed. At one-year follow-up, significant improvements were seen in the strength of hip abduction and gait speed, but muscle strength in hip flexion remained at the preoperative level. The mean JOA score for hip function was 91.4 (51 to 100)) at one-year follow-up. Body mass index (BMI) showed a negative correlation with both strength of hip flexion (r = -0.4203) and abduction (r = -0.4589) one year after RAO. Although weak negative correlations were detected between strength of hip flexion one year after surgery and age (r = -0.2755) and centre-edge (CE) angle (r = -0.2989), no correlation was found between the strength of abduction and age and radiological evaluations of CE angle and acetabular roof obliquity (ARO). Conclusion. Hip muscle strength and gait speed had recovered to their preoperative levels six months after RAO. The clinical outcome at one year was excellent, although the strength of hip flexion did not improve to the same degree as that of hip abduction and gait speed. A higher BMI may result in poorer recovery of hip muscle strength after RAO. Radiologically, acetabular coverage did not affect the recovery of hip muscle strength at one year’s follow-up. A more intensive rehabilitation programme may improve this. Cite this article: Bone Joint J 2019;101-B:1459–1463


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 902 - 909
1 Aug 2019
Innmann MM Merle C Gotterbarm T Ewerbeck V Beaulé PE Grammatopoulos G

Aims. This study of patients with osteoarthritis (OA) of the hip aimed to: 1) characterize the contribution of the hip, spinopelvic complex, and lumbar spine when moving from the standing to the sitting position; 2) assess whether abnormal spinopelvic mobility is associated with worse symptoms; and 3) identify whether spinopelvic mobility can be predicted from static anatomical radiological parameters. Patients and Methods. A total of 122 patients with end-stage OA of the hip awaiting total hip arthroplasty (THA) were prospectively studied. Patient-reported outcome measures (PROMs; Oxford Hip Score, Oswestry Disability Index, and Veterans RAND 12-Item Health Survey Score) and clinical data were collected. Sagittal spinopelvic mobility was calculated as the change from the standing to sitting position using the lumbar lordosis angle (LL), sacral slope (SS), pelvic tilt (PT), pelvic-femoral angle (PFA), and acetabular anteinclination (AI) from lateral radiographs. The interaction of the different parameters was assessed. PROMs were compared between patients with normal spinopelvic mobility (10° ≤ ∆PT ≤ 30°) or abnormal spinopelvic mobility (stiff: ∆PT < ± 10°; hypermobile: ∆PT > ± 30°). Multiple regression and receiver operating characteristic (ROC) curve analyses were used to test for possible predictors of spinopelvic mobility. Results. Standing to sitting, the hip flexed by a mean of 57° (. sd. 17°), the pelvis tilted backwards by a mean of 20° (. sd. 12°), and the lumbar spine flexed by a mean of 20° (. sd. 14°); strong correlations were detected. There was no difference in PROMs between patients in the different spinopelvic mobility groups. Maximum hip flexion, standing PT, and standing AI were independent predictors of spinopelvic mobility (R. 2. = 0.42). The combined thresholds for standing was PT ≥ 13° and hip flexion ≥ 88° in the clinical examination, and had 90% sensitivity and 63% specificity of predicting spinopelvic stiffness, while SS ≥ 42° had 84% sensitivity and 67% specificity of predicting spinopelvic hypermobility. Conclusion. The hip, on average, accounts for three-quarters of the standing-to-sitting movement, but there is great variation. Abnormal spinopelvic mobility cannot be screened with PROMs. However, clinical and standing radiological features can predict spinopelvic mobility with good enough accuracy, allowing them to be used as reliable screening tools. Cite this article: Bone Joint J 2019;101-B:902–909


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_5 | Pages 19 - 19
1 Jul 2020
Innmann M Reichel F Schaper B Merle C Beaulé P Grammatopoulos G
Full Access

Aims. Our study aimed to 1) Describe the changes in spinopelvic mobility when transitioning from standing, to ‘relaxed-seated’ and thereafter to ‘deep-seated’ position and 2) Determine the change in spinopelvic mobility types 1 year post-THA compared to preoperatively. Methods. This prospective diagnostic cohort study followed 100 consecutive patients 1 year post-THA. Preoperatively and one year postoperatively, radiographic measurements were performed for the lumbar-lordosis-angle, pelvic tilt and pelvic-femoral-angle on lateral radiographs in the standing, ‘relaxed-seated’ and ‘deep-seated’ position (torso maximally leaning forward). Patients were classified according to their spinopelvic mobility type, according to the change in PT between the standing and relaxed-seated position (stiff:ΔPT<±10°, normal:10°≤ΔPT≤30°, hypermobile:ΔPT>±30°). Results. Compared to preoperatively, when moving from a standing to a relaxed-seated position, hip flexion increased by 10°±18, leading to less posterior pelvic tilt by 6°±11 and reduced lumbar spine flexion by 6°±11 (all p<0.001). Similarly, when moving from the standing to deep-seated position, hip flexion improved by a mean of 8°±22, leading to reduced lumbar spine flexion by a mean of 5°±8, whereas the change in pelvic tilt did not change compared to preoperatively (p=0.016, p<0.001, p=0.46). The distribution of spinopelvic mobility types 1 year postoperatively was significantly different compared to preoperatively, as the percentage of patients with stiff spinopelvic mobility increased from 16% to 43% (p<0.001). Conclusion. Hip flexion improved by 10° on average 1 year after total hip arthroplasty. Thus, slightly less compensatory posterior pelvic tilt and lumbar spine flexion was needed when taking a relaxed-seated position. When taking a deep-seated position, improved hip flexion required less lumbar spine flexion. However, these changes were small when being compared to preoperative variability of these parameters. Thus, individual spinopelvic mobility remains relatively unchanged 1 year after THA compared to preoperatively


Full Access

Aims. The aims of the study were to determine the differences in spinopelvic mobility between a cohort of hip OA patients and a control group for the 1) standing to relaxed-seated and 2) standing to deep-seated task. Methods. A cohort of 40 patients with end-stage hip OA and a control group of 40 subjects, matched for age, gender and BMI were prospectively studied. Clinical data and lateral view radiographs in different positions were assessed. Sagittal spinopelvic mobility was calculated as the change when moving from the standing to relaxed-seated and standing to deep-seated positions for the lumbar lordosis angle, pelvic tilt and pelvic-femoral angle. Results. When moving from the standing to sitting position, hip OA patients demonstrated less hip flexion (52±18 vs. 69±11, p<0.001), an increased posterior pelvic tilt (23±13 vs. 12±9, p<0.001) and more flexion of the lumbar spine (22±15 vs. 14±11, p=0.01). Similarly, when moving from the standing to deep-seated position, hip OA patients demonstrated also less hip flexion (64±21 vs. 84±18, p<0.001), accompanied by a posterior and not an anterior pelvic tilt as in the control group (10±16 vs. −3±17, p<0.001). No difference could be found for lumbar spine flexion (40±15 vs. 43±13, p=0.28). The percentage of subjects with stiff spinopelvic mobility was significantly lower in the patient group (15% vs 48%; p=0.002) and there was a trend towards a higher percentage in spinopelvic hypermobility in patients (20% vs 2%; p=0.08). Conclusions. Decreased hip flexion due to OA leads to an increased posterior pelvic tilt when taking a relaxed-seated position. Less than 10° of posterior pelvic tilt from the standing to relaxed seated position (spinopelvic ‘stiffness’) is more frequent in controls without hip OA and results from hip mobility and not from stiffness of the lumbar spine


Bone & Joint Research
Vol. 10, Issue 6 | Pages 354 - 362
1 Jun 2021
Luo Y Zhao X Yang Z Yeersheng R Kang P

Aims. The purpose of this study was to examine the efficacy and safety of carbazochrome sodium sulfonate (CSS) combined with tranexamic acid (TXA) on blood loss and inflammatory responses after primary total hip arthroplasty (THA), and to investigate the influence of different administration methods of CSS on perioperative blood loss during THA. Methods. This study is a randomized controlled trial involving 200 patients undergoing primary unilateral THA. A total of 200 patients treated with intravenous TXA were randomly assigned to group A (combined intravenous and topical CSS), group B (topical CSS), group C (intravenous CSS), or group D (placebo). Results. Mean total blood loss (TBL) in groups A (605.0 ml (SD 235.9)), B (790.9 ml (SD 280.7)), and C (844.8 ml (SD 248.1)) were lower than in group D (1,064.9 ml (SD 318.3), p < 0.001). We also found that compared with group D, biomarker level of inflammation, transfusion rate, pain score, and hip range of motion at discharge in groups A, B, and C were significantly improved. There were no differences among the four groups in terms of intraoperative blood loss (IBL), intramuscular venous thrombosis (IMVT), and length of hospital stay (LOS). Conclusion. The combined application of CSS and TXA is more effective than TXA alone in reducing perioperative blood loss and transfusion rates, inflammatory response, and postoperative hip pain, results in better early hip flexion following THA, and did not increase the associated venous thromboembolism (VTE) events. Intravenous combined with topical injection of CSS was superior to intravenous or topical injection of CSS alone in reducing perioperative blood loss. Cite this article: Bone Joint Res 2021;10(6):354–362


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 91 - 97
1 Jul 2021
Crawford DA Lombardi AV Berend KR Huddleston JI Peters CL DeHaan A Zimmerman EK Duwelius PJ

Aims. The purpose of this study is to evaluate early outcomes with the use of a smartphone-based exercise and educational care management system after total hip arthroplasty (THA) and demonstrate decreased use of in-person physiotherapy (PT). Methods. A multicentre, prospective randomized controlled trial was conducted to evaluate a smartphone-based care platform for primary THA. Patients randomized to the control group (198) received the institution’s standard of care. Those randomized to the treatment group (167) were provided with a smartwatch and smartphone application. PT use, THA complications, readmissions, emergency department/urgent care visits, and physician office visits were evaluated. Outcome scores include the Hip disability and Osteoarthritis Outcome Score (HOOS, JR), health-related quality-of-life EuroQol five-dimension five-level score (EQ-5D-5L), single leg stance (SLS) test, and the Timed Up and Go (TUG) test. Results. The control group was significantly younger by a mean 3.0 years (SD 9.8 for control, 10.4 for treatment group; p = 0.007), but there were no significant differences between groups in BMI, sex, or preoperative diagnosis. Postoperative PT use was significantly lower in the treatment group (34%) than in the control group (55.4%; p = 0.001). There were no statistically significant differences in complications, readmissions, or outpatient visits. The 90-day outcomes showed no significant differences in mean hip flexion between controls (101° (SD 10.8)) and treatment (100° (SD 11.3); p = 0.507) groups. The HOOS, JR scores were not significantly different between control group (73 points (SD 13.8)) and treatment group (73.6 points (SD 13); p = 0.660). Mean 30-day SLS time was 22.9 seconds (SD 19.8) in the control group and 20.7 seconds (SD 19.5) in the treatment group (p = 0.342). Mean TUG time was 11.8 seconds (SD 5.1) for the control group and 11.9 (SD 5) seconds for the treatment group (p = 0.859). Conclusion. The use of the smartphone care management system demonstrated similar early outcomes to those achieved using traditional care models, along with a significant decrease in PT use. Noninferiority was demonstrated with regard to complications, readmissions, and ED and urgent care visits. This technology allows patients to rehabilitate on a more flexible schedule and avoid unnecessary healthcare visits, as well as potentially reducing overall healthcare costs. Cite this article: Bone Joint J 2021;103-B(7 Supple B):91–97


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1275 - 1279
1 Oct 2018
Fader RR Tao MA Gaudiani MA Turk R Nwachukwu BU Esposito CI Ranawat AS

Aims. The purpose of this study was to evaluate spinopelvic mechanics from standing and sitting positions in subjects with and without femoroacetabular impingement (FAI). We hypothesize that FAI patients will experience less flexion at the lumbar spine and more flexion at the hip whilst changing from standing to sitting positions than subjects without FAI. This increase in hip flexion may contribute to symptomatology in FAI. Patients and Methods. Male subjects were prospectively enrolled to the study (n = 20). Mean age was 31 years old (22 to 41). All underwent clinical examination, plain radiographs, and dynamic imaging using EOS. Subjects were categorized into three groups: non-FAI (no radiographic or clinical FAI or pain), asymptomatic FAI (radiographic and clinical FAI but no pain), and symptomatic FAI (patients with both pain and radiographic FAI). FAI was defined as internal rotation less than 15° and alpha angle greater than 60°. Subjects underwent standing and sitting radiographs in order to measure spine and femoroacetabular flexion. Results. Compared with non-FAI controls, symptomatic patients with FAI had less flexion at the spine (mean 22°, . sd. 12°, vs mean 35°, . sd. 8°; p = 0.04) and more at the hip (mean 72°, . sd. 6°, vs mean 62°, . sd. 8°; p = 0.047). Subjects with asymptomatic FAI had more spine flexion and similar hip flexion when compared to symptomatic FAI patients. Both FAI groups also sat with more anterior pelvic tilt than control patients. There were no differences in standing alignment among groups. Conclusion. Symptomatic patients with FAI require more flexion at the hip to achieve sitting position due to their inability to compensate through the lumbar spine. With limited spine flexion, FAI patients sit with more anterior pelvic tilt, which may lead to impingement between the acetabulum and proximal femur. Differences in spinopelvic mechanics between FAI and non-FAI patients may contribute to the progression of FAI symptoms. Cite this article: Bone Joint J 2018;100-B:1275–9


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 27 - 27
1 May 2018
Innmann M Merle C Gotterbarm T Beaulé P Grammatopoulos G
Full Access

Introduction. The changes in sagittal spino-pelvic balance from standing to sitting in patients with end-stage osteoarthritis (OA) of the hip remain poorly characterized. Our aim was to 1) investigate the contribution of sagittal spino-pelvic movement and hip flexion when moving from a standing to sitting posture in patients with hip OA; 2) determine the proportion of OA-patients with stiff, normal or hypermobile spino-pelvic mobility and 3) identify radiographic parameters correlating with spino-pelvic mobility. Methods. This prospective diagnostic cohort study followed 116 consecutive patients with end-stage osteoarthritis awaiting THR. All patients underwent preoperative standardized radiographs (lateral view) of the lumbar spine, pelvis and proximal femur using EOS© in standing position and with femurs parallel to the floor in order to achieve a 90°-seated position. Radiographic measurements performed included lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), pelvic incidence (PI) and pelvic-femoral-angle (PFA). The difference in PT between standing and seated allowed for patient classification based on spino-pelvic mobility into stiff (<±10°), normal (±10–30°), or hypermobile (>±30°). Results. From the standing to the sitting position, the pelvis tilted backwards by a mean of 19.1° (SD 12.8) and the hip was flexed by a mean of 56.6° (SD 17.2). Change in pelvic tilt correlated inversely with change in hip flexion (r=−0.68; P<0.01; r. 2. =0.47). Thirty-two patients (28%) had stiff, 68 (58%) normal and 16 (14%) hypermobile spino-pelvic mobility. Multivariate regression analysis adjusted for patient age, BMI, static LL, SS, PI, PT and PFA showed a correlation for static standing SS and the change in PT (p=0.03; β=2.31; r. 2. =0.34). Conclusion. Hip flexion contributes on average 75% (25–100%) of the motion required to sit upright. Pre-operative assessment would identify patients with spino-pelvic hypermobility (associated greater change in cup orientation) or stiffness (associated increased hip range-of-movement), which would be at greater risk of dislocation


Bone & Joint Open
Vol. 4, Issue 1 | Pages 3 - 12
4 Jan 2023
Hardwick-Morris M Twiggs J Miles B Al-Dirini RMA Taylor M Balakumar J Walter WL

Aims

Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation.

Methods

This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC).


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1289 - 1296
1 Oct 2018
Berliner JL Esposito CI Miller TT Padgett DE Mayman DJ Jerabek SA

Aims. The aims of this study were to measure sagittal standing and sitting lumbar-pelvic-femoral alignment in patients before and following total hip arthroplasty (THA), and to consider what preoperative factors may influence a change in postoperative pelvic position. Patients and Methods. A total of 161 patients were considered for inclusion. Patients had a mean age of the remaining 61 years (. sd. 11) with a mean body mass index (BMI) of 28 kg/m. 2. (. sd. 6). Of the 161 patients, 82 were male (51%). We excluded 17 patients (11%) with spinal conditions known to affect lumbar mobility as well as the rotational axis of the spine. Standing and sitting spine-to-lower-limb radiographs were taken of the remaining 144 patients before and one year following THA. Spinopelvic alignment measurements, including sacral slope, lumbar lordosis, and pelvic incidence, were measured. These angles were used to calculate lumbar spine flexion and femoroacetabular hip flexion from a standing to sitting position. A radiographic scoring system was used to identify those patients in the series who had lumbar degenerative disc disease (DDD) and compare spinopelvic parameters between those patients with DDD (n = 38) and those who did not (n = 106). Results. Following THA, patients sat with more anterior pelvic tilt (mean increased sacral slope 18° preoperatively versus 23° postoperatively; p = 0.001) and more lumbar lordosis (mean 28° preoperatively versus 35° postoperatively; p = 0.001). Preoperative change in sacral slope from standing to sitting (p = 0.03) and the absence of DDD (p = 0.001) correlated to an increased change in postoperative sitting pelvic alignment. Conclusion. Sitting lumbar-pelvic-femoral alignment following THA may be driven by hip arthritis and/or spinal deformity. Patients with DDD and fixed spinopelvic alignment have a predictable pelvic position one year following THA. Patients with normal spines have less predictable postoperative pelvic position, which is likely to be driven by hip stiffness. Cite this article: Bone Joint J 2018;100-B:1289–96


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 792 - 801
1 Aug 2024
Kleeman-Forsthuber L Kurkis G Madurawe C Jones T Plaskos C Pierrepont JW Dennis DA

Aims

Spinopelvic pathology increases the risk for instability following total hip arthroplasty (THA), yet few studies have evaluated how pathology varies with age or sex. The aims of this study were: 1) to report differences in spinopelvic parameters with advancing age and between the sexes; and 2) to determine variation in the prevalence of THA instability risk factors with advancing age.

Methods

A multicentre database with preoperative imaging for 15,830 THA patients was reviewed. Spinopelvic parameter measurements were made by experienced engineers, including anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), sacral slope (SS), lumbar lordosis (LL), and pelvic incidence (PI). Lumbar flexion (LF), sagittal spinal deformity, and hip user index (HUI) were calculated using parameter measurements.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 11 - 11
1 Oct 2020
Wells JE Young WH Levy ET Fey NP Huo MH
Full Access

Purpose. Patients with acetabular dysplasia demonstrate altered biomechanics during gate and other activities. We hypothesized that these patients exhibit a compensatory increase in the anterior pelvic tilt during gait. Materials & Methods. Twelve patients were included in this prospective radiographic and gait analysis study prior to the PAO. All were women. The mean age was 27 years (+/− 8 yrs). Tonnis grade was zero in nine, and one in three hips. All patients performed multiple one-minute walking trials on the level, the incline, and the decline treadmill surfaces in an optical motion capture lab. Anterior pelvic tilt is reported in (+), while the posterior pelvic tilt is reported in (–) values. Results. Radiographic Data. : The mean alpha angle measured from the Dunn and the frog lateral images was 63.0º±17.4, and 54.7º±16.4, respectively. The mean LCEA was 14.9°±6.1, and the mean anterior center edge angle was 18.3°±8.9. the mean acetabular version at 1, 2, and 3 o'clock were 12.1°±11.6, 29.2°±9.9, and 23.3°±7.4, respectively. Intra-class correlation coefficient (ICC) for these measurements were 0.934, 0.895, and 0.971, respectively. The mean femoral anteversion, as measured on the 3D CT scan was 21.3°±16.1. The mean hip flexion range was 107.1°± 7.2. The mean pelvic tilt was 88.7 mm ± 14.4 using the PS-SI distance with an ICC of 0.998. Gait Data. : Baseline measurements were done in the standing position. On the leveled surface, 5 patients had anterior (+) while 7 had posterior (−) pelvic tilt. The mean posterior pelvic tilt was 1.0° with the range of −2.8° to +0.67°. On the inclined surface, all patients had posterior (−) pelvic tilt. The mean pelvic tilt was −4.9° with the range of −6.4° to −3.1°. On the declined surface, 8 patients had anterior (+) while 4 patients had posterior (−) pelvic tilt. The mean pelvic tilt was −0.39° with the range of −1.9° to +1.0°. The pelvic tilt was negatively correlated with the PS-SI distance on all three surfaces with the Spearman coefficients of −0.27, −0.04, and −0.18 on the 3 different surfaces, respectively. Conclusion. Our results demonstrated that the patients with hip dysplasia exhibit variable degrees of the pelvic tilt while walking on different surface inclinations. Weak negative correlation with the standing pelvic tilt measurements from the radiographs suggests that those patients with more anterior standing pelvic tilt tend to have greater compensatory posterior tilt during gait


Bone & Joint Open
Vol. 5, Issue 10 | Pages 858 - 867
11 Oct 2024
Yamate S Hamai S Konishi T Nakao Y Kawahara S Hara D Motomura G Nakashima Y

Aims

The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy.

Methods

We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 56 - 56
1 Oct 2020
Lombardi AV Berend KR Huddleston J Crawford D Peters C VanAndel D Anderson M DeHaan A Southgate R Duwelius PJ
Full Access

Background. The purpose of this study is to evaluate the early outcomes with the use of a smartphone-based exercise and educational platform after primary total hip arthroplasty compared to a standard of care control group. Methods. A multicenter prospective randomized control trial was conducted evaluating the use of the mymobility smartphone-based care platform for primary total hip arthroplasty (THA). Patients randomized to the control group (198 patients) received the respective institution's standard of care. Those randomized to mymobility treatment group (167 patients) were provided an Apple Watch and mymobility smartphone application. The application provides pre and postoperative educational content, video directed exercise programs as well as tracks the patient's activity. Patients in the treatment group were not initially prescribed physical therapy, but could be if their surgeon deemed it necessary. Early outcomes assessed included 90-day hip range of motion, HOOS JR scores, 30-day single leg stance (SLS) and time up and go (TUG) test. We also evaluated PT utilization, THA complications associated with readmissions, ER visits not associated with readmissions, urgent care (non standard of care) visits, and physician office visits. Outcome scores include HOOS-Jr, EQ-5D-5L, single stance (SLS), Timed up and go (TUG). Satisfaction scores for the procedure and the mymobility study group were also recorded. Results. The control group was significantly younger by 3.0 years (p=0.007), but no significant difference between groups in BMI, gender or preoperative diagnosis. Postoperative PT utilization was statistically lower in the mymobility group. (P=.001). There were no statistically significant differences in complications, readmissions, or office visits. The 90-day outcomes showed no significant differences in hip flexion between controls (101.3±10.9) and mymobility (99.8 ±12) (p=0.34). HOOS JR scores were not significantly different between control group (84 ±14.5) and mymobility group (81 ±13) (p=0.15). Mean 30-day SLS time was 22.5 ±20 sec in the control group and 19.8 ±19 sec in the mymobility group (p=0.25). Mean TUG time was 14.1 ±27.4 sec for control group and 16.1 ±43.3 sec for my mobility group (p=0.7). Conclusion. The use of the mymobility care platform demonstrated similar early outcomes to traditional care models. This study showed a significant decrease in PTA utilization. Initial findings demonstrated non inferiority of the mymobility platform with regards to complications, readmissions, emergency room and urgent care visits. Strengths of this study include randomized, multicentered study design. Both groups were balanced except for age. Weakness of this study is the lack of preoperative functional testing which may influence postoperative single stance. This technology allows patients to rehabilitate on a more flexible schedule, avoid unnecessary healthcare visits as well as potentially decrease overall healthcare costs


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 496 - 503
1 May 2023
Mills ES Talehakimi A Urness M Wang JC Piple AS Chung BC Tezuka T Heckmann ND

Aims

It has been well documented in the arthroplasty literature that lumbar degenerative disc disease (DDD) contributes to abnormal spinopelvic motion. However, the relationship between the severity or pattern of hip osteoarthritis (OA) as measured on an anteroposterior (AP) pelvic view and spinopelvic biomechanics has not been well investigated. Therefore, the aim of the study is to examine the association between the severity and pattern of hip OA and spinopelvic motion.

Methods

A retrospective chart review was conducted to identify patients undergoing primary total hip arthroplasty (THA). Plain AP pelvic radiographs were reviewed to document the morphological characteristic of osteoarthritic hips. Lateral spine-pelvis-hip sitting and standing plain radiographs were used to measure sacral slope (SS) and pelvic femoral angle (PFA) in each position. Lumbar disc spaces were measured to determine the presence of DDD. The difference between sitting and standing SS and PFA were calculated to quantify spinopelvic motion (ΔSS) and hip motion (ΔPFA), respectively. Univariate analysis and Pearson correlation were used to identify morphological hip characteristics associated with changes in spinopelvic motion.