Advertisement for orthosearch.org.uk
Results 1 - 20 of 333
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 57 - 57
7 Nov 2023
Maqungo S Antoni A Swanepoel S Nicol A Kauta N Laubscher M Graham S
Full Access

Removal of bullets retained within joints is indicated to prevent mechanical blockade, 3rd body wear and resultant arthritis, plus lead arthropathy and systemic lead poisoning. The literature is sparse on this subject, with mostly sporadic case reports utilizing hip arthroscopy. We report on the largest series of removal of bullets from the hip joints using open surgical. We reviewed prospectively collected data of patients who presented to a single institution with civilian gunshot injuries that breached the hip joint between 01 January 2009 and 31 December 2022. We included all cases where the bullet was retained within the hip joint area. Exclusion criteria: cases where the hip joint was not breached, bullets were not retained around the hip area or cases with isolated acetabulum involvement. One hundred and eighteen (118) patients were identified. One patient was excluded as the bullet embedded in the femur neck was sustained 10 years earlier. Of the remaining 117 patients, 70 had retained bullets around the hip joint. In 44 patients we undertook bullet removal using the followingsurgical hip dislocation (n = 18), hip arthrotomy (n = 18), removal at site of fracture fixation/replacement (n = 2), posterior wall osteotomy (n = 1), direct removal without capsulotomy (tractotomy) (n = 5). In 26 patients we did not remove bullets for the following reasons: final location was extra-capsular embedded in the soft tissues (n=17), clinical decision to not remove (n=4), patients’ clinical condition did not allow for further surgery (n= 4) and patient refusal (n=1). No patients underwent hip arthroscopy. With adequate pre-operative imaging and surgical planning, safe surgical removal of retained bullets in the hip joint can be achieved without the use of hip arthroscopy; using the traditional open surgical approaches of arthrotomy, tractotomy and surgical hip dislocation


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 11 - 11
1 Apr 2019
D'Isidoro F Brockmann C Ferguson SJ
Full Access

Introduction. Soft tissue artefact (STA) affects the kinematics retrieved with skin marker-based motion capture, and thus influences the outcomes of biomechanical models that rely on such kinematics. To date, compensation for STA remains an unsolved challenge due to its complexity. Factors include its dependency on subject, on motion activity and on skin-marker configuration, its non-linearity over the movement cycle, and the scarcity of reference in-vivo estimations. The objective of this study was extending the existing knowledge of the effects of STA on the kinematics of the hip joint and on the hip joint center location, by quantifying them for a sample total hip arthroplasty (THA) population, for a broader range of activities of daily living (ADLs). Methods. Four activities of daily living (overground gait, stairs descent, chair rise and putting on socks) were measured simultaneously with optical motion capture (MC) at 100 Hz and with a movable single-plane video-fluoroscopy system (VF) at 25 Hz, for fifteen patients with successful total hip arthroplasty (THA). The joint segment positions were computed by least-square fitting for MC and by semi-automatic 2D/3D registration for VF. Anatomical coordinate systems were defined for each joint segment based on skin markers location at a reference standing position. Errors induced by STA on the retrieved joint motion were computed as the difference between MC-based kinematics and the reference VF-based kinematics. Statistical analysis was carried out to determine the whether the differences between the kinematics obtained with the two methods were significant. Results. MC underestimated the ROM of the hip joint for all activities. The ROM for the flexion-extension was underestimated by on average 4.1°, 6.5°, 8.0° and 6.9° for gait, stair decent, chair rise and putting on socks respectively. Overall, during dynamic activities the hip joint was less flexed, more adducted and more internally rotated as retrieved using MC, compared to VF. The flexion angle was underestimated by MC during late stance phase and early swing phase for both gait and stairs descent. The internal rotation of the hip was overestimated by MC throughout the whole cycle of each activity. MC error for the thigh was larger than the MC error for the pelvis. MC errors above 1 cm were observed for the location of the hip joint center, with higher values for the cranial-caudal direction. Discussion. Reduced ROM supports the notion that skin-sliding is a major contributor to STA. The underestimation of hip flexion appeared to be positively correlated to the degree of flexion. Larger skin deformation and sliding occurring for the thigh at higher hip flexion angles may produce the observed patterns of MC error for FE. The CC error was possibly due to inertial effects, and was more pronounced for the stair descent due to larger vertical movement and acceleration. This study led further bases for the activity-dependent correction of STA. This has the potential of improving the accuracy of motion capture and boosting its use for motion analysis as opposite to video-fluoroscopy techniques, which deliver radiation dose to the subjects


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 38 - 38
1 Apr 2018
LaCour M Ta M Sharma A Komistek R
Full Access

Background. In vivo fluoroscopic studies have proven that femoral head sliding and separation from within the acetabular cup during gait frequently occur for subjects implanted with a total hip arthroplasty. It is hypothesized that these atypical kinematic patterns are due to component malalignments that yield uncharacteristically higher forces on the hip joint that are not present in the native hip. This in vivo joint instability can lead to edge loading, increased stresses, and premature wear on the acetabular component. Objective. The objective of this study was to use forward solution mathematical modeling to theoretically analyze the causes and effects of hip joint instability and edge loading during both swing and stance phase of gait. Methods. The model used for this study simulates the quadriceps muscles, hamstring muscles, gluteus muscles, iliopsoas group, tensor fasciae latae, and an adductor muscle group. Other soft tissues include the patellar ligament and the ischiofemoral, iliofemoral, and pubofemoral hip capsular ligaments. The model was previously validated using telemetric implants and fluoroscopic results from existing implant designs. The model was used to simulate theoretical surgeries where various surgical alignments were implemented and to determine the hip joint stability. Parameters of interest in this study are joint instability and femoral head sliding within the acetabular cup, along with contact area, contact forces, contact stresses, and ligament tension. Results. During swing phase, it was determined that femoral head pistoning is caused by hip capsule laxity resulting from improperly positioned components and reduced joint tension. At the point of maximum velocity of the foot (approximately halfway through), the momentum of the lower leg becomes too great for a lax capsule to properly constrain the hip, leading to the femoral component pistoning outwards. This pistoning motion, leading to separation, is coupled with a decrease in contact area and an impulse-like spike in contact stress (Figure 1). During stance phase, it was determined that femoral head sliding within the acetabular cup is caused by the proprioceptive notion that the human hip wants to rotate about its native, anatomical center. Thus, component shifting yields abnormal forces and torques on the joint, leading to the femoral component sliding within the cup. This phenomenon of sliding yields acetabular edge-loading on the supero-lateral aspect of the cup (Figure 2). It is also clear that joint sliding yields a decreased contact area, in this case over half of the stable contact area, corresponding to a predicted increase in contact stress, in this case over double (Figure 2). Discussion. From our current analysis, the causes and effects of hip joint instability are clearly demonstrated. The increased stress that accompanies the pistoning/impulse loading scenarios during swing phase and the supero-lateral edge-loading scenarios during stance phase provide clear explanations for premature component wear on the cup, and thus the importance of proper alignment of the THA components is essential for a maximum THA lifetime. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 132 - 132
1 Mar 2017
Sakai T Koyanagi J Takao M Hamada H Sugano N Yoshikawa H Sugamoto K
Full Access

INTRODUCTION. The purpose of this study is to elucidate longitudinal kinematic changes of the hip joint during heels-down squatting after THA. METHODS. 66 patients with 76 primary cementless THAs using a CT-based navigation system were investigated using fluoroscopy. An acetabular component and an anatomical femoral component were used through the mini-posterior approach with repair of the short rotators. The femoral head size was 28mm (9 hips), 32mm (12 hips), 36mm (42 hips), and 40mm (12 hips). Longitudinal evaluation was performed at 3 months, 1 year, and 2≤ years postoperatively. Successive hip motion during heels-down squatting was recorded as serial digital radiographic images in a DICOM format using a flat panel detector. The coordinate system of the acetabular and femoral components based on the neutral standing position was defined. The images of the hip joint were matched to 3D-CAD models of the components using a2D/3D registration technique. In this system, the root mean square errors of rotation was less than 1.3°, and that of translation was less than 2.3 mm. We estimated changes in the relative angle of the femoral component to the acetabular component, which represented the hip ROM, and investigated the incidence of bony and/or prosthetic impingement during squatting (Fig.1). We also estimated changes in the pelvic posterior tilting angle (PA) using the acetabular component position change. In addition, when both components were positioned most closely during squatting, we estimated the minimum angle (MA) up to theoretical prosthetic impingement as the safety margin (Fig.2). RESULTS. No prosthetic or bony impingement and no dislocation occurred in any hips. The mean maximum hip flexion ROM was 92.4° (range, 76.6° – 107.9°) at 3 months, 103.4° (range, 81.5° – 115.2°) at 1 year, and 102.4° (range, 87.1° – 120.6°) at 2≤ years (3 months vs 1 year, p<0.05; 1 year vs 2≤ years, p>0.05, paired t-test). The mean PA was 26.7° (range, 0.9° – 49.8°) at 3 months, 21.7° (range, 3.4° – 43.8°) at 1 year, and 21.2° (range, −0.7° – 40.4°) at 2≤ years (3 months vs 1 year, p<0.05; 1 year vs 2≤ years, p>0.05). The mean flexion ROM and MA at 2≤ years were 98.4±20.8° and 14.3±7.3° in 28 mm heads, 102.3±10.7° and 15.6±4.8° in 32 mm heads, 102.8±14.5° and 20.3±9.6° in 36 mm heads, and 103.2±16.9° and 23.4±10.9° in 40 mm heads, respectively. There were no significant differences in the hip flexion ROM between 28, 32, 36, and 40 mm head cases, whereas MA significantly increased as the femoral head diameter was larger (p<0.05, unpaired t-test). DISCUSSION AND CONCLUSION. Three-dimensional assessment of dynamic squatting motion after THA using the 2D/3D registration technique enabled us to elucidate longitudinal kinematic change of the hip joint. Longitudinal kinematic analysis indicated that hip flexion ROM and posterior tilt during squatting changed significantly by 1 year postoperatively, and there were no significant changes after 1 year while safety margin kept > 10°. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 72 - 72
1 Apr 2018
Riva F Boccalon M Buttazzoni E Pressacco M
Full Access

Introduction. Advantages of ceramic materials for hip joint prosthesis are recognized to be high hardness, scratch resistance, improved wettability, lower friction and lower wear than CoCr surfaces. Recent studies suggest the use of ceramic femoral head reduce fretting corrosion at stem taper junction compared to metal-on-metal taper junction[1]. Continuous improvement of ceramic materials for orthopedic lead to the development of a resurfacing ceramic-on-ceramic hip joint prosthesis. The main differences of resurfacing heads respect to standard heads are their anatomical dimension and the empty shape suitable to cover the femoral bone and to connect with the resurfacing stem. Ceramic is essentially a brittle material and its strength is influenced by the minimum thickness in the stressed area. Ceramic resurfacing head minimum thickness is comparable with ceramic revision head already on the market. The aim of this study is to develop a mechanical pre-clinical analysis verification process for the newly developed system. Materials and methods. The empty shape of the ceramic resurfacing head may influence its strength in a crush loading scenario. Although this is not a physiological condition this test represents the most severe loading for a resurfacing head. Also comparative analysis can be done considering the yield point of conventional metal resurfacing heads reported by the FDA Center for Devices and Radiological Health. For this reason a static unsupported head strength test is performed by applying a compressive load perpendicular to the head axis along the equatorial plane[2](Fig.1). Resurfacing ceramic head made in ZTA is suitable both for a resurfacing stem and an adaptor to be coupled with a standard stem. Mechanical test was performed on worst case resurfacing head size both with resurfacing stem and standard stem based and on FE non linear analysis performed in ANSYS 17.2 according the following material properties: ZTA ceramic (modulus of elasticity E, Poisson ratio ν and density ρ of 348GPa, 0.23 and 4.25g/cm. 3. respectively), and Ti6Al4V (E=114GPa, ν=0.33 and ρ=4.43g/cm. 3. ). For comparison purposes unsupported test was performed on standard head Ø28#S both in Biolox®Delta and Biolox®Forte ceramic. At least three components were used for each test and the average values was compared with predicates[2]. Static compressive load was applied with MTS hydraulic actuators with load cell of 100kN. Results. FE analysis indicated the larger resurfacing head as the worst case size in the size range(Fig.2). Static unsupported head strength test was performed on resurfacing ceramic head Ø57 coupled both with resurfacing stem and standard stem, Biolox®Delta head Ø28#S, Biolox®Forte head Ø28#S and respectively reached a strength value of 53±7kN, 90±3kN, 78±27kN, 49±1kN. Equivalent test were reported in literature for DeltaSurf® Ø58 and BHR. TM. , and respectively reached a strength of 26kN and 5.6kN. Discussion and Conclusion. LIMA ceramic resurfacing head and Biolox Forte Ø28#S showed equivalent unsupported head burst strength. LIMA ceramic resurfacing head showed higher unsupported head burst strength respect to DeltaSurf® and BHR. TM. highlighting its potential in clinical use. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 68 - 68
1 Oct 2012
Beretta E Valenti M De Momi E Ferrigno G
Full Access

The location of the hip joint center (HJC) allows correct prosthesis aligning and positioning in Computer-Assisted Orthopaedic Surgery (CAOS) applications. For the kinematic HJC localisation, the femur is moved around the pelvis with ad hoc motion trials (“pivoting”). The “Pivoting algorithm” [Siston et al., J Biomech 39 (2006) 125–130] is the functional state-of-the-art method for the hip center localisation. A source of systematic error in HJC localisation algorithms is represented by the pelvis motion during the pivoting. In computer assisted total knee arthroplasty applications, the pelvis pose is not acquired during passive movements. In motion capture applications, Kalman Filter (KF) methodology was used to estimate the pose of hidden segment for rigid body pose estimation. The purpose of this study was to validate the accuracy and robustness of a Kalman Filter algorithm, applied to a state space formulation based on two links model of the hip joint, to track the HJC position during passive movements of the articulation in CAOS procedure. The state space model describes femur and pelvis kinematics under the hypothesis of non-laxity of the articulation (ideal spherical joint). The first link models the femoral bone, while the second link models the pelvis. The femur is tracked with a Dynamic Reference Frame (DRF) attached to the distal end, composed by four active markers, while the pelvis is tracked attaching a marker to it. The kinematic relations between the state vector and the observations are non linear function. The state space has been implemented with II order linear dynamics. The position of HJC in the Femur Reference Frame is modeled with non-dynamic state variables. In order to validate the proposed algorithm, a physical model of the hip joint (femur and pelvis) was realised using SawBones models. An active optical localisation system (Certus, NDI, Ontario, Canada) was used in order to track the coordinates of two DRF rigidly connected on each segment and the coordinates of a marker attached to the pelvis segment (on the Anterior Superior Iliac Spine ASIS). The pelvis phantom is locked on a Mass-Spring-Damper platform with 2 DoFs, which mimics soft tissues behaviour. During the pivoting motion, the poses of the femur DRF and the positions of the ASIS marker of the pelvis DRF were collected. The acquired data were the observable outputs to the KF algorithm, which computes an estimation of the state parameters. The accuracy is evaluated as the Euclidean distance between respectively the estimated and Gold Standard HJC positions in FRF. The KF method performances were compared with the “Pivoting” algorithm. The localisation errors computed for both the methodologies were evaluated with respect to the HJC translation, to the Range Of pivoting Motion (ROM) and to the velocity of femur DRF trajectory (Pearson correlation analysis). The positive correlation coefficients between HJC translation and the localization errors result statistically significant (p<0.01) for both “Pivoting” (correlation index equal to 0.838) and KF (correlation index equal to 0.415) algorithms; while a negative (correlation index equal to −0.355) and positive (correlation index equal to 0.263) correlation respectively for ROM and Velocity is computed as statistically significant (p<0.05) only for KF algorithm errors. Statistically significant difference (Kruskal-Wallis, p<0.01) between “Pivoting” [median 26.71 mm and inter-quartile range (24.04, 32.18)mm] and KF [median 11.71mm and inter-quartile range (7.74, 18.82)mm] algorithms was assessed for HJC translation greater than 7 mm. The new method KF proved to be applicable in current CAOS systems. The substantial improvement of KF method is the possibility of reducing the systematical error, caused by pelvis motion during passive movement of the femur, to compute HJC position. On the other hand, tracking the HJC trajectory in real time is a nontrivial task and requires a very accurate filter parameters tuning. Further tests must be made to estimate the in-vivo range of HJC translation during passive pivoting movements and evaluate the performances of KF method with respect to others state-of-the-art methods


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 151 - 151
1 May 2016
Kaneeda T Zhao X Matsuura H
Full Access

Impact relief ability of Metal-on-Metal artificial hip joint with multi-garter spring using drop impact tester for practical use. Toshiaki Kaneeda, Xinming Zhao and Hiroshi Matsuura. Metal-on-metal (MoM) joints can provide better wear properties than hard-on-polymer joints, leading to reducing osteolysis. However during gait, MoM hip joints have no material to relieve impact. These impacts can cause severe pain in postoperative patients. Kaneeda proposed double-shell MoM artificial hip joints in which multi garter springs were inserted between the inner and outer acetabular shell as an impact relief device. The proposed double-shell metal-on-metal artificial hip joint is composed of two layers, as shown in Fig. 11). A garter spring is usually used when by loading and a compression stress from the outside to the center axis. In the model testing for garter spring, it is demonstrated that garter spring had impact relief ability, then using dual garter springs could lead to better impact relief ability than single one2). In this work, the impact relief ability of model hip joint were investigated by using the Instron CEAST 9340 machine as shown in Fig. 2. The machine is a floor standing impact system designed to deliver 0.30–405J of energy and equipped with precise locating system for height. A holding device of double-shell cup was made to fix the right position. A shape of drop impact weight was modified for this experiment. The model hip joint was applied vertical load over 6000N, which is estimated to be equal to maximum vertical load during jumping. The ability in the case of single garter spring and dual garter springs was evaluated in the model hip joint, comparing with UHMWPE liner in the same size of femur head. Each testing was conducted 10 times. Fig. 3 shows load-time curve detected. From the results, it can be seen that in both case Load L gradually rise with Time T, then reach maximum values, finally L gently drop: maximum impact load as well as maximum impact load arriving time also presented nearly the same values. Much differences in shape of the curve between model hip joint with dual garter springs and UHMWPE liner could not be recognized. The model hip joint with dual garter springs may has enough impact relief ability


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 51 - 51
1 Nov 2016
Lamontagne M Ng G Catelli D Beaulé P
Full Access

With the growing number of individuals with asymptomatic cam-type deformities, elevated alpha angles alone do not always explain clinical signs of femoroacetabular impingement (FAI). Differences in additional anatomical parameters may affect hip joint mechanics, altering the pathomechanical process resulting in symptomatic FAI. The purpose was to examine the association between anatomical hip joint parameters and kinematics and kinetics variables, during level walking. Fifty participants (m = 46, f = 4; age = 34 ± 7 years; BMI = 26 ± 4 kg/m²) underwent CT imaging and were diagnosed as either: symptomatic (15), if they showed a cam deformity and clinical signs; asymptomatic (19), if they showed a cam deformity, but no clinical signs; or control (16), if they showed no cam deformity and no clinical signs. Each participant's CT data was measured for: axial and radial alpha angles, femoral head-neck offset, femoral neck-shaft angle, medial proximal femoral angle, femoral torsion, acetabular version, and centre-edge angle. Participants performed level walking trials, which were recorded using a ten-camera motion capture system (Vicon MX-13, Oxford, UK) and two force plates (Bertec FP4060–08, Columbus, OH, USA). Peak sagittal and frontal hip joint angles, range of motion, and moments were calculated using a custom programming script (MATLAB R2015b, Natick, MA, USA). A one-way, between groups ANOVA examined differences among kinematics and kinetics variables (α = 0.05), using statistics software (IBM SPSS v.23, Armonk, NY, USA); while a stepwise multiple regression analysis examined associations between anatomical parameters and kinematics and kinetics variables. No significant differences in kinematics were observed between groups. The symptomatic group demonstrated lower peak hip abduction moments (0.12 ± 0.08 Nm/kg) than the control group (0.22 ± 0.10 Nm/kg, p = 0.01). Sagittal hip range of motion showed a moderate, negative correlation with radial alpha angle (r = −0.33, p = 0.02), while peak hip abduction moment correlated with femoral neck-shaft angle (r = 0.36, p = 0.009) and negatively with femoral torsion (r = −0.36, p = 0.009). With peak hip abduction moment in the stepwise regression analysis, femoral torsion accounted for a variance of 13.3% (F(1, 48) = 7.38; p = 0.009), while together with femoral neck-shaft angle accounted for a total variance of 20.4% (R² change = 0.07, F(2, 47) = 6.01; p = 0.047). Although elevated radial alpha angles may have limited sagittal range of motion, the cam deformity parameters did not affect joint moments. Femoral neck-shaft angle and femoral torsion were significantly associated with peak hip abduction moment, suggesting that the insertion location of the abductor affects muscle's length and its resultant force vector. A varus neck angle, combined with severe femoral torsion, may ultimately influence muscle moment arms and hip mechanics in individuals with cam FAI


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 85 - 85
1 Nov 2015
Murphy S
Full Access

Hip joint preservation remains a preferred treatment option for hips with mechanically correctable pathologies prior to the development of significant secondary arthrosis. The pathologies most amenable to joint preservation are hip dysplasia and femoroacetabular impingement. These pathologies sometimes overlap. Untreated acetabular dysplasia of modest severity always leads to arthrosis if uncorrected. Acetabular dysplasia is best treated by periacetabular osteotomy, usually combined with arthrotomy for management of labral pathology and associated cam-impingement if present. Pre-operative variables associated with the best long-term outcomes include less secondary arthrosis, younger age, and concentric articular surfaces. The earlier PAO series show 20 year survivorship of 81% and 65% in Tonnis Grade 0 and 1 hips. Femoroacetabular impingement has become progressively recognised as perhaps the most common cause of secondary arthrosis. The etiology of impingement is multifactorial and includes both genetic factors and stresses experienced by the hip prior to cessation of growth. Cam impingement can be quantified by the alpha angle as measured on plain radiographs and radial MR sequences. Cam impingement can be treated by arthroscopic or open femoral head-neck osteochondroplasty. As with hip dysplasia, prognosis following treatment is correlated with the severity of pre-operative secondary arthrosis but unfortunately impinging hips more commonly have some degree of arthrosis pre-operatively whereas dysplastic hips can become symptomatic with instability in the absence of arthrosis. The scientific basis for the treatment of pincer impingement is less strong. Unlike cam impingement and hip dysplasia, pincer impingement pathology in the absence of coxa profunda has not been correlated with arthrosis and so rim trimming with labral refixation is probably performed more often than is clinically indicated. Overall, joint preserving surgery remains the preferred treatment for hips with mechanically correctable problems prior to the development of significant secondary arthrosis


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 78 - 78
1 Jul 2014
Murphy S
Full Access

Surgical invention to preserve the native hip joint remains a preferred treatment option for hips in young patients with mechanically correctable pathologies prior to the development of significant secondary arthrosis. The two most common pathologies most amenable to joint preservation are hip dysplasia and femoroacetabular impingement. These pathologies sometimes overlap. Untreated acetabular dysplasia of modest severity, if left uncorrected, always leads to arthrosis. Acetabular dysplasia is best treated by periacetabular osteotomy, usually combined with arthrotomy for management of labral pathology and associated cam-impingement, if present. Correction of deformities on the femoral side is now less common and reserved for only the more severe combined femoral and acetabular dysplasias or the rare isolated femoral dysplasia. Pre-operative variables associated with the best long-term outcomes include less secondary arthrosis, younger age, and concentric articular surfaces. Femoroacetabular impingement has become progressively recognised as perhaps the most common cause of secondary arthrosis. The etiology of impingement is multifactorial and includes both genetic factors and stresses experienced by the hip prior to cessation of growth. Cam impingement can be quantified by the alpha angle as measured on plain radiographs and radial MR sequences. Further, significant cam impingement is clearly associated with the development of osteoarthrosis. Treatment can be performed either by arthroscopic or open femoral head-neck osteochondroplasty. As with hip dysplasia, prognosis following treatment is correlated with the severity of pre-operative secondary arthrosis but unfortunately impinging hips more commonly have some degree of arthrosis pre-op whereas dysplastic hips can become symptomatic with the onset of instability in the absence of significant secondary arthrosis. The scientific basis for the treatment of pincer impingement is less strong. Unlike cam impingement and hip dysplasia, pincer impingement pathology in the absence of coxa profunda has not been correlated with arthrosis and so rim trimming with labral refixation is probably performed more often than is clinically indicated. Similarly, caution should be exercised when considering rim-trimming for protrusion since high central contact pressures due to an enlarged acetabular notch are not corrected by rim trimming. Overall, joint preserving surgery remains the preferred treatment for hips with mechanically correctable problems prior to the development of significant secondary arthrosis


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 96 - 96
1 Jun 2012
Hussain A
Full Access

Introduction. In vitro studies have shown that low clearance metal-on-metal hip joints have the potential of reducing wear during the running-in phase [1]. However, cementless acetabular cup relies on press fitting into the acetabulum, which can generate non-uniform compressive stresses and non-uniform in vivo cup deformation [2, 3]. This could then lead to equatorial contact, resulting in higher wear and friction for a MoM bearing with low clearance. To benefit from low wear generated by low clearance and at the same time to avoid the potential of head seizure and high frictional torque caused by cup deformation, a deflection compensation acetabular cup (DefCom) has been developed based on the Birmingham Hip Resurfacing (BHR) device. The articulating sphere of the DefCom cup provides a low clearance bearing area, whilst the non-articulating sphere maintains the standard BHR clearance. The aim of this study was to evaluate the wear performance of the novel DefCom hip joint using a hip wear simulator. Materials and Methods. Five pairs of 50 mm DefCom devices were tested in a ProSim hip wear Simulator for 5 million cycles (MC) at a frequency of 1 Hz. The lubricant was new born calf serum with 0.2% sodium azide diluted with de-ionised water to achieve protein concentration of 20 mg/ml. The flexion/extension was 30° and 15° and the internal/external rotation was 10°. The force was Paul-type stance phase loading with a maximum load of 3 kN and a standard ISO swing phase load of 0.3 kN. Five standard 50 mm BHR devices were tested under the same testing conditions for comparison. Statistical analyses were performed at a 95% confidence level (CL) using the statistics function in Excel (Microsoft(r) Excel 2003). Results. Fig. 1 shows the cumulative volume loss against number of wear cycles for the DefCom and the BHR devices. Similar to the BHR device, the DefCom joints experienced relatively higher amount of material loss during the running-in phase from 0 to 1.0 Mc. However, the running-in wear rate for the DefCom device (0.23 ± 0.06 mm. 3. /MC) was much lower than that for the BHR device (0.72 ± 0.15 mm. 3. /MC). Steady state wear was achieved for all the joints from 1.0 to 5.0 MC. The steady state wear rate was 0.11 ± 0.03 mm. 3. /MC for DefCom and 0.18 ± 0.01 mm. 3. /MC for the BHR joints. Discussion. This study has shown that the DefCom acetabular cup has the potential to reduce the initial running-in wear by reducing the clearance at the contact area between the head and cup. The device also has the potential to avoid deformation induced head seizure and high frictional torque by maintaining a larger clearance at the periphery of the cup


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 28 - 28
1 Feb 2015
Murphy S
Full Access

Hip joint preservation remains a preferred treatment option for hips with mechanically correctable pathologies prior to the development of significant secondary arthrosis. The pathologies most amenable to joint preservation are hip dysplasia and femoroacetabular impingement. These pathologies sometimes overlap. Untreated acetabular dysplasia of modest severity always leads to arthrosis if uncorrected. Acetabular dysplasia is best treated by periacetabular osteotomy, usually combined with arthrotomy for management of labral pathology and associated cam-impingement if present. Preoperative variables associated with the best long-term outcomes include less secondary arthrosis, younger age, and concentric articular surfaces. Femoroacetabular impingement has become progressively recognised as perhaps the most common cause of secondary arthrosis. The etiology of impingement is multifactorial and includes both genetic factors and stresses experienced by the hip prior to cessation of growth. Cam impingement can be quantified by the alpha angle as measured on plain radiographs and radial MR sequences. Cam impingement can be treated by arthroscopic or open femoral head-neck osteochondroplasty. As with hip dysplasia, prognosis following treatment is correlated with the severity of preoperative secondary arthrosis but unfortunately impinging hips more commonly have some degree of arthrosis preop whereas dysplastic hips can become symptomic with instability in the absence of arthrosis. The scientific basis for the treatment of pincer impingement is less strong. Unlike cam impingement and hip dysplasia, pincer impingement pathology in the absence of coxa profunda has not been correlated with arthrosis and so rim trimming with labral refixation is probably performed more often than is clinically indicated. Overall, joint preserving surgery remains the preferred treatment for hips with mechanically correctible problems prior to the development of significant secondary arthrosis


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 62 - 62
1 Apr 2018
Van Houcke J Galibarov P Allaert E Pattyn C Audenaert E
Full Access

Introduction. A deep squat (DS) is a challenging motion at the level of the hip joint generating substantial reaction forces (HJRF). As a closed chain exercise, it has great value in rehabilitation and muscle strengthening of hip and knee. During DS, the hip flexion angle approximates the functional range of hip motion risking femoroacetabular impingement in some morphologies. In-vivo HJRF measurements have been limited to instrumented implants in a limited number of older patients performing incomplete squats (< 50° hip flexion and < 80° knee flexion). On the other hand, total hip arthroplasty is being increasingly performed in a younger and higher demanding patient population. These patients clearly have a different kinetical profile with hip and knee flexion ranges going well over 100 degrees. Since measurements of HJRF with instrumented prostheses in healthy subjects would be ethically unfeasible, this study aims to report a personalised numerical solution based on inverse dynamics to calculate realistic in-silico HJRF values during DS. Material and methods. Thirty-five healthy males (18–25 years old) were prospectively recruited for motion and morphological analysis. DS motion capture (MoCap) acquisitions and MRI scans with gait lab marker positions were obtained. The AnyBody Modelling System (v6.1.1) was used to implement a novel personalisation workflow of the AnyMoCap template model. Bone geometries, semi-automatically segmented from MRI, and corresponding markers were incorporated into the template human model by an automated procedure. A state of-the-art TLEM 2.0 dataset, included in the Anybody Managed Model Repository (v2.0), was used in the template model. The subject-specific MoCap trials were processed to compute kinematics of DS, muscle and joint reaction forces in the entire body. Resulting hip joint loads were compared with in-vivo data from OrthoLoad dataset. Additionally, hip and knee joint angles were computed. Results. An average HJRF of 274%BW (251.5 – 297.9%BW; 95% confidence interval) was calculated at the peak of DS. The HJRF on the pelvis was directed superior, medial and posterior throughout the DS. Peak knee and hip flexion angles were 112° (108.1° – 116.5°) and 107° (104.6° – 109.4°) on average. Discussion and conclusions. A comprehensive approach to construct an accurate personalised musculoskeletal model from subject-specific MoCap data, bone geometries, and palpatory landmarks was presented. Consistently higher HJR forces during DS in young adults were demonstrated as opposed to the Orthoload dataset. Similarly, knee and hip flexion angles were much higher, which could cause the increase in HJRF. It can be concluded that DS kinetics in young adults differ from the typical total hip arthroplasty population. These models will enable further in-silico joint biomechanics studies, and could serve the purpose of a virtual test bed for implant design


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 211 - 211
1 Jun 2012
Sheeraz A Picardo N Mann B Skinner J
Full Access

Introduction. Melorheostosis is a rare bone dysplasia characterized by its classic radiographic appearance resembling dripping candle wax. The condition was originally described by Leri and Joanny in 1922. Its etiology is not fully known and treatment in most instances has been symptomatic. There are nearly 350 reported cases on melorheostosis, joint replacement has been successfully attempted in the shoulder and knee joint. We describe a case of severe melorheostosis affecting the left hip causing secondary osteo-arthritis, which was treated with a total hip replacement (THR). To the best of our knowledge this is the first reported case of its kind in the World literature. Case history. A 52-year-old male of Indian origin with known melorheostosis of the left leg for over 30 years, presented with symptoms suggestive of severe osteo-arthritis of the left hip. Previously he had been treated for melorheostosis of the knee joint (fig 1a & 1b) with excisions and decompression of the medial femoral condyle. His left hip became more painful over the last few years. He had a fixed flexion deformity of 20° of the hip, severe muscle wasting and the affected leg was 3 cm longer than the right leg. Radiographs (fig 2a & 2b) confirmed the presence of sclerotic new bone in the acetabulum eroding the femoral head. He had the classical dripping candle wax appearance along the medial border of the neck and shaft of the femur. He underwent a THR using a Corail-Pinnacle un-cemented prosthesis using ceramic on polyethylene bearing surfaces (fig 3a & 3b). Post operatively he made a quick recovery and there was a marked improvement in his symptoms and functional outcome scores at 6 weeks. Discussion. Melorheostosis has an incidence of 0.9 in one million and affects men and women equally. It can affect any site in the body, however lower limbs are more commonly affected. It classically presents on only one side of the cortex of long bones. It is common in synovial joints and crosses the joint line in 35% cases. Its etiology is unknown and it is a benign condition but there are 3 reported cases in literature associated with malignancy. Chronic pain and deformity from melorheostosis can be severely debilitating for patients. Its management in most cases is conservative. Surgical intervention is advocated in chronic debilitating symptoms. Successful resection of these lesions can translate into near complete resolution of the symptoms. A Total hip replacement can be used to treat severe melorheostosis of the hip joint with complete relief of symptoms and achieving a good functional outcome in the short term


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 88 - 88
1 Jan 2016
Kaneeda T Tyou S Anthony L
Full Access

Artificial joints have been increasingly used in the treatment of physically disabled people who suffer from joint diseases such as osteoarthritis and rheumatoid arthritis. Ultra high molecular weight polyethylene (UHMWPE) is commonly used in hard-on-polymer joints as an impact-absorbing material for artificial hip joints because of its very low friction coefficient, high wear resistance, impact strength, and biocompatibility. However, particles generated by excessive wear and fatigue can cause osteolysis, which may lead to loosening. This has led to recent interest in metal-on-metal joints, which can provide better wear properties than hard-on-polymer joints, leading to reduced osteolysis. However, during gait, metal-on-metal joints are exposed to greater impacts than hard-on-polymer joints. These impacts can cause severe pain in patients who have undergone hip replacement arthroplasty. In previous work, we proposed a double-shell metal-on-metal artificial hip joint in which a single garter spring was inserted between the inner and outer acetabular shell of an impact relief device[1]. A garter spring is usually used by loading a compression stress from the outside to the center axis. The acetabular shell is composed of two layers as shown in Fig.1. In the current work, the performance of single and dual garter springs was investigated using static compression and free-fall type impact tests. Static compression tests were conducted on a conventional vise to examine the deformation of various kinds of garter springs under uniaxial loading. Free-fall impact tests, on the other hand, were conducted on a free-fall type impact test machine as shown in Fig. 2. The impact relief ability of the garter springs under impact loading was examined, and the maximum impact load and maximum impact load arriving-time were estimated[2]. The relief ability was also investigated for smaller and larger diameter garter springs with a three-pitch angle, and the maximum applied load was determined by taking into account the applied load on actual hip joints. Static compression test results indicated that some kinds of garter spring could withstand vertical loads of over 6000N, which is estimated to be equal to maximum vertical load during jumping. The pitch angle increased with an increase in the compression load and the shape of the coil ring deformed from a circular to ellipsoidal shape as the compression load increased, which may lead to a reduction in impact load and an increase in impact relief time. The impact test results for a single spring indicated that the maximum impact load decreased in reverse proportion to the maximum impact load arriving-time. A smaller diameter garter spring provided less maximum impact load and longer arriving maximum load time. In the case of dual garter springs, which have smaller and larger diameter garter springs, the springs offered a lower maximum impact load and a longer impact load arriving-time than a single spring


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 233 - 233
1 Mar 2013
Kyomoto M Moro T Takatori Y Saiga K Kyomoto M Ishihara K
Full Access

Introduction. Periprosthetic osteolysis is considered the main problem limiting the longevity and clinical success of artificial hip joints. Aiming at the reduction of the wear particles and the elimination of periprosthetic osteolysis, we have recently developed a novel articular cartilage-inspired technology for surface modification (Aquala® technology) with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) grafting (100–150 nm in thickness) for an acetabular liner in an artificial hip joint. Our previous study on the mechanical and biological effects of PMPC revealed that the grafting decreased the production of wear particles and the bone resorptive responses. However, as well as wear-resistance, oxidation is an important indicator of the clinical performance of acetabular liners. The incorporation of the antioxidant vitamin E has been proposed recently as an alternative to post melting treatment after gamma-ray irradiation to avoid oxidation. The purpose of this study is to investigate the effects of substrate materials, vitamin E-blended cross-linked polyethylene (CLPE), on the oxidative stability and wear resistance of the PMPC-grafted CLPE liner for artificial hip joints. Materials & Methods. Vitamin E-blended (0.1 mass%) PE sheet stock was irradiated with a high dose of gamma-rays (100–150 kGy) and annealed for cross-linking (HD–CLPE+E). PMPC grafting onto the HD–CLPE+E liners was performed by a photoinduced polymerization technique. Then, the PMPC-grafted HD-CLPE+E was sterilized by gamma-ray with a dose of 25 kGy. A CLPE with 50 kGy gamma-ray irradiation and 25 kGy gamma-ray sterilization was used as control. Surface properties and oxidative properties of the liners were examined. The wear test was performed using a 12-station hip joint simulator according to the ISO 14242-3. A 26-mm Co-Cr-Mo alloy femoral head component was used for the tests. Results. After PMPC grafting, the peaks ascribed to the MPC unit were clearly observed in both Fourier-transform infrared and X-ray photoelectron spectroscopy spectra. Furthermore, PMPC-grafted CLPE and HD-CLPE+E surface became wettable drastically. Oxidation-induction time of PMPC-grafted HD-CLPE+E was significantly longer compared with non-additive CLPE. After 5.0 million cycles of the simulator test, PMPC-grafted HD–CLPE+E were found to show extremely low and stable wear. Substantially fewer wear particles isolated from lubricants were found for both PMPC-grafted liners than for untreated CLPE liners. Discussion. In this study, we confirmed that the PMPC-grafted layer was successfully fabricated on the HD-CLPE+E surface, and the PMPC-grafted HD-CLPE+E brought high oxidation and wear-resistances. When the surface is modified by PMPC grafting, the PMPC-grafted layer leads to a significant reduction in the sliding friction between the surfaces which are grafted because water thin films formed can act as extremely efficient lubricants. Based on clinical trials and other related evidence, the Japanese government (Ministry of Health, Labour and Welfare) approved the clinical use of PMPC-grafted CLPE without vitamin E acetabular liners in April 2011. Furthermore, and in spite of high-dose gamma-ray irradiation for cross-linking, the substrate modified by vitamin E-blending maintains high oxidation-resistance. Indeed vitamin E is an extremely efficient radical scavenger. Conclusion. In conclusion, the PMPC-grafted HD–CLPE+E provides not only high wear resistance but also high oxidation stability, i.e., life-long durability


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 15 - 15
1 May 2016
Ali M Al-Hajjar M Fisher J Jennings L
Full Access

Introduction. Translational surgical mismatch in the centres of rotation of the femoral head and acetabular cup in hip joint replacements can lead to dynamic microseparation resulting in edge loading contact [1]. Increased wear in retrieved ceramic-on-ceramic bearings has been associated with edge loading [2]. Hip joint simulators were used to replicate increased wear rate, stripe wear and bimodal wear debris size distribution, as seen clinically [3,4]. Recently developed electromechanical simulators are able to comply with the latest international standards, which include three axes of rotation conditions [5]. Previous simulators had applied two axes of rotation under microseparation conditions [6]. Therefore, the aim of this study was to compare the wear of ceramic-on-ceramic bearings obtained under edge loading due to microseparation conditions during gait using the same electromechanical hip joint simulator with two axes of rotation and three axes of rotation conditions. Materials and Methods. A six-station electromechanical hip joint simulator (ProSim EM13, Simulation Solutions, UK) was set up with 36mm diameter ceramic-on-ceramic (BIOLOX® delta, PINNACLE®, DePuy Synthes, UK) hip replacements. The wear was determined for two million cycles under standard conditions with two axes of rotation conditions (n=6), two million cycles under microseparation conditions with two axes of rotation conditions (n=6) (Figure 1a), and two million cycles under microseparation conditions with three axes of rotation conditions (n=6) (Figure 1b). The loading profiles [5,7] comprised of 3kN twin peak loads and 300N swing phase load under standard conditions. The swing phase load was reduced to approximately 70N under microseparation conditions. Approximately 0.5mm of dynamic microseparation between the head and the cup was applied in the medial/lateral direction. The components were lubricated with 25% new-born calf serum supplemented with 0.03% sodium azide to minimise bacterial growth. The gravimetric wear rates were compared over two million cycles for each test (XP205, Mettler Toledo, UK). The mean wear rates of the head and cup were calculated with 95% confidence limits and statistical analysis was carried out (t-test) with significance levels taken at p<0.05. A coordinate-measurement machine (Legex 322, Mitutoyo, UK) was used to construct a three-dimensional map of the femoral head surface wear. Results. Under standard conditions, the mean wear rate of BIOLOX® delta ceramic-on-ceramic bearings was 0.03±0.01 mm3/million cycles. The mean wear rates under microseparation conditions for two axes and three axes of rotation conditions were 0.14±0.01 mm3/million cycles and 0.14±0.03 mm3/million cycles respectively. There was no statistically significant difference between the wear rates using two axes and three axes of rotation conditions under microseparation conditions (p=0.86). Stripe wear was observed and wear depth measured on the femoral heads under microseparation conditions using two axes (Figure 2a) and three axes (Figure 2b) of rotation. Conclusion. Higher wear rates were observed under microseparation compared with standard conditions, as reported in a previous study [6]. Similar wear rates were obtained under microseparation conditions with two axes and three axes of rotation conditions using the same simulator


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 17 - 17
1 Apr 2019
Bhalekar R Smith S Joyce T
Full Access

Introduction. Metal-on-polyethylene (MoP) is the most commonly used bearing couple in total hip replacements (THRs). Retrieval studies (Cooper et al, 2012, JBJS, Lindgren et al, 2011, JBJS) report adverse reactions to metal debris (ARMD) due to debris produced from the taper-trunnion junction of the modular MoP THRs. A recent retrospective observational study (Matharu et al, 2016, BMC Musc Dis) showed that the risk of ARMD revision surgery is increasing in MoP THRs. To the authors' best knowledge, no hip simulator tests have investigated material loss from the taper-trunnion junction of contemporary MoP THRs. Methods. A 6-station anatomical hip joint simulator was used to investigate material loss at the articulating and taper-trunnion surfaces of 32mm diameter metal-on-cross-linked polyethylene (MoXLPE) joints for 5 million cycles (Mc) with a sixth joint serving as a dynamically loaded soak control. Commercially available cobalt-chromium-molybdenum (CoCrMo) femoral heads articulating against XLPE acetabular liners (7.5Mrad) were used with a diluted new-born-calf-serum lubricant. Each CoCrMo femoral head was mounted on a 12/14 titanium alloy trunnion. The test was stopped every 0.5Mc, components were cleaned and gravimetric measurements performed following ISO 14242-2 and the lubricant was changed. Weight loss (mg) obtained from gravimetric measurements was converted into volume loss (mm. 3. ) and wear rates were calculated from the slopes of the linear regression lines in the volumetric loss versus number of cycles plot for heads, liners and trunnions. Additionally, volumetric measurements of the head tapers were obtained using a coordinate measuring machine (CMM) post-test. The surface roughness (Sa) of all heads and liners was measured pre and post-test. At the end of the test, the femoral heads were cut and the roughness of the worn and unworn area was measured. Statistical analysis was performed using a paired-t-test (for roughness measurements) and an independent sample t-test (for wear rates). Results and Discussion. The mean volumetric wear rates for CoCrMo heads, XLPE liners and titanium trunnions were 0.019, 2.74 and 0.013 mm. 3. /Mc respectively. There was a statistically significant decrease (p<0.001) in the Sa of the liners post-test. This is in contrast to the femoral heads roughness in which no change was observed (p = 0.338). This head roughness result matches with a previous MoP in vitro test (Saikko, 2005, IMechE-H). The Sa of the head tapers on the worn area showed a statistically significant increase (p<0.001) compared with unworn, with an associated removal of the original machining marks. The mean volumetric wear rate of the head tapers obtained using the CMM (0.028 ± 0.016 mm. 3. /Mc) was not statistically different (p=0.435) to the mean volumetric wear rate obtained gravimetrically (0.019 ± 0.020 mm. 3. /Mc) for the femoral heads. Therefore, wear of the heads arose mainly from the internal taper. The mean wear rates of the CoCrMo taper and titanium trunnion are in agreement with a MoP explant study (Kocagoz et al, 2016, CORR). Conclusion. This is the first long-term hip simulator study to report wear generated from the taper-trunnion junction of MoP hips


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 142 - 142
1 Mar 2013
Chen Y Kurosu S Lee Y Matsumoto H Koizumi Y Chiba A
Full Access

1. Introduction. Metal-on-metal (MOM) hip joints have regained a favor in arthroplasty since they own excellent wear resistance. In this study, wear tests by using a hip joint simulator were conducted with MOM bearings of specified 40 mm femoral heads. The influence of clearance on the wear behavior was investigated. Furthermore, an optimized radial clearance was estimated by lubricant film thickness and contact pressure analysis. 2. Materials and methods. Co-27Cr-5Mo-0.13N-0.05C (hereafter CCMN) alloy (mass %) was used. The ingots were vacuum induction melted, homogenized and hot forged successively. The microstructure shows equiaxed crystal grains with abundant annealing twins but no carbides. Two groups of bearings, indicated as cr 1 and cr 2, were designed. The radial clearances for cr 1 and cr 2 were 37.9 and 148.7 μm, respectively. Wear tests were conducted in a hip joint simulator (INSTRON 8870) in Hanks' solution at 37±2°f. The force and 3-axile angle of movement were applied on the articulation according to ISO 14242-1 for 1.5 million cycles (Mc). The contact pressures on the hip joints were also analyzed by using ABAQUS. The femoral heads were set 40 mm with radial clearances of 0–200 μm. Half models were set up and only the maximum force of 3 kN converted as pressure was applied as boundary condition. 3. Results and discussion. In general, the wear scratches paralleling to the flexion-extension direction tend to the greatest [Fig. 1]. For cr 1, shallow scratches and few plowing-grooves were observed. While for cr 2, deep plowing-grooves (5–10 μm) with obvious plastic deformation were generated in large quantities by abrasive wear. The wear rate [Fig. 2] for cr 2 was approximately 29.5 mm. 3. /Mc more than the one for cr 1, probable caused by different lubrication mode and contact pressure for different clearances. From the prediction of the lubricant film thickness, the lubrication regime transformed from full film lubrication to boundary lubrication for cr 1 and mixed film lubrication to boundary lubrication for cr 2. The simulation results [Fig. 3] also show that as the clearance increase, the contact pressure would increase leading to aggravating wear. On the other hand, if the clearance is too small, the contact pressure also increases by wedging and equatorial contact of the articulation. For a MOM articulation with a 40 mm femoral head, there is a minimum contact pressure when the radial clearance is between 40 and 50 μm. 4. Conclusions. To summarize, for a 40 mm diameter MOM articulation, abrasive wear was the dominant wear mechanism. The wear decreased as the radial clearance decreased, due to a thicker lubricant film thickness which can separate the surfaces' direct contact. However, the function of the contact pressure and radial clearance was not monotonous. It could be concluded that an optimized radial clearance ranging in 40–50 μm is appropriate for this MOM hip joint


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 113 - 113
1 Mar 2017
Riva F De Bona F Benasciutti D Pressacco M
Full Access

Introduction. Modularity allows surgeons to use femoral heads of various materials, diameters and offsets to achieve the best possible outcome, nevertheless the fretting corrosion behaviour of modular junctions can be significantly affected. The aim of this study was to assess physiological friction moment and lubrication ratio in order to compare various tribological materials against different bearing sizes. This data is important as lubrication will affect the friction, wear and torque generated which may lead directly to the production of debris or to enhanced corrosion at modular junctions. Materials and methods. Hip joints were tested in lubricant condition on a hip simulator following the ISO14242-3 configuration. Three samples for each combinations were examined: 1) 36mm metal-on-metal made in CoCrMo 2) 36mm ceramic-on-ceramic made in ZTA 3) 58mm resurfacing metal-on-metal made in CoCrMo 4) 57mm resurfacing ceramic-on-ceramic made in ZTA. Preconditioning and dynamic loading steps were spaced out by rest periods (Fig. 1) and the entire series was repeated three times for each combination. Strains were measured on the Ti6Al4V neck's femoral stem with three couples of biaxial strain gauges and were converted into friction moments by means of analytical formulas. Mean maximum moment M and lubrication ratio λ were calculated. M. START-UP. and M. TURN-OFF. were respectively the first three and last three peak moment sampled for each consecutive step. Results. Fig. 2 reports the obtained results. It can be observed that MoM large bearings showed a mean maximum friction moment lower than MoM smaller bearings (p=0,001), whereas no effect of bearing diameter on friction moment was observed for CoC (p=0,162). There is no statistically significant difference on friction moment between Ø57mm ceramic-on-ceramic resurfacing bearing and Ø58mm metal-on-metal resurfacing (p=0,805). However the CoC Ø36 friction moment was significantly lower than with MoM Ø36 (p=0,001). The calculated lubrication ratio λ gave information on lubrication regime: in the case of standard bearings mixed lubrication (1≤λ≤3) occurred, while resurfacing bearings were in full film lubrication (λ>3). Correlating lubrication ratio λ with M. START-UP. and M. TURN-OFF. (Fig. 2) it can be observed that the peak friction moment increased during the dynamic step for bearing in mixed lubrication, while a decrease was observed for bearing in full film lubrication. The breaking point cycle between downward and flat peak friction moment trend decreased more than half with longer dynamic steps (Fig. 3), leading to a stable maximum friction moment. Discussion. Ceramic bearing friction moment monotonically increased with bearing diameter, this trend being not observed on metal couplings because the tested standard diameter was in mixed lubrication lower limit. Mixed lubrication regime energized the bearing by increasing the friction moment during the dynamic step such as a self-powered system, on the other side full film lubrication reduced friction moment to a lower asymptote, such as a self-stabilized system. Conclusion. Modern ceramic hip resurfacing was designed in full film lubrication and its friction moment was equivalent to metal-on-metal hip resurfacing. Modern ceramic resurfacing may reduce fretting corrosion compared to traditional metal resurfacing while keeping the same biomechanical advantages. For figures/tables, please contact authors directly.