Aim. Implant-associated infection usually require prolonged treatment or even removal of the implant. Local application of antibiotics is used commonly in orthopaedic and trauma surgery, as it allows reaching higher concentration in the affected compartment, while at the same time reducing systematic side effects. Ceftriaxone release from calcium sulphate has a particularly interesting, near-constant release profile in vitro, making it an interesting drug for clinical application. Purpose of the present study was to investigate the potential cytotoxicity of different ceftriaxone concentrations and their influence on osteogenic differentiation of
A method is proposed to assess risk parameters of anterior cruciate ligament (ACL) injury using
Periprosthetic joint infection (PJI) is a potentially devastating complication of joint replacement surgery. Osteocytes comprise 90–95% of all cells in hard bone tissue, are long-lived and are becoming increasingly recognised as a critical cell type in the regulation of bone and systemic physiology. The purpose of this study was to examine role of these cells in PJI pathophysiology and aetiology, with the rationale that their involvement could contribute to the difficulty in detecting and clearing PJI. This study examined the ability of
Staphylococcus aureus is the most frequently isolated organism in periprosthetic joint infections. The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding of its antibacterial characteristics is needed. We sought to analyze the antimicrobial properties of exogenous copper in
Introduction. The fixation of press-fit orthopaedic devices depends on the mechanical properties of the bone that is in contact with the implants. During the press-fit implantation, bone is compacted and permanently deformed, finally resulting in the mechanical interlock between implant and bone. For the development and design of new devices, it is imperative to understand these non-linear interactions. One way to investigate primary fixation is by using computational models based on Finite Element (FE) analysis. However, for a successful simulation, a proper material model is necessary that accurately captures the non-linear response of the bone. In the current study, we combined experimental testing with FE modeling to establish a Crushable Foam model (CFM) to represent the non-linear bone biomechanics that influences implant fixation. Methods. Mechanical testing of
Osteoarthritis (OA) is a multifactorial debilitating disease that affects over four million Canadians. Although the mechanism(s) of OA onset is unclear, the biological outcome is cartilage degradation. Cartilage degradation is typified by the progressive loss of extracellular matrix components - aggrecan and type II collagen (Col II) – partly due to the up-regulation of catabolic enzymes - aggrecanases a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS-) 4 and 5 and matrix metalloproteinases (MMPs). There is currently no treatment that will prevent or repair joint damage, and current medications are aimed mostly at pain management. When pain becomes unmanageable arthroplastic surgery is often performed. Interest has developed over the presence of calcium crystals in the synovial fluid of OA patients, as they have been shown to activate synovial fibroblasts inducing the expression of catabolic agents. We recently discovered elevated levels of free calcium in the synovial fluid of OA patients and raised the question on its role in cartilage degeneration. Articular cartilage was isolated from 5 donors undergoing total hip replacement. Chondrocytes were recovered from the cartilage of each femoral head or knee by sequential digestion with Pronase followed by Collagenase and expanded in DMEM supplemented with 10% heat-inactivated FBS. OA and normal
The management of patients with massive irreparable rotator cuff tears (RCT) has traditionally proved challenging. This prospective study was undertaken with the aim to assess the overall functional outcome following the use of
A good understanding of musculoskeletal pathologies not only requires a good knowledge of normal
Osteoarthritis (OA) is a chronic degenerative joint disorder that affects millions of people. There are currently no therapies that reverse or repair cartilage degradation in OA patients. Link N (DHLSDNYTLDHDRAIH) is a naturally occurring peptide that has been shown to increase both collagen and proteoglycan synthesis in chondrocytes and intervertebral disc cells [1,2]. Recent evidence indicates that Link N activates Smad1/5 signaling in cultured rabbit IVD cells presumably by interacting with the bone morphogenetic protein (BMP) type II receptor [3], however, whether a similar mechanism exists in chondrocytes remains unknown. In this study we determined whether Link N can stimulate matrix production and reverse degradation of
The meniscus is comprised largely of type I collagen, as well as fibrochondrocytes and proteoglycans. In articular cartilage and intervertebral disc, proteoglycans make a significant contribution to mechanical stiffness of the tissue via negatively charged moieties which generate Donnan osmotic pressures. To date, such a role for proteoglycans in meniscal tissue has not been established. This study aimed to investigate whether meniscal proteoglycans contribute to mechanical stiffness of the tissue via electrostatic effects. Following local University Ethics Committee approval, discs of meniscal tissue two millimetres thick and of five millimetres diameter were obtained from 12 paired fresh frozen
The number of knee replacement surgeries have increased rapidly over the past few years. However, these implants can have limited life due to the issue of wear. An accurate lubrication model is an important component in understanding and designing joints to deliver lower joint wear and the risks associated with such wear. One of the main challenges in tribological modelling of the knee implant is capturing the effects of the complex geometry on the joint performance. Most current models assume a single point of contact, with zero pressure and deformation assumed elsewhere. Unlike the hip implant, which can be described as a circular or elliptical contact, the knee implant involves a geometry that cannot be easily approximated into a regular shape. For this reason, the elastohydrodynamic lubrication equations become computationally expensive and challenging to solve. Finite element methods are required to capture the complex geometry and calculate deformations and how they vary spatially over the joint surface. Furthermore, the irregularity and asymmetry of the geometry provides no guarantee that well-defined contact points exist. A mixed lubrication model for a
Osteoarthritis (OA) is a debilitating disease and the most common joint disorder worldwide. Although the development of OA is considered multifactorial, the mechanisms underlying its initiation and progression remain unclear. A prominent feature in OA is cartilage degradation typified by the progressive loss of extracellular matrix components - aggrecan and type II collagen (Col II). Cartilage homeostasis is maintained by the anabolic and catabolic activities of chondrocytes. Prolonged exposure to stressors such as mechanical loading and inflammatory cytokines can alter the phonotype of chondrocytes favoring cartilage catabolism, and occurs through decreased matrix protein synthesis and upregulation of catabolic enzymes such as aggrecanases (ADAMTS-) 4 and 5 and matrix metalloproteinases (MMPs). More recently, the endoplasmic reticulum (ER) stress response has been implicated in OA. The ER-stress response protects the cell from misfolded proteins however, excessive activation of this system can lead to chondrocyte apoptosis. Acute exposure of chondrocytes to IL-1β has been demonstrated to upregulate ER-stress markers (GADD153 and GRP78), however, it is unclear whether the ER-stress response plays a role on chronic IL-1β exposure. The purpose of this study was to determine whether modulating the ER stress response with tauroursodeoxycholic acid (TUDCA) in
Purpose. Mesenchymal stromal cells (MSCs) are an attractive choice for regenerative medicine. We previously showed that MSCs enhance wound healing in animals after radiotherapy. The effect of MSCs on tumor growth is not well understood. The potential use of MSCs to enhance wound healing after radiotherapy (RT) and resection of soft tissue sarcoma (STS) is dependent on a satisfactory safety profile to ensure that tumor proliferation does not occur and recurrence is not increased. Method. Primary cell lines (human myxofibrosarcoma and undifferentiated sarcoma) derived from sarcoma bearing patients and a commercialized
Trabecular bone is a multiscale hierarchical composite material that is known to display time-dependant properties. However, most biomechanical models treat this material as time independent. Time-dependant properties, such as creep and relaxation, are thought to play an important role in many clinically relevant orthopaedic issues: implant loosening, vertebral collapse, and non-traumatic fractures. In this study compressive multiple-load-creep-unload-recovery (MLCUR) tests were applied to
Chondrosarcoma responds poorly to adjuvant therapy and therefore, new targeted therapy is required. Animal models have been utilised to test therapeutic candidates, however clinically relevant, orthotopic models are lacking. The aim of this study was to develop such a model. In vitro: two
Periosteum is important for bone homoeostasis
through the release of bone morphogenetic proteins (BMPs) and their
effect on osteoprogenitor cells. Smoking has an adverse effect on
fracture healing and bone regeneration. The aim of this study was
to evaluate the effect of smoking on the expression of the BMPs
of
The cellular mechanisms of tendinopathy remain unclear, particularly with respect to the role of inflammation in early disease. We have previously identified increased levels of inflammatory cytokines in an early
We established a sampling workflow to receive tissue samples from patients requiring surgical debridement due to SA bone-and joint or soft-tissue infections. We developed a multiplex immunofluorescent staining protocol which allowed us to stain for SA, leukocytes, neutrophils, macrophages, B-cells, T-cells, DAPI and cytoplasmatic marker on the same sample slide. Further, distance of SA to cell nuclei was measured. Interaction of immune cells and SA on a single cell level was investigated with high-resolution 3D microscopy. We then validated our findings applying fluorescence-activated cell sorting (FACS) on digested patient samples. Finally, we aimed to reproduce our Aim
Method
Purpose. As
Background. A cell-based tissue-engineered construct can be employed for treating meniscal lesions occurring in the non-vascularized inner two-thirds. The objective of this study was to test the hypothesis that both pre-differentiation of