To evaluate the functional outcome of open
Standard fixation for intra-articular distal
Abstract. Introduction. Intra-articular distal
The morphology of the proximal part of the
Advancements in treating distal
Abstract. Objectives. Operative management of distal
We have studied the three-dimensional geometry of the proximal
We describe a lateral approach to the distal
The medial periosteal hinge plays a key role in fractures of the head of the
Introduction. The standard treatment of proximal humerus fractures includes pre-contoured metal plates and up to nine cortical and trabecular screws. Frequent failures are reported, especially in case of poor bone quality. The scope of this study was to assess the strength of an innovative reconstruction technique (Cement-and-screws) based on a commercial plate, with a reduced number of screws compared to the standard, and with the injection of a beta-TCP additivated acrylic bone cement (Cal-Cemex, Tecres, Italy). The focus was on a four-fragment fracture of the proximal
This study evaluated the effect on movement under load of three different techniques for re-attachment of the tuberosities of the
Proximal humerus fractures (PHF) are the third most common fractures in the elderly. Treatment of complex PHF has remained challenging with mechanical failure rates ranging up to 35% even when state-of-the-art locked plates are used. Secondary (post-operative) screw perforation through the articular surface of the humeral head is the most frequent mechanical failure mode, with rates up to 23%. Besides other known risk factors, such as non-anatomical reduction and lack of medial cortical support, in-adverse intraoperative perforation of the articular surfaces during pilot hole drilling (overdrilling) may increase the risk of secondary screw perforation. Overdrilling often occurs during surgical treatment of osteoporotic PHF due to minimal tactile feedback; however, the awareness in the surgical community is low and the consequences on the fixation stability have remained unproved. Therefore, the aim of this study was to evaluate biomechanically whether overdrilling would increase the risk of cyclic screw perforation failure in unstable PHF. A highly unstable malreduced 3-part fracture was simulated by osteotomizing 9 pairs of fresh-frozen human cadaveric proximal humeri from elderly donors (73.7 ± 13.0 ys, f/m: 3/6). The fragments were fixed with a locking plate (PHILOS, DePuy Synthes, Switzerland) using six proximal screws, with their lengths selected to ensure 6 mm tip-to-joint distance. The pairs were randomized into two treatment groups, one with all pilot holes accurately predrilled (APD) and another one with the boreholes of the two calcar screws overdrilled (COD). The constructs were tested under progressively increasing cyclic loading to failure at 4 Hz using a previously developed setup and protocol. Starting from 50 N, the peak load was increased by 0.05 N/cycle. The event of initial screw loosening was defined by the abrupt increase of the displacement at valley load, following its initial linear behavior. Perforation failure was defined by the first screw penetrating the joint surface, touching the artificial glenoid component and stopping the test via electrical contact. Bone mineral density (range: 63.8 – 196.2 mgHA/cm3) was not significantly different between the groups. Initial screw loosening occurred at a significantly lower number of cycles in the COD group (10,310 ± 3,575) compared to the APD group (12,409 ± 4,569), p = 0.006. Number of cycles to screw perforation was significantly lower for the COD versus APD specimens (20,173 ± 5,851 and 24,311 ± 6,318, respectively), p = 0.019. Failure mode was varus collapse combined with lateral-inferior translation of the humeral head. The first screw perforating the articular surface was one of the calcar screws in all but one specimen. Besides risk factors such as fracture complexity and osteoporosis, inadequate surgical technique is a crucial contributor to high failure rates in locked plating of complex PHF. This study shows for the first time that overdrilling of pilot holes can significantly increase the risk of secondary screw perforation. Study limitations include the fracture model and loading method. While the findings require clinical corroboration, raising the awareness of the surgical community towards this largely neglected risk source, together with development of devices to avoid overdrilling, are expected to help improve the treatment outcomes.
The operative treatment of fractures of the proximal
Supracondylar fractures of the
Introduction. Primary Total Elbow Replacement (TER) is gaining popularity as a primary treatment option for osteoporotic fractures of the elbow, particularly in patients with low demand. The aim of this study was to assess the clinical and functional efficacy of TER as a primary treatment for comminuted distal
To date, the fixation of proximal humeral fractures with angular stable locking plates is still insufficient with mechanical failure rates of 18% to 35%. The PHILOS plate (DePuy Synthes, Switzerland) is one of the most used implants. However, this plate has not been demonstrated to be optimal; the closely symmetric plate design and the largely heterogeneous bone mineral density (BMD) distribution of the humeral head suggest that the primary implant stability may be improved by optimizing the screw orientations. Finite element (FE) analysis allows testing of various implant configurations repeatedly to find the optimal design. The aim of this study was to evaluate whether computational optimization of the orientation of the PHILOS plate locking screws using a validated FE methodology can improve the predicted primary implant stability. The FE models of nineteen low-density (humeral head BMD range: 73.5 – 139.5 mg/cm3) left proximal humeri of 10 male and 9 female elderly donors (mean ± SD age: 83 ± 8.8 years) were created from high-resolution peripheral computer tomography images (XtremeCT, Scanco Medical, Switzerland), using a previously developed and validated computational osteosynthesis framework. To simulate an unstable mal-reduced 3-part fracture (AO/OTA 11-B3.2), the samples were virtually osteotomized and fixed with the PHILOS plate, using six proximal screws (rows A, B and E) according to the surgical guide. Three physiological loading modes with forces taken from musculoskeletal models (AnyBody, AnyBody Technology A/S, Denmark) were applied. The FE analyses were performed with Abaqus/Standard (Simulia, USA). The average principal compressive strain was evaluated in cylindrical bone regions around the screw tips; since this parameter was shown to be correlated with the experimental number of cycles to screw cut-out failure (R2 = 0.90). In a parametric analysis, the orientation of each of the six proximal screws was varied by steps of 5 in a 5×5 grid, while keeping the screw head positions constant. Unfeasible configurations were discarded. 5280 simulations were performed by repeating the procedure for each sample and loading case. The best screw configuration was defined as the one achieving the largest overall reduction in peri-screw bone strain in comparison with the PHILOS plate. With the final optimized configuration, the angle of each screw could be improved, exhibiting significantly smaller average bone strain around the screw tips (range of reduction: 0.4% – 38.3%, mean ± SD: 18.49% ± 9.56%). The used simulation approach may help to improve the fixation of complex proximal humerus fractures, especially for the target populations of patients at high risk of failure.
Proximal humerus fractures are the third most common fragility fractures with treatment remaining challenging. Mechanical fixation failure rates of locked plating range up to 35%, with 80% of them being related to the screws perforating the glenohumeral joint. Secondary screw perforation is a complex and not yet fully understood process. Biomechanical testing and finite element (FE) analysis are expected to help understand the importance of various risk factors. Validated FE simulations could be used to predict perforation risk. This study aimed to (1) develop an experimental model for single screw perforation in the humeral head and (2) evaluate and compare the ability of bone density measures and FE simulations to predict the experimental findings. Screw perforation was investigated experimentally via quasi-static ramped compression testing of 20 cuboidal bone specimens at 1 mm/min. They were harvested from four fresh-frozen human cadaveric proximal humeri of elderly donors (aged 85 ± 5 years, f/m: 2/2), surrounded with cylindrical embedding and implanted with a single 3.5 mm locking screw (DePuy Synthes, Switzerland) centrally. Specimen-specific linear µFE (ParOSol, ETH Zurich) and nonlinear explicit µFE (Abaqus, SIMULIA, USA) models were generated at 38 µm and 76 µm voxel sizes, respectively, from pre- and post-implantation micro-Computed Tomography (µCT) images (vivaCT40, Scanco Medical, Switzerland). Bone volume (BV) around the screw and in front of the screw tip, and tip-to-joint distance (TJD) were evaluated on the µCT images. The µFE models and BV were used to predict the experimental force at the initial screw loosening and the maximum force until perforation. Initial screw loosening, indicated by the first peak of the load-displacement curve, occurred at a load of 64.7 ± 69.8 N (range: 10.2 – 298.8 N) and was best predicted by the linear µFE (R2 = 0.90), followed by BV around the screw (R2 = 0.87). Maximum load was 207.6 ± 107.7 N (range: 90.1 – 507.6 N) and the nonlinear µFE provided the best prediction (R2 = 0.93), followed by BV in front of the screw tip (R2 = 0.89). Further, the nonlinear µFE could better predict screw displacement at maximum force (R2 = 0.77) than TJD (R2 = 0.70). The predictions of non-linear µFE were quantitatively correct. Our results indicate that while density-based measures strongly correlate with screw perforation force, the predictions by the nonlinear explicit µFE models were even better and, most importantly, quantitatively correct. These models have high potential to be utilized for simulation of more realistic fixations involving multiple screws under various loading cases. Towards clinical applications, future studies should investigate if explicit FE models based on clinically available CT images could provide similar prediction accuracies.
Autologous cancellous bone graft is the gold standard in large bone defect repair. However, studies using autologous bone grafting in rats are rare and donor sites as well as harvesting techniques vary. The aim of this study was to determine the feasibility of autologous cancellous bone graft harvest from 5 different anatomical sites in rats and compare their suitability as donor sites for autologous bone graft. 13 freshly euthanised rats were used to describe the surgical approaches for autologous bone graft harvest from the
Osteochondromas are benign chondrogenic lesions arising on the external surface of the bone with aberrant cartilage (exostosis) from the perichondral ring that may contain a marrow cavity also. In a few cases, depending on the anatomical site affected, different degrees of edema, redness, paresthesia, or paresis can take place due to simple contact or friction. Also, depending on their closeness to neurovascular structures, the procedure of excision becomes crucial to avoid recurrence. We report a unique case of recurrent osteochondroma of the proximal
In chronically infected fracture non-unions, treatment requires extensive debridement to remove necrotic and infected bone, often resulting in large defects requiring elaborate and prolonged bone reconstruction. One approach includes the induced membrane technique (IMT), although the differences in outcome between infected and non-infectious aetiologies remain unclear. Here we present a new rabbit