Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 100 - 100
4 Apr 2023
Lu V Zhang J Zhou A Thahir A Krkovic M
Full Access

Fracture related infections (FRI) are debilitating complications of musculoskeletal trauma surgery that can result in permanent functional loss or amputation. This study aims to determine risk factors associated with FRI treatment failure, allowing clinicians to optimise them prior to treatment and identify patients at higher risk. A major trauma centre database was retrospectively reviewed over a six-year period. Of the 102 patients identified with a FRI (66 male, 36 female), 29.4% (n=30) had acute infections (onset <6 weeks post-injury), 34.3% (n=35) had an open fracture. Open fractures were classified using Gustilo-Anderson (GA) classification (type 2:n=6, type 3A:n=16, type 3B:n=10, type 3C:n=3). Patients with periprosthetic infections of the hip and knee joint, those without prior fracture fixation, soft tissue infections, diabetic foot ulcers, pressure sore infections, patients who died within one month of injury, <12 months follow-up were excluded. FRI treatment failure was defined as either infection recurrence, non-union, or amputation. Lifestyle, clinical, and intra-operative data were documented via retrospective review of medical records. Factors with a P-value of p<0.05 in univariate analysis were included in a stepwise multivariate logistic regression model. FRI treatment failure was encountered in 35.3% (n=36). The most common FRI site was the femoral shaft (16.7%; n=17), and 15.7% (n=16) presented with signs of systemic sepsis. 20.6% (n=21) had recurrent infection, 9.8% (n=10) had non-union, and 4.9% (n=5) required an amputation. The mean age at injury was 49.71 years old. Regarding cardiovascular risk factors, 37 patients were current smokers (36.3%), 31 patients were diabetics (30.4%), and 32 patients (31.4%) were obese (BMI≥30.0). Average follow-up time was 2.37 (range: 1.04-5.14) years. Risk factors for FRI treatment failure were BMI>30, GA type 3c, and implant retention. Given that FRI treatment in 35.3% (36/102) ended up in failure, clinicians need to take into account the predictive variables analysed in this study, and implement a multidisciplinary team approach to optimise these factors. This study could aid clinicians to redirect efforts to improve high risk patient management, and prompt future studies to trial adjuvant technologies for patients at higher risk of failure


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 38 - 38
1 Apr 2017
Ray S El Khassawna T Thormann U Sommer U Rhonke M Henns A Gelinsky M Hanke T Schnettler R Heiss C Alt V
Full Access

Objectives. Osteoporosis and osteomalacia lead to increased fracture risk. Previous studies documented dysregulated osteoblast and osteoclast activity, leading to a high-turnover phenotype, reduced bone mass and low bone mineral content. Osteocytes, the most abundant bone cell type, are involved in bone metabolism by enabling cell to cell interaction. Osteocytes presence and viability are crucial for bone tissue homeostasis and mechanical integrity. Osseo-integration and implant degradation are the main problems in developing biomaterials for systemically diseased bone. This study examines osteocyte localisation, morphology and on the implant surface and at the implant bone interface. Furthermore, the study investigates ECM proteins regulation correlated to osteocytes and mechanical competence in an ovariectomised rat model with a critical size metaphyseal defect. Methodology. After induction of osteoporosis, 60 female Sprague-Dawley rats were randomised into five groups: SrCPC (n=15), CPC (n=15), ScB30 (n=15), ScB30Sr20 (n=15) and empty defect (n=15). The left femur of all animals underwent a 4mm wedge-shaped metaphyseal osteotomy that was internally fixed with a T-shaped plate. The defect was then either filled with the above mentioned implants or left empty. After six weeks, histomorphometric analysis showed a statistically significant increase in bone formation at the tissue-implant interface in the SrCPC group compared to the other groups (p<0.01). Osteocyte morphology and networks were detected using silver and staining. ECM proteins were investigated through immunohistochemistry. Cellular populations were tested using enzyme histochemistry. Mineralisation was assessed using time of flight secondary ion mass spectrometry (TOF-SIMS). Statistical analysis was performed using Mann Whitney U test with Bonferroni correction. Results. In the SrCPC and compared to other test groups, osteocytes presence and morphology was enhanced. An increased osteocytic activity was also seen in ScB30Sr20 when compared to SCB30 alone. Local osteomalatic lesions characterised by the presence of excessive unmineralised osteoid as revealed by the VKVG staining in the intact bone was also seen. A regular pattern of osteocytes distribution reflecting a better bone maturation was also seen in case of the Sr substituted cements. Whereas in case of the ScB30 degenerated osteocytes with a comparatively irregular arrangement were seen. Nonetheless, ECM proteins indicating discrepant bone turnover (RANKL, OPG, BMP2, OCN; ASMA) were noticed to increase within these regions and were accompanied by the presence of apoptotic osteocytes. Interestingly, osteocytes were also localised near the blood vessels within the newly formed woven bone. On the other hand, osteocytes allocation at implant bone interface and on the implant surface were qualitatively better in the Sr substituted groups when compared to the other test groups. Furthermore, this correlates with healing enhancement and implant retention results obtained from the histomorphometry (BV/TV and Osteoclasts count). The first qualitative results of the sclerostin visualisation showed a lower expression in the Sr supplemented biomaterials compared to the Sr free ones. Conclusion. Osteoblasts, osteoclast and osteocytes are the key players to bone metabolism through production and mineralisation of ECM or resorption. The current study indicates the importance in therapeutically targeting osteocytes to regulate bone metabolism in osteoporotic/osteomalatic bone. Sr inhibits osteoclast activity which is important for implant degradation. However, in osteoporotic bone osteoclasts inhibition is crucial to enhance the healing. Our data suggest that osteocytes allocation at the bone implant interface and on the implant surface is aiding in implant degradation through osteocytes dependent resorption. Currently, discrepancies in mechanosensitivity, proliferation and fibrotic tissue formation are being investigated together with several anchorage proteins to quench further effects of osteocyte presence at the implant bone interface


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 155 - 155
1 Jul 2014
Hutchinson R Choudry Q McLauchlan G
Full Access

Summary. The 80% porous structure of trabecular metal allows for bone ingrowth in more than 90% of the available surface. The Nexgen LPS Uncemented Knee using a trabecular metal tibial component has performed well at minimum of 5 years’ follow-up. Introduction. Total Knee Arthroplasty prostheses most frequently used in today's practice have cemented components. These have shown excellent clinical results. The fixation can however weaken with time, and cement debris within the articulation can lead to accelerated wear. Cementless implants are less commonly used, but some have also shown good long-term clinical results. The potential advantages of cementless implants are retention of bone stock, less chance of third-body wear due to the absence of cement, shorter operative time, and easier treatment of periprosthetic fractures. The posterior stabilised knee replacement has been said to increase tangential shear stresses on the tibial component and increases contact stresses on the cam and post mechanism hence the great debate of cruciate retaining or cruciate sacrificing implants. Objectives. We report the results of a prospective cohort of consecutive primary total knee arthroplasties using an uncemented posterior stabilised prosthesis using a trabecular metal (tantalum) tibial component at a minimum 5-year follow-up. Methods. Prospective 5 year follow-up of patients undergone an uncemented posterior stabilised total knee replacement using a trabecular metal tibial component (NexgenLPS). Clinical examination, Oxford knee score, Knee society score, SF12 and radiological evaluation undertaken at review. Results. 81 patients, 45 female, 36 male. Left 31, Right 50. Mean age 74.3 yrs range (51–90). SF12, mean: 31.8 range (25–37). Oxford Knee Score Pre-op Mean 20.1 range (9–36) Post op: Mean 32.1 range (9–48). Knee Society score. Pain Mean 91.8; range (60–100). Functional score mean 76.2; range (30–100). Mean Range of movement 110.5 degrees range (90–125). No evidence of loosening at 5 yrs. No deep infection. No Revisions. Conclusion. Although there are a variety of methods of achieving satisfactory initial fixation in cementless components, trabecular metal has an advantage owing to its cellular structure resembling bone. The 80% porous structure of trabecular metal allows for bone ingrowth in more than 90% of the available surface. The Nexgen LPS Uncemented Knee using a trabecular metal tibial component used in this series has shown no evidence of loosening at a minimum of 5 years’ follow-up and the prosthesis as a whole has performed very well clinically. Its early results are comparable to those prostheses most commonly used as reported by the arthroplasty registers. The longer term results from this prosthesis are awaited with interest


Bone & Joint Research
Vol. 1, Issue 6 | Pages 125 - 130
1 Jun 2012
Bøe BG Støen RØ Solberg LB Reinholt FP Ellingsen JE Nordsletten L

Objectives

An experimental rabbit model was used to test the null hypothesis, that there is no difference in new bone formation around uncoated titanium discs compared with coated titanium discs when implanted into the muscles of rabbits.

Methods

A total of three titanium discs with different surface and coating (1, porous coating; 2, porous coating + Bonemaster (Biomet); and 3, porous coating + plasma-sprayed hydroxyapatite) were implanted in 12 female rabbits. Six animals were killed after six weeks and the remaining six were killed after 12 weeks. The implants with surrounding tissues were embedded in methyl methacrylate and grinded sections were stained with Masson-Goldners trichrome and examined by light microscopy of coded sections.