The advent of modular implants aims to minimise morbidity associated with revision of hemiarthroplasty or total shoulder arthroplasty (TSA) to reverse shoulder arthroplasty (RSR) by allowing retention of the humeral stem. This systematic review aimed to summarise outcomes following its use and reasons why modular humeral stems may be revised. A systematic review of Pubmed, Medline and EMBASE was performed according to PRISMA guidelines of all patients undergoing revision of a modular hemiarthroplasty or TSA to RSR. Primary
Abstract. Objective. Up to 20% of patients can remain dissatisfied following TKR. A proportion of TKRs will need early revision with aseptic loosening the most common. The ATTUNE TKR was introduced in 2011 as successor to its predicate design The PFC Sigma (DePuy Synthes, Warsaw, In). However, following reports of early failures of the tibial component there have been ongoing concerns of increased loosening rates with the ATTUNE TKR. In 2017 a redesigned tibial baseplate (S+) was introduced, which included cement pockets and an increased surface roughness to improve cement bonding. Given the concerns of early tibial loosening with the ATTUNE knee system, this study aimed to compare revision rates and those specific to aseptic loosening of the ATTUNE implant in comparison to an established predicate as well as other implant designs used in a high-volume arthroplasty centre. Methods. The Attune TKR was introduced to our unit in December 2011. Prior to this we routinely used a predicate design with an excellent long-term track record (PFC Sigma) which remains in use. In addition, other designs were available and used as per surgeon preference. Using a prospectively maintained database, we identified 10,202 patients who underwent primary cemented TKR at our institution between 01/04/2003–31/03/2022 with a minimum of 1 year follow-up (Mean 8.4years, range 1–20years): 1) 2406 with ATTUNE TKR (of which 557 were S+) 2) 4652 with PFC TKR 3) 3154 with other cemented designs. All implants were cemented using high viscosity cement. The primary outcome measures were all-cause revision, revision for aseptic loosening, and revision for tibial loosening. Kaplan-Meier survival analysis and Cox regression models were used to compare the primary outcomes between groups. Matched cohorts were selected from the ATTUNE subsets (original and S+) and PFC groups using the nearest neighbor method for radiographic analysis. Radiographs were assessed to compare the presence of radiolucent lines in the Attune S+, standard Attune, and PFC implants. Results. At a mean of 8.4 years follow-up, 308
Introduction and Objective. In recent studies, robotic-assisted surgical techniques for unicompartmental knee arthroplasty (UKA) have demonstrated superior implant positioning and limb alignment compared to a conventional technique. However, the impact of the robotic-assisted technique on clinical and functional outcomes is less clear. The aim of this study was to compare the gait parameters of UKA performed with conventional and image-free robotic-assisted techniques. Materials and Methods. This prospective, single center study included 66 medial UKA, randomized to a robotic-assisted (n=33) or conventional technique (n=33). Gait analysis was performed on a treadmill at 6 months to identify changes in gait characteristics (walking speed, each degree-of-freedom: flexion–extension, abduction–adduction, internal-external rotation and anterior-posterior displacement). Clinical results were assessed at 6 months using the IKS score and the Forgotten Joint Score. Implants position was assessed on post-operative radiographs. Results. Post-operatively, the whole gait cycle was not significantly different between groups. In both groups there was a significant improvement in varus deformity between the pre- and post-operative gait cycle. There was no significant difference between the two groups in clinical scores,
Summary. Prosthetic UHMWPE added with vitamin E and crosslinked UHMWPE are able to decrease significantly the adhesion of various bacterial and fungal strains limiting biomaterial associated infection and consequent implant failure. Introduction. Polyethylene abrasive and oxidative wear induces overtime in vivo a foreign-body response and consequently osteolysis, pain and need of
Summary Statement. In vivo microCT allows monitoring of subtle bone structure changes around infected implants in a rat model. Introduction. The principal causes of orthopedic
We performed a systematic review to compare outcomes of cemented versus uncemented trapezio-metacarpal joint (TMCJ) replacement for treatment of base-of-thumb arthritis. We assessed improvements in pain and function, range of movement (ROM), strength, complications and need for revision surgery. A thorough literature search was performed. A total of 481 studies were identified from the literature search (179 Medline, 253 Embase, 27 CINAHL, 22 Cochrane). Of 43 relevant titles 28 were selected for full-text review after assessment of the abstracts. Duplicate studies were removed. 18 studies met inclusion criteria on full-text review. All studies were of level IV evidence. There were no randomised controlled trials or meta-analyses. The studies were critically appraised using a validated scoring system. Most studies reported good outcomes for pain and strength, and functional outcome was comparable for both groups. ROM was generally improved for both prosthetic types, however statistical calculation was lacking in many studies. Trapezial component loosening was the main problem for both cemented and uncemented prostheses, however radiological loosening did not necessarily correlate with implant failure. This systematic review has found that both cemented and uncemented replacements generally give good outcomes for the treatment of TMCJ arthritis, however young, male, patients with manual occupations and with disease in the dominant hand and patients with poor trapezial bone stock appear to be at higher risk for implant failure due to cup loosening. We recommend the construction of a joint registry to record
Bone surface strains were measured in cadaver femora during loading prior to and after resurfacing of the hip and total hip replacement using an uncemented, tapered femoral component. In vitro loading simulated the single-leg stance phase during walking. Strains were measured on the medial and the lateral sides of the proximal aspect and the mid-diaphysis of the femur. Bone surface strains following femoral resurfacing were similar to those in the native femur, except for proximal shear strains, which were significantly less than those in the native femur. Proximomedial strains following total hip replacement were significantly less than those in the native and the resurfaced femur. These results are consistent with previous clinical evidence of bone loss after total hip replacement, and provide support for claims of bone preservation after resurfacing arthroplasty of the hip.
Nanometre-sized particles of ultra-high molecular weight polyethylene have been identified in the lubricants retrieved from hip simulators. Tissue samples were taken from seven failed Charnley total hip replacements, digested using strong alkali and analysed using high-resolution field emission gun-scanning electron microscopy to determine whether nanometre-sized particles of polyethylene debris were generated We isolated nanometre-sized particles from the retrieved tissue samples. The smallest identified was 30 nm and the majority were in the 0.1 μm to 0.99 μm size range. Particles in the 1.0 μm to 9.99 μm size range represented the highest proportion of the wear volume of the tissue samples, with 35% to 98% of the total wear volume comprised of particles of this size. The number of nanometre-sized particles isolated from the tissues accounted for only a small proportion of the total wear volume. Further work is required to assess the biological response to nanometre-sized polyethylene particles.
The use of impaction bone grafting during revision arthroplasty of the hip in the presence of cortical defects has a high risk of post-operative fracture. Our laboratory study addressed the effect of extramedullary augmentation and length of femoral stem on the initial stability of the prosthesis and the risk of fracture. Cortical defects in plastic femora were repaired using either surgical mesh without extramedullary augmentation, mesh with a strut graft or mesh with a plate. After bone impaction, standard or long-stem Exeter prostheses were inserted, which were tested by cyclical loading while measuring defect strain and migration of the stem. Compared with standard stems without extramedullary augmentation, defect strains were 31% lower with longer stems, 43% lower with a plate and 50% lower with a strut graft. Combining extramedullary augmentation with a long stem showed little additional benefit (p = 0.67). The type of repair did not affect the initial stability. Our results support the use of impaction bone grafting and extramedullary augmentation of diaphyseal defects after mesh containment.
Previous research has shown an increase in chromosomal aberrations in patients with worn implants. The type of aberration depended on the type of metal alloy in the prosthesis. We have investigated the metal-specific difference in the level of DNA damage (DNA stand breaks and alkali labile sites) induced by culturing human fibroblasts in synovial fluid retrieved at revision arthroplasty. All six samples from revision cobalt-chromium metal-on-metal and four of six samples from cobalt-chromium metal-on-polyethylene prostheses caused DNA damage. By contrast, none of six samples from revision stainless-steel metal-on-polyethylene prostheses caused significant damage. Samples of cobalt-chromium alloy left to corrode in phosphate-buffered saline also caused DNA damage and this depended on a synergistic effect between the cobalt and chromium ions. Our results further emphasise that epidemiological studies of orthopaedic implants should take account of the type of metal alloy used.