Introduction. The fracture healing outcome is often evaluated via ex
Introduction. Modular tantalum augments have been introduced to manage severe bone defects in hip and knee revision surgery. The porous surfaces of tantalum augments are intended to enhance osseointegration and a number of studies have documented their excellent biocompatibility. However, the characteristics of tantalum augment osseointegration on human ex
Clinical evidence that patients with type 2 diabetes mellitus (T2DM) have increased risk of fractures is reported. Furthermore, thiazolidinediones, used to treat T2DM increases the risk of secondary osteoporosis & subsequent fractures. The osteogenic potency of metformin is reported in vitro, few studies have investigated the effects of metformin on bone mass and fracture healing in
The osteointegration of a new three-dimensional reticular titanium material, Trabecular Titanium™, was assessed using a bilateral cancellous (distal femur, proximal tibia) and cortical (tibia diaphysis) bone drill hole model in 18 sheep. TT is a novel Ti6Al4V material characterized by a high open porosity and composed of multi-planar regular hexagonal cells. Two 5.0 mm diameter, 12 mm long cylinders (TT1 & TT2) of two different porosities (TT1:650 μm, TT2:1250 μm) were tested and compared to two solid predicate 5.0 mm diameter, 12 mm long Ti cylinders (PT1 & PT2) coated with porous Ti (PT1: vacuum-plasma spray coating; PT2: inert-gas shielding arc spray coating). Each implant type was surgically implanted at 4 separate locations in each sheep (16 implants per sheep). Three timepoints of 4, 16 and 52 weeks (n=6 sheep per timepoint) were used. Bone-implant interface was analyzed ex
The Intraosseous Transcutaneous Amputation Prosthesis (ITAP)
may improve quality of life for amputees by avoiding soft-tissue
complications associated with socket prostheses and by improving
sensory feedback and function. It relies on the formation of a seal
between the soft tissues and the implant and currently has a flange
with drilled holes to promote dermal attachment. Despite this, infection
remains a significant risk. This study explored alternative strategies
to enhance soft-tissue integration. The effect of ITAP pins with a fully porous titanium alloy flange
with interconnected pores on soft-tissue integration was investigated.
The flanges were coated with fibronectin-functionalised hydroxyapatite
and silver coatings, which have been shown to have an antibacterial
effect, while also promoting viable fibroblast growth Aims
Materials and Methods
Magnesium calcium alloys are promising candidates for an application as biodegradable osteosynthesis implants [1,2]. As the success of most internal fracture fixation techniques relies on safe anchorage of bone screws, there is necessity to investigate the holding power of biodegradable magnesium calcium alloy screws. Therefore, the aim of the present study was to compare the holding power of magnesium calcium alloy screws and commonly used surgical steel screws, as a control, by pull-out testing. Magnesium calcium alloy screws with 0.8wt% calcium (MgCa0.8) and conventional surgical steel screws (S316L) of identical geometries (major diameter 4mm, core diameter 3mm, thread pitch 1mm) were implanted into both tibiae of 40 rabbits. The screws were placed into the lateral tibial cortex just proximal of the fibula insertion and tightened with a manual torque gauge (15cNm). For intended pull-out tests a 1.5mm thick silicone washer served as spacer between bone and screw head. Six animals with MgCa0.8 and four animals with S316L were followed up for 2, 4, 6 and 8 weeks, respectively. Thereafter the rabbits were sacrificed. Both tibiae were explanted, adherent soft tissue and new bone was carefully dissected around the screw head. Pull-out tests were carried out with an MTS 858 MiniBionix at a rate of 0.1mm/sec until failure of the screw or the bone. For each trial the maximum pull-out force [N] was determined. Statistical analysis was performed (ANOVA, Student's t-test). Both implant materials were tolerated well. Radiographically, new bone was detected at the implantation site of MgCa0.8 and S316L, which was carefully removed to perform pull-out trials. Furthermore, periimplant accumulations of gas were radiographically detected in MgCa0.8. The pull-out force of MgCa0.8 and S316L did not significantly differ (p = 0.121) after two weeks. From 6 weeks on the pull-out force of MgCa0.8 decreased resulting in significantly lower pull-out values after 8 weeks. Contrary, S316L pull-out force increased throughout the follow up. Thus, S316L showed significantly higher pull-out values than MgCa0.8 after 4, 6 and 8 weeks (p<0.001). MgCa0.8 showed good biocompatibility and pull-out values comparable to S316L in the first weeks of implantation. Thus, its application as biodegradable osteosynthesis implant is conceivable. Further studies are necessary to investigate whether the reduced holding power of MgCa0.8 is sufficient for secure fracture fixation. In addition, not only solitary screws, but also screw-plate-combinations should be examined over a longer time period. The study is part of the collaborative research centre 599 funded by the German Research Foundation.Acknowledgements
Tranexamic acid (TXA) is an anti-fibrinolytic medication commonly used to reduce peri-operative bleeding. Increasingly, topical administration as an intra-articular injection or peri-operative wash is being administered at concentrations between 10–100mg/ml. This study investigated effects of TXA on human periarticular tissues and primary cell cultures using clinically relevant concentrations. Tendon, synovium and cartilage obtained from routine orthopaedic surgeries were used ex
Osteoinductive bone substitutes are in their developmental infancy and a paucity of effective grafts options persists despite clinical demand. Bone mineral substitutes such as hydroxyapatite cause minimal biological activity when compared to osteoinductive systems present biological growth factors in order to drive bone regeneration. We have previously demonstrated the in-vitro efficacy of a bioengineered system at presenting growth factors at ultra low-doses. This study aimed to translate this growth factor delivery system towards a clinically applicable implant. Osteoinductive surfaces were engineered using plasma polymerisation of poly(ethyl acrylate) onto base materials followed by adsorption of fibronectin protein and subsequently growth factor (BMP-2). Biological activity following ethylene oxide (EO) sterilisation was evaluated using ELISAs targeted against BMP-2, cell differentiation studies and atomic force microscopy. Scaffolds were 3D printed using polycaprolactone/hydroxyapatite composites and mechanically tested using a linear compression models to calculate stress/strain. In-vivo analysis was performed using a critical defect model in 23 mice over an 8 week period. Bone formation was assessed using microCT and histological analysis. Finally, a computer modelling process was developed to convert patient CT images into surface models, then formatted into 3D-printable scaffolds to fill critical defects. Following EO sterilisation, there was no change in scaffold surface and persistent availability of growth factors. Scaffolds showed adequate porosity for cell migration with mechanical stiffness similar to cancellous bone. Finally, the in
Introduction. Nonunion is a common and costly fracture outcome. Intricate reciprocity between angiogenesis and osteogenesis means vascular cell-based therapy offers a novel approach to stimulating bone regeneration. Hypothesis. The current study compared early and late outgrowth endothelial progenitor cell subtypes (EPCs vs OECs) for fracture healing potential in vitro and in
Objectives. Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing. The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets. DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory. Materials and Methods. We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery in combination with bone regeneration. Gentamicin release was measured in four setups: 1) in vitro elution in Ringer’s solution; 2) local elution in patients treated for trochanteric hip fractures or uncemented hip revisions; 3) local elution in patients treated with a bone tumour resection; and 4) local elution in patients treated surgically for chronic corticomedullary osteomyelitis. Results. The release pattern in vitro was comparable with the obtained release in the patient studies. No recurrence was detected in the osteomyelitis group at latest follow-up (minimum 1.5 years). Conclusions. This new biphasic bone substitute containing antibiotics provides safe prevention of bone infections in a range of clinical situations. The in vitro test method predicts the in
Antimicrobial resistance (AMR) is projected to result in 10 million deaths every year globally by 2050. Without urgent action, routine orthopaedic operations could become high risk and musculoskeletal infections incurable in a “post-antibiotic era.” However, current methods of studying AMR processes including bacterial biofilm formation are 2D in nature, and therefore unable to recapitulate the 3D processes within in
Our objective was to conduct a systematic review and meta-analysis, to establish whether differences arise in clinical outcomes between autologous and synthetic bone grafts in the operative management of tibial plateau fractures. A structured search of MEDLINE, EMBASE, the online archives of Bone & Joint Publishing, and CENTRAL databases from inception until 28 July 2021 was performed. Randomized, controlled, clinical trials that compared autologous and synthetic bone grafts in tibial plateau fractures were included. Preclinical studies, clinical studies in paediatric patients, pathological fractures, fracture nonunion, or chondral defects were excluded. Outcome data were assessed using the Risk of Bias 2 (ROB2) framework and synthesized in random-effect meta-analysis. The Preferred Reported Items for Systematic Review and Meta-Analyses guidance was followed throughout.Aims
Methods
Recent findings about UHMWPE oxidation from in
INTRODUCTION. Whilst there is a great deal of research on hip implants, few studies have looked at implant orientation and the subsequent effect upon the wear performance of a hip resurfacing. This study aimed to measure implantation angles through radiographic analysis and linear wear for retrieved acetabular cups in order to investigate possible causal links between wear and implant orientation. MATERIALS & METHODS. Seventy Birmingham Hip Resurfacing (Smith & Nephew, UK) cups with known time in
Kirschner wires are commonly used in paediatric fractures, however, the requirement for removal and the possibility of pin site infection provides opportunity for the development of new techniques that eliminate these drawbacks. Bioabsorbable pins that remain in situ and allow definitive closure of skin at the time of insertion could provide such advantages. Three concurrent studies were performed to assess the viability of bioabsorbable pins across the growth plate. (1) An epidemiological study to identify Kirschner wire infection rates. (2) A mechanical assessment of a bioabsorbable pin compared to Kirschner wires in a simulated supracondylar fracture. (3) The insertion of the implants across the physis of sheep to assess effects of the bioabsorbable implant on the growth plate via macroscopic, pathohistological and micro-CT analysis. An infection rate of 8.4% was found, with a deep infection rate of 0.4%. Mechanically the pins demonstrated comparable resistance to extension forces (p=) but slightly inferior resistance to rotation (p=). The in
The aim of this study was to determine the immediate post-fixation stability of a distal tibial fracture fixed with an intramedullary nail using a biomechanical model. This was used as a surrogate for immediate weight-bearing postoperatively. The goal was to help inform postoperative protocols. A biomechanical model of distal metaphyseal tibial fractures was created using a fourth-generation composite bone model. Three fracture patterns were tested: spiral, oblique, and multifragmented. Each fracture extended to within 4 cm to 5 cm of the plafond. The models were nearly-anatomically reduced and stabilized with an intramedullary nail and three distal locking screws. Cyclic loading was performed to simulate normal gait. Loading was completed in compression at 3,000 N at 1 Hz for a total of 70,000 cycles. Displacement (shortening, coronal and sagittal angulation) was measured at regular intervals.Aims
Methods
Introduction. Oxidized zirconium (OxZr) is used as a ceramic surface for femoral components in total knee arthroplasty (TKA). The aim of this study was to investigate its performance by examining retrieved femoral components and their corresponding PE inserts in matched comparison with conventional chrome/cobalt/molybdenum alloy (CrCoMo). Methods. 11 retrieved posterior stabilized (PS) TKA with an OxZr femoral component were included. From a cohort of 56 retrieved TKA with CrCoMo femoral components, pairs were matched according to duration of implantation, patient age, reason for revision, and BMI. The retrieved tibial polyethylene (PE) inserts were analyzed for wear using the Hood classification. Femoral components were optically viewed at 8–32x magnification and screened for scratching, pitting, delamination, and striation. Profilometry was performed to measure surface roughness of the OxZr components using a non-contact white light profiler. Results. The prostheses were in situ for a mean of 18.5±10.6 (OxZr) and 19.5±14.3 (CrCoMo) months (p=0.41). None of these cases were revised for problems directly related to the use of OxZr. There was one reaction to the implant in the CrCoMo group. The average wear of the tibial PE inserts was significantly lower with OxZr components (41.5±16.8 vs. 60.1±22.0, p=0.01). The average wear score in the visual analysis of the femoral components was significantly lower for the OxZr (1.6±1.3 vs. 9.5±0.6, p=0.005). Discussion and Conclusion. Femoral components made of OxZr are less sensitive to in
Engineered bone tissue to recreate the continuity of damaged skeletal segments is one of the field of interest of tissue engineering. Trabecular titanium has very good mechanical properties and high in vitro and in
Introduction. In total hip arthroplasty ceramic on ceramic bearing couples are used more and more frequently and on a wordwide basis. The main reason of this choice is reduction of wear debris and osteolysis. The tribological properties and the mechanical behaviour of the implanted ceramic must remain the same throughout the patient's life. The aim of this study was to evaluate the resistance of Alumina Matrix Composite to environmental degradation. Material and method. The alumina matrix composite or BIOLOX ® delta is manufactured in Germany by CeramTec. It is made up of 80 vol.% Al2O3, 17 vol.% Yttria Stabilized ZrO2 and 3vol.% strontium aluminate platelets. The zirconia grains account for 1.3 mol.% of the Yttria content. Accelerated aging tests in water steam at 142°C, 134°C, 121°C, and 105°C were performed to evaluate the aging kinetics of the composite. X-ray diffraction was used to determine the monoclinic phase content on the material surface. Phase transformation is associated with weakness and increase in roughness of zirconia ceramic implants. Results. The data below shows average monoclinic contents before and after aging in water vapour according to the ISO standard test (134°C, 2 bars water steam, 10 h) on the surface and inside the 28 mm taper(12/14 taper) femoral ball heads manufactured in alumina ceramic composite. There are precisions concerning the roughness and the load to failure before and after aging concerning 28mm diameter heads. Before Aging 13%+/-3% of Monoclinic content. After 10 H at 134°C23%+/-3% of Monoclinic content the roughness of the polished surface remain the same (5nm+/− 2). The load to failure of 28 mm heads before aging is 76 kN +/− 5kN, and 72 kN +/− 5kN after aging. The results show that although a rise in monoclinic content is predictable after long aging duration in
INTRODUCTION. Analysis of retrieved ceramic components have shown areas of localized ‘stripe wear’, which have been attributed to joint laxity and/or impingement resulting in subluxation of the head, causing wear on the edge of the cup. Studies have been conducted into the effects of mild subluxation, however few in vitro tests have looked at severe subluxation. The aim of this study was to develop a more clinically relevant subluxation protocol. MATERIALS & METHODS. Seven (Subluxation n=4; standard test n=3) of 36mm Biolox Forte (R3, Smith & Nephew) ceramic devices were tested for 0.5m cycles (mc). Two of the subluxed joints were further tested to 1 Mc. The devices were subjected to subluxation under standard testing conditions. The flex/ext was 30° and 15° respectively, with internal/external rotation of ±10°. The force was Paul type stance phase loading with a maximum load of 3 kN, and a standard ISO swing phase load of 0.3 kN at 1 Hz. The test was conducted on a ProSim hip joint wear simulator (SimSol, UK). The simulator is equipped with a novel mechanism to achieve translation of the head, to achieve subluxation. During the ISO swing phase load of 0.3kN, a controlled lateral force required for the translation of the head is applied by a cam mechanism, head retraction then occurs during heel strike. The lubricant used was new born calf serum diluted with de-ionised water to achieve average protein concentration of 20 g/l, with 0.2 wt % concentration NaN3, and changed every 250k cycles. Measurements have been taken at 0.5 & 1 mc stages. RESULTS. Linear wear measurements conducted on the subluxed joints resulted in stripe wear similar to that reported in