We have designed a prospective study to evaluate
the usefulness of prolonged
Introduction and Objective. The rupture of the anterior cruciate ligament is a common sports injury and surgical reconstruction is often required to restore full function of the knee. Hamstring tendons are usually used as autografts. In addition to knee pain and stiffness, infections are feared complications after surgery.
This study aimed to investigate the effect of irisin on human nucleus pulposus cells (hNPCs) in vitro. Our hypothesis was that irisin would improve hNPC metabolism and proliferation. hNPCs were isolated from intervertebral discs and cultured in alginate beads. hNPCs were exposed to phosphate-buffered saline (PBS) or recombinant irisin (r-irisin) at 5, 10 and 25 ng/mL (n=4). Each experiment was performed in triplicate. Cell proliferation was assessed with trypan blue staining-automated cell counting and PicoGreen assay. Glycosaminoglycan (GAG) content was measured using the DMMB assay. Metabolic activity was assessed with the MTT assay and the Griess Reagent System. Gene expression of collagen type II (COL2), matrix metalloproteinase (MMP)-13, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and −3, aggrecan, interleukin (IL)-1β, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 was measured by RT-PCR. MTT assay and ADAMTS-5, COL2, TIMP-1 and IL-1β gene expression were evaluated following
Nitric oxide is a free radical which in vivo is solely produced during the conversion of the amino acid arginine into citrulline by nitric oxide synthase enzymes. Recently, the importance of nitric oxide on inflammation and bone metabolism has been investigated. However, the knowledge regarding possible in vitro effects of arginine supplementation on chondrogenic differentiation is limited. ATDC5, a cell line which is derived from mouse teratocarcinoma cells and which is characterized as chondrogenic cell line, were proliferated in Dulbecco's Modified Eagle Medium (DMEM)/F12 and subsequently differentiated in proliferation medium supplemented with insulin, transferrin and sodium-selenite and where arginine was added in four different concentrations (0, 7.5, 15 and 30 mM). Samples were harvested after 7 or 10 days and were stored at −80 °C for subsequent RNA isolation for qPCR analysis. To determine chondrogenic differentiation, Alcian Blue staining was performed to stain the proteoglycan aggrecan, which is secreted by differentiated ATDC5 cells. All measurements were performed in triplo. Alcian Blue staining showed a qualitative increase of proteoglycan aggrecan secretion in differentiated ATDC5 cells after treatment with 7 and 15 mM arginine, with additional increased expression of ColII, ColX, Bmp4 and Bmp6. Treatment with 30 mM arginine inhibited chondrogenic differentiation and expression of aforementioned genes, however, Cox-2 and Vegfa gene expression were increased in these samples. Bmp7 was not significantly expressed in any experimental condition. The obtained results are suggestive for a dose-dependent effect of arginine supplementation on chondrogenic differentiation and associated gene expression, with 7.5 and 15 mM as most optimal concentrations and implications for apoptosis after
Little information exists when using cell viability assays to evaluate cells within whole tissue, particularly specific types such as the intervertebral disc (IVD). When comparing the reported methodologies and the protocols issued by manufacturers, the processing, working times, and dye concentrations vary significantly, making the assay's reproducibility a costly and time-consuming trial and error process. This study aims to develop a detailed step-by-step cell viability assay protocol for evaluating IVD tissue. IVDs were harvested from bovine tails (n=8) and processed at day 0 and after 7 days of culture. Nucleus pulposus (NP) and the annulus fibrosus (AF) 3 mm cuts were incubated at room temperature (26˚C) with a Viability/Cytotoxicity Kit containing Calcein AM and Ethidium Ethidium homodimer-1 for 2 hr, followed by flash freezing in liquid nitrogen. Thirty µm sections were placed in glass slides and sealed with nail varnish or Antifade Mounting Medium. The IVD tissue was imaged within the next 4h after freezing using an inverted confocal laser-scanning microscope equipped with 488 and 543 nm laser lines. Cell viability at day 0 (NP: 92±9.6 % and AF:80±14.0%) and day 7 (NP: 91±7.9% and AF:76±20%) was successfully maintained and evaluated. The
Matrix metalloproteinase enzymes (MMPs) play a crucial role in the remodeling of articular cartilage, contributing also to osteoarthritis (OA) progression. The pericellular matrix (PCM) is a specialized space surrounding each chondrocyte, containing collagen type VI and perlecan. It acts as a transducer of biomechanical and biochemical signals for the chondrocyte. This study investigates the impact of MMP-2, -3, and -7 on the integrity and biomechanical characteristics of the PCM. Human articular cartilage explants (n=10 patients, ethical-nr.:674/2016BO2) were incubated with activated MMP-2, -3, or -7 as well as combinations of these enzymes. The structural degradative effect on the PCM was assessed by immunolabelling of the PCM's main components: collagen type VI and perlecan. Biomechanical properties of the PCM in form of the elastic moduli (EM) were determined by means of atomic force microscopy (AFM), using a spherical cantilever tip (2.5µm). MMPs disrupted the PCM-integrity, resulting in altered collagen type VI and perlecan structure and dispersed pericellular arrangement. A total of 3600 AFM-measurements revealed that
Introduction. Bone and joint infection (BJI) is often characterized by severe inflammation and progressive bone destruction. Osteocytes are the most numerous and long-lived bone cell type, and therefore represent a potentially important long-term reservoir of bacterial infection. Staphylococcus aureus is known to establish stable intracellular osteocytic infections, however, little is known about the less virulent yet second most prevalent BJI pathogen, S. epidermidis, associated with late-diagnosed, chronic BJI. Thus, this study sought to establish an in vitro model to study the infection characteristics of S. epidermidis in human osteocyte-like cells. Methods. SaOS2 cells (1 ×10. 4. cells/cm. 2. ) were grown to confluence either without differentiation, representing an osteoblast-like (OB) state (SaOS2-OB) or differentiated to an osteocyte-like stage (SaOS2-OY), using established methods. Four S. epidermidis strains used (ATCC-12228, ATCC-14990, ATCC-35984 and a clinical osteomyelitis strain RAH-SE1) were tested to be Lysostaphin-resistant, necessitating antibiotic (Levofloxacin) control of extracellular bacteria. Infection of host cells (OB or OY) was tested at three multiplicities of infection (MOI: 10, 100 and 1000). Extracellular bacteria were controlled by overnight
Abstract. Objective. The preparation of host degenerate cartilage for repair typically requires cutting and/or scraping to remove the damaged tissue. This can lead to mechanical injury and cartilage cell (chondrocytes) death, potentially limiting the integration of repair material. This study evaluated cell death at the site of cutting injury and determined whether raising the osmotic pressure (hyper-osmolarity) prior to injury could be chondroprotective. Methods. Ex vivo human femoral head cartilage was obtained from 13 patients (5 males and 8 females: 71.8 years old) with Ethical Permission and Patient consent. Cartilage wells were created using 3 or 5mm biopsy punches. Cell death at the wounded edge of the host cartilage and the edge of the extracted explants were assessed by quantifying the percentage of cell death (PCD) and measuring the width of the cell death zone at identified regions of interest (ROI) using the confocal laser scanning microscopy and image analysis software. To assess the chondroprotective effect of hyper-osmolarity, cartilage specimens were incubated in 340 or 600mOsm media, five minutes prior to injury to allow the chondrocytes to respond to the altered osmolarity. Wounded cartilage explants and cartilage wells were then cultured for a further 150 minutes following injury. Results. In 340mOsm media, the PCD around the 3mm cartilage wells was significantly less compared to the corresponding explants (20.05±10.24% vs 35.25±4.86%; P=0.0003). When using the 5mm biopsy punch, the PCD at the wound edges was significantly lower when compared to the 3mm cartilage wells (13.33±7.80% vs 20.05±10.24%; P=0.0121) at the same osmolarity. The width of the cell death zone for the well edges for both 3 and 5mm punches was significantly narrower when compared to their corresponding harvested cartilage explants in 340mOsm media (P<0.0001; P=0.0218, respectively). Exposing cartilage to raised osmolarity (600mOsm) prior to injury significantly reduced the PCD for cartilage wells produced by the 3mm biopsy punches (from 20.05±10.24% to 12.24±6.00%; P=0.0025). In addition, the zone of cell death was marginally reduced at the edges of the 5mm cartilage wells (19.25±15.78mm to 12.72±9.09mm; P=0.0499). Conclusions. The choice of biopsy punch and the osmolarity of the
Introduction:. Exercise has showed to reduce pain and improve function in patients with discogenic low back pain (LBP). Although there is currently no biologic evidence that the intervertebral disc (IVD) can respond to physical exercise in humans, a recent study has shown that chronic running exercise is associated with increased IVD hydration and hypertrophy1. Irisin, a myokine released upon muscle contraction, has demonstrated to yield anabolic effects on different cell types, including chondrocytes2. This study aimed to investigate the effect of irisin on human nucleus pulposus cells (hNPCs). Our hypothesis is that irisin may improve hNPCs metabolism and proliferation. METHODS:. The hNPCs, isolated from discectomy surgical waste material (n = 5), were expanded and encapsulated in alginate beads. The hNPCs were treated with: i) only growth medium (control); ii) medium with recombinant irisin (r-IR) at different concentrations (5, 10 and 25 ng / mL); iii) medium with Interleukin-1β (IL1β); iv) medium with IL1β for 24 h and then with IL1β and r-IR; v) medium with r-IR for 24 h and then with r-IR and IL1 β. We evaluated proliferation (trypan blue and PicoGreen), metabolic activity (MTT), nitrite concentration (Griess), and expression levels of catabolic and anabolic genes via real-time polymerase chain reaction (qPCR). Each analysis was performed in triplicate for each donor and each experiment was performed three times. Data were expressed as mean ± S.D. One-way ANOVA was used for the groups under exam. RESULTS:. Irisin increased hNPCs proliferation (p < 0.001), metabolic activity at 10 ng/mL (p < 0.05), and GAG content at concentration of 10 ng/mL and 25 ng/mL (p < 0.01; p < 0.001, respectively). The production of nitrites, used as an indicator of cellular oxidative stress, was significantly decreased (p < 0.01). Gene expression levels compared to the control group increased for COL2A1 (p < 0.01), ACAN (p < 0.05), TIMP-1 and −3 (p < 0.01), while a decrease in mRNA levels of MMP-13 (p < 0.05) and IL1β (p < 0.001) was noticed. r-IR pretreatment of hNPCs cultured in pro-inflammatory conditions resulted in a rescue of metabolic activity (p < 0.001), as well as a decrease of IL-1β (p < 0.05) levels. Similarly,
Prosthetic joint infections (PJI) occur infrequently, but they represent the most devastating complication with high morbidity and substantial cost. Staphylococcus aureus and coagulase-negative S. epidermidis are the most commonly infecting agents associated with PJI. Nowadays, Gram-negative species like Escherichia coli and Pseudomonas aeruginosa are gaining relevance. The use of TiO2 conical nanotubular doped with fluorine and phosphorous (FP-cNT) surfaces is an interesting approach to prevent surface bacterial colonization during surgery and favouring the osseointegration. Despite of there are serum markers related with PJI, to date there is described no biomaterial-related marker that allows detecting PJI. Here we describe the adherence and the bactericidal effect of FP-cNT and its capacity of marking the non-fermenting bacteria that have been in contact with it by Al. This metal is delivered by FP-cNT in non-toxic concentrations (between 25 and 29 ng/mL). F-P-cNT layers on Ti6Al4V alloy were produced as described previously by our group. Ti6Al4V chemical polishing (CP) samples without nanostructure were used as control and produced as described previously. S. aureus 15981, S. epidermidis ATCC 35984, E. coli ATCC 25922, and P. aeruginosa ATCC 27853 strains adherence study was performed using the protocol described by Kinnari et al. in 0.9% NaCl sterile saline with a 120 min
Introduction. The annual incidence of fractures in the UK is almost 4%. Bone grafting procedures and segmental bone transport have been employed for bone tissue regeneration. However, their limited availability, donor site morbidity and increased cost mean that there is still a large requirement for alternative methods and there is considerable research into regeneration using bone morphogenetic proteins (BMPs). The aims of this study are to synthesise and combine BMP-2 with a novel nanocomposite and study its release. Materials and Methods. BMP-2 was synthesised using an E. coli expression system and purified. C2C12 cells were used to test its bioactivity using an alkaline phosphatase (ALP) assay. The modified solution evaporation method was used to fabricate 30% a-TCP/PLGA nanocomposite and it was characterized using SEM, TEM, TGA, XRD, EDX and particle size analysis. The release pattern of adsorbed BMP-2 was studied using an ELISA assay. Results. SEM suggests that there was a homogeneous distribution of a-TCP nanoparticles within the PLGA matrix. The concentration of BMP-2 adsorbed onto a-TCP/PLGA nanocomposites directly correlated with the
Metal instrumentation (rods and screws) is used to stabilise the spine after trauma, malignancy or deformity. Approx 3% become infected often necessitating removal of metal. At surgery tissue samples and metal are removed for culture, but many clinical laboratories are not equipped to process metal or use simple culture methods. The causative bacteria exist as biofilms on the metal and they are often anaerobic and slow-growing, so conventional culture methods often fail to detect them. Also, they are common contaminants leading to diagnostic uncertainty. We have established a laboratory protocol to overcome these problems. Removed metalwork was sonicated and the sonicate centrifuged and the supernatant discarded. Quantitative aerobic and anaerobic culture of the resuspended pellet for 14 days and microscopy were carried out. Metalwork from 11 suspected infected cases was culture-positive (median 2857, 60–5000cfu/mL). Microscopy revealed an infection due to Candida albicans that would not have been detected otherwise. Bacteria were isolated from 8 of 10 non-infected cases (median 15, 0–35 cfu/mL). Conventionally processed samples failed to grow in 4 infected cases. (cfu/mL infected vs noninfected cases p=0.0093). Micro-organisms on spinal metalwork grow as biofilms and they require sonication to dislodge them. The causative bacteria are slow-growing and P acnes is anaerobic and requires prolonged
MiRNAs perform gene regulation that can target approximately 60% of human protein coding genes. Along with many cellular processes, miRNAs have been implicated in stem cell differentiation. Osterix (Osx), which is inhibited by mir-31, is required by MSCs for early osteoblast differentiation resulting in bone formation further downstream. We used antagomir functionalised gold nanoparticles (AuNPs) to block mir-31, which resulted in upregulation of Osx in pre-osteoblastic MG63 cells and human mesenchymal stem cells (MSCs). We used MG63 pre-osteoblastic cell line and human MSCs. Cytotoxicity of AuNPs was assessed by MTT, and cellular uptake of AuNPs was verified by TEM and ICP-MS. Osx RNA levels were determined by Fluidigm analysis and protein expression by In Cell Western analysis. Antagomir-functionalised AuNPs were incubated with cells for an initial 48 hours. (1) No cytotoxic effects were noted in either cell type. (2) Fluidigm analysis identified a varied gene response to antagomir delivery in both cell types, with MSCs recording a reduction of stem cell marker genes nestin, alcam, CD63, and CD44 at day 5 (indicating differentiation). (3) Osx protein levels were increased in both cell types after 48 hour
Objectives. Intra-articular injections of local anaesthetics (LA), glucocorticoids (GC), or hyaluronic acid (HA) are used to treat osteoarthritis (OA). Contrast agents (CA) are needed to prove successful intra-articular injection or aspiration, or to visualize articular structures dynamically during fluoroscopy. Tranexamic acid (TA) is used to control haemostasis and prevent excessive intra-articular bleeding. Despite their common usage, little is known about the cytotoxicity of common drugs injected into joints. Thus, the aim of our study was to investigate the effects of LA, GC, HA, CA, and TA on the viability of primary human chondrocytes and tenocytes in vitro. Methods. Human chondrocytes and tenocytes were cultured in a medium with three different drug dilutions (1:2; 1:10; 1:100). The following drugs were used to investigate cytotoxicity: lidocaine hydrochloride 1%; bupivacaine 0.5%; triamcinolone acetonide; dexamethasone 21-palmitate; TA; iodine contrast media; HA; and distilled water. Normal saline served as a control. After an
Background. Staphylococcus aureus is a human pathogen involved in implant-related infections. In these diseases, biofilm production is the key pathogenic event, and it increases antibiotic resistance of the organism. Because this phenomenon, local delivery of antibiotics could allows reaching high concentrations in the infected tissue without the secondary effects linked to systemic administration. Here we report the use of a ceramic biomaterial (SBA-15) as a carrier of antibiotics in order to deliver them directly in the infected tissue. Material and methods. SBA-15 discs were loaded with vancomycin, rifampin and a combination of both according to the protocol described by Molina-Manso et al. Loaded discs were introduced in a 0.5 McFarland suspension of S. aureus 15981 and incubated during 6 and 24 hours in order to develop a biofilm. After
After the implantation of endoprotheses or osteosynthesis devices, implant-related infections are one of the major challenges. The surface of implants offers optimal conditions for the formation of a biofilm. Effective carrier systems for the delivery of adequate therapeutics would reduce the concentrations needed for successful treatment and improve cure rates. In cancer diagnosis and therapy, magnetic nanoparticles are concentrated in the target area by an external magnetic field. For orthopaedic applications, in vitro examinations showed that the addition of a magnetic implant in combination with an external magnetic field could increase the amount of MNPSNPs that accumulated in direct vicinity to the implant. The present examinations implemented an electromagnet to increase magnetic field strength and should show if the in vitro set up can be transferred to an in vivo mouse model. Additionally, the loading capacity of the MNPSNPs with enrofloxacin and its release kinetics were determined. Fluorescein-isothiocyanate (FITC) was covalently attached to MNPSNPs. For the in vitro set up, a peristaltic pump was used to establish a closed circuit which contained the MNPSNP dispersion and a magnetic platelet. After 5 minutes fluid samples were taken from the area around the magnetic platelet and analysed using a microplate reader. For the in vivo set up, a BALB/c mouse was implanted subcutaneously with the metallic platelet at the hind leg. The MNPSNP dispersion was injected into the tale vein and the hind leg of the mouse was placed immediately in a magnetic field of 1.9 T. After one week the implant was retrieved and examined by confocal laser scanning microscopy (CLSM). Liver, spleen and kidneys of the mouse were examined by magnetic resonance imaging (MRI). The loading capacity of the MNPs with enrofloxacin was examined by quantification of the enrofloxacin content in the
Cell sheets are manufactured from a high-density cell layer stabilized by its own freshly produced extracellular matrix (ECM). They could serve as versatile scaffolds for tissue repair. Unfortunately, their production often remains time-consuming requiring weeks of culturing. Ligament cell sheets are so far barely available. Regarding musculoskeletal tissues exposed to high repetitive biomechanical forces, the stability of cell sheets is insufficient. It could help to combine them with a biomechanical competent scaffold e.g. produced by an embroidering technique. Hence, we wanted to (1) develop a very rapid strategy to produce ACL ligamentocyte sheets within 24 h by using a thermoresponsive polymer surface, (2) use the sheets for scaffold seeding and (3) reflect the fibrocartilaginous transition zone of an ACL enthesis by combining sheets of ligamentocytes with chondrocytes or chondrogenic precursor cells as a strategy for directed seeding of two cell types on topologically different scaffold areas. Different cell numbers of lapine ACL ligamentocytes (L-ACLs), lapine articular chondrocytes (L-ACs) and human mesenchymal stromal cells (H-MSCs) were used for sheet formation. Experiments were performed with novel, self-assembled poly(glycidyl ether) (PGE) brushes based on random glycidyl methyl ether and ethyl glycidyl ether copolymers on polystyrene 12-well cell culture plates, which allow rapid sheet formation within 24 h. Uncoated plates served as controls. Temperature-triggered detachment was performed by 10 min
Direct metal printed (DMP) porous iron implants possess promising mechanical and corrosion properties for various clinical application. Nevertheless, there is a requirement for better co-relation between in vitro and in vivo corrosion and biocompatibility behaviour of such biomaterials. Our present study evaluates absorption of porous iron implants under both static and dynamic conditions. Furthermore, this study characterizes their cytocompatibility using fibroblastic, osteogenic, endothelial and macrophagic cell types. In vitro degradation was performed statically and dynamically in a custom-built set-up placed under cell culture conditions (37 °C, 5% CO2 and 20% O2) for 28 days. The morphology and composition of the degradation products were analysed by scanning electron microscopy (SEM, JSM-IT100, JEOL). Iron implants before and after immersion were imaged by μCT (Quantum FX, Perkin Elmer, USA). Biocompatibility was also evaluated under static and dynamic in vitro culture conditions using L929, MG-63, HUVEC and RAW 264.7 cell lines. According to ISO 10993, cytocompatibility was evaluated directly using live/dead staining (Live and Dead Cell Assay kit, Abcam) in dual channel fluorescent optical imaging (FOI) and additionally quantified by flow cytometry. Furthermore, cytotoxicity was indirectly quantified using ISO conform extracts in proliferation assays. Strut size of DMP porous iron implants was 420 microns, with a porosity of 64% ± 0.2% as measured by micro-CT. After 28 days of physiological degradation in vitro, dynamically tested samples were covered with brownish degradation products. They revealed a 5.7- fold higher weight loss than statically tested samples, without significant changes in medium pH. Mechanical properties (E = 1600–1800 MPa) of these additively manufactured implants were still within the range of the values reported for trabecular bone, even after 28 days of biodegradation. Less than 25% cytotoxicity at 85% of the investigated time points was measured with L929 cells, while MG-63 and HUVEC cells showed 75% and 60% viability, respectively, after 24 h, with a decreasing trend with longer
Summary. Prosthetic UHMWPE added with vitamin E and crosslinked UHMWPE are able to decrease significantly the adhesion of various bacterial and fungal strains limiting biomaterial associated infection and consequent implant failure. Introduction. Polyethylene abrasive and oxidative wear induces overtime in vivo a foreign-body response and consequently osteolysis, pain and need of implant revision. To solve these problems the orthopaedic research has been addressed to develop new biomaterials such as a crosslinked polyethylene with a higher molecular mass than standard Ultra High Molecular Weight Polyethylene (UHMWPE), and consequently a higher abrasive wear resistance and an antioxidant (vitamin E)-added UHMWPE to avoid oxidative wear. Nevertheless a feared complication of implant surgery is bacterial or fungal infection, initiated by microbial adhesion and biofilm formation, and related to the biomaterial surface characteristics. Staphylococci are the most common microorganisms causing biomaterial associated infection (BAI), followed by streptococci, Gram-negative bacilli and yeasts. With the aim to prevent BAI, the purpose of this study was to evaluate the adhesion of various microbial strains on different prosthetic materials with specific surface chemical characteristics, used in orthopaedic surgery. Methods. We compared the effects of vitamin E-added UHMWPE and crosslinked UHMWPE with that of standard GUR 1020 UHMWPE, upon the adhesion of ATCC biofilm-producing strains of Staphylococcus epidermidis, S. aureus, Escherichia coli and Candida albicans. After different
Prosthetic joint infections (PJI) occur infrequently, but they represent the most devastating complication with high morbidity and substantial cost. Staphylococcus aureus are the most common infecting agents associated with acute PJI, and also appear in some cases of delayed PJI. 1. S. aureus biofilm development can be divided in two stages: adhesion and proliferation. 2. To avoid PJI bacterial adhesion has to be decreased. Hybrid organo-inorganic sol-gel coatings are proposed as a promising biomaterial improvement. 3. One of these compounds is a mixture of two organopolisiloxanes: 3-methacryloxypropyltrimethoxysilane (MAPTMS) and tetramethylorthosilicate (TMOS). The aim of this work was to evaluate bacterial adhesion on MAPTMS-TMOS coating compared to titanium parts made by powder metallurgy. MAPTMS-TMOS sol-gel coating was produced using a molar ratio of 1:2 (MAPTMS:TMOS) and dispersed in ethanol. The sol-gel was deposited by dip-coating on titanium parts made by powder metallurgy followed by a thermal treatment at 120 ºC for 30 minutes. 4. Titanium parts without sol-gel coating were used as control. S. aureus 15981 strain adherence study was performed using the protocol described by Kinnari et al. 5. with 90 min