Advertisement for orthosearch.org.uk
Results 1 - 20 of 41
Results per page:
Bone & Joint Research
Vol. 1, Issue 11 | Pages 281 - 288
1 Nov 2012
Conlisk N Gray H Pankaj P Howie CR

Objectives. Orthopaedic surgeons use stems in revision knee surgery to obtain stability when metaphyseal bone is missing. No consensus exists regarding stem size or method of fixation. This in vitro study investigated the influence of stem length and method of fixation on the pattern and level of relative motion at the bone–implant interface at a range of functional flexion angles. Methods. A custom test rig using differential variable reluctance transducers (DVRTs) was developed to record all translational and rotational motions at the bone–implant interface. Composite femurs were used. These were secured to permit variation in flexion angle from 0° to 90°. Cyclic loads were applied through a tibial component based on three peaks corresponding to 0°, 10° and 20° flexion from a normal walking cycle. Three different femoral components were investigated in this study for cementless and cemented interface conditions. Results. Relative motions were found to increase with flexion angle. Stemmed implants reduced relative motions in comparison to stemless implants for uncemented constructs. Relative motions for cemented implants were reduced to one-third of their equivalent uncemented constructs. Conclusions. Stems are not necessary for cemented implants when the metaphyseal bone is intact. Short cemented femoral stems confer as much stability as long uncemented stems


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 141 - 141
1 May 2016
Yo H Ohashi H Sugama R
Full Access

Introduction

There have been many attempts to reduce the risk of femoral component loosening.

Using a tapered stem having a highly polished stem surface results in stem stabilization subsequent to debonding and stem-cement taper-lock and is consistent with force-closed fixation design.

Purpose

In this study, we assessed the subsidence of two different polished triple tapered stems and two different cements in primary THA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 56 - 56
1 Jan 2016
Moussa H Scemama C Kerboull L
Full Access

Introduction

Excellent long-term survival rates associated with the absence of stem subsidence have been achieved with total hip arthroplasty (THA) using femoral components cemented line-to-line (“French Paradox”). Recently, short stems have been introduced in order to preserve diaphyseal bone and to accommodate to minimal invasive THA and a variety of clinical situations. The aim of the current study was to quantify the rotational and tilting stability of a Kerboull stem of varying length after line-to-line cementation using a validated in-vitro model.

Materials & methods

The femoral component made of M30NW stainless steel was derived from the original Kerboull stem. It had a double taper, a highly polished surface, and a quadrangular cross-section. Four stem lengths were designed from the original length with a distal reduction of 6, 12, 17 and 22%, whereas the proximal body geometry of the implant remained unaffected. For each stem length, five specimens were implanted into a non-canal synthetic femoral model. The femoral preparation was performed in order to obtain rotational and tilting stability of the stem prior to the line-to-line cementation. Spatial micro-motions of the specimens were investigated using a validated rotational measuring set-up. In addition, in a second separate step, the specimens were exposed to a ventro-dorsal moment to mimic varus-valgus moment. Statistical analysis was performed using ANOVA with Fisher PLSD.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 421 - 421
1 Nov 2011
Lovell T Hozack W Kreuzer S Merritt P Nogler M Puri L Wuestemann T Bastian A
Full Access

The current decade has seen a marked rise in popularity of minimally invasive hip replacement, done through a variety of surgical approaches. A specific downside to the direct anterior approach includes the significant difficulty getting a “straight shot” down the femoral canal for either straight, nonflexible reaming or broaching as with standard approaches. Improper alignment in the femoral canal can lead to sub-optimal load transfer and thus compromised fixation. The femoral broach and stem insertion path for this approach is best described as a curved one, rather than the typical straight path. Some femoral components appear to be more suitable to this technique due to their geometries. The purpose of the study was to describe the effects that the single geometric parameter, stem length, has on its insertion path into the femoral canal. Due to the potential introduction of human error associated with repetitively performing a specific motion, both a physical study and a computer generated analysis were conducted.

For the physical portion of the study, a femoral implant body of generic fit and fill geometry was designed and manufactured. The length of the stem was varied from 40 mm to 100 mm in 10 mm increments. A medium sized synthetic femur (Sawbones, Pacific Labs, Seattle, WA) was machined to match the volume of the full length stem. The insertion path constraints were defined such that the stem had to maintain the greatest allowable insertion angle while still making contact on both the medial and lateral side of the canal during translation in the X direction. To reduce the variability in applying the constraints, a single author conducted the insertion procedure for each length stem while the path was videotaped from a fixed position directly in front of the setup. The most proximal lateral point of the stem was tracked through the insertion path and the X, Y coordinates were recorded at a frequency of 2 FPS. The area under this curve, referred to as the minimum insertion area (MIA), was calculated.

For the computer generated portion of the study, a CAD model of the standard length Omnifit® (Stryker Orthopaedics) was utilized. The stem was modified to create 5 additional models where the length was progressively shortened to 65%, 55%, 45%, 35%, and 25% of original length or 91mm, 77mm, 63mm, 49mm, and 35mm respectively. The femur was created from a solidified mesh of a computed tomography (CT) scan with the canal virtually broached for a full length stem. The models were each virtually assembled within the femoral canal with the similar constraints as the physical study. Again, the most proximal lateral point of the stem was tracked through the insertion path with the coordinates recorded and the MIA was calculated.

There was a non-linear relationship between stem length and the MIA with the rate of change decreasing as the stem length decreased. That is, the greatest decrease in MIA was between the standard length and next longest length in the computer simulation. It was noted that marked change in MIA began to subside between the 77mm and 63mm stems and continued this trend of having less influence onward through to the shorter lengths. Although the results of the physical study showed a higher variability than the computer generated portion, it does confirm the results of the computer generated study.

Minimizing the trauma associated with THR has led most of the above authors to the direct anterior approach. However, the femoral broach and stem insertion path is best described as a curved one, rather than the typical straight path used in other approaches. This curved insertion path also has benefits for other approaches since the broaches and stem can be kept away from the abductors, minimizing the potential injury to them. Shorter stem length makes this curved insertion path easier to perform. This is the first study to describe the effect that stem length has on its insertion path into the femoral canal. As expected, the physical portion of the study showed more variability than the computer generated portion. However, the physical and computer studies correlated well, with shorter stem lengths clearly allowing a more curved insertion path. The improvement tapered off in stem lengths below 63mm. This length correlates well with the other attempts at a shorter stem. This study provides quantitative data to help with shorter stem design and possible computer navigated insertion paths.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 134 - 134
1 Dec 2013
Nadorf J Graage JD Kretzer JP Jakubowitz E Kinkel S
Full Access

Introduction:

Extensive bone defects of the proximal femur e.g. due to aseptic loosening might require the implantation of megaprostheses. In the literature high loosening rates of such megaprostheses have been reported. However, different fixation methods have been developed to achieve adequate implant stability, which is reflected by differing design characteristics of the commonly used implants. Yet, a biomechanical comparison of these designs has not been reported.

The aim of our study was to analyse potential differences in the biomechanical behaviour of three megaprostheses with different designs by measuring the primary rotational stability in vitro.

Methods:

Four different stem designs [Group A: Megasystem-C® (Link), Group B: MUTARS®(Implantcast), Group C: GMRS™ (Stryker) and Group D: Segmental System (Zimmer); see Fig. 1] were implanted into 16 Sawbones® after generating a segmental AAOS Typ 2 defect.

Using an established method to analyse the rotational stability, a cyclic axial torque of ± 7.0 Nm along the longitudinal stem axis was applied. Micromotions were measured at defined levels of the bone and the implant [Fig. 2]. The calculation of relative micromotions at the bone-implant interface allowed classifying the rotational implant stability.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 272 - 272
1 Dec 2013
Connor E Boucher F Wuestemann T Crawford R
Full Access

Introduction

The Exeter cemented polished tapered stem design was introduced into clinical practice in the early 1970's. [i] Design and cement visco-elastic properties define clinical results [ii]; a recent study by Carrington et al. reported the Exeter stem has 100% survivorship at 7 years. [iii] Exeter stems with offsets 37.5–56 mm have length 150 mm (shoulder to tip). Shorter stems, lengths 95–125 mm, exist in offsets 30–35.5 mm. The Australian National Joint Replacement Registry recently published that at 7 years the shorter stems are performing as well as longer stems on the registry [iv]. Clinical observation indicates in some cases of shorter, narrower femora that fully seating a 150 mm stem's rasp in the canal can be difficult, which may affect procedural efficiency. This study investigates the comparative risk of rasp distal contact for the Exeter 150 mm stem or a 125 mm stem.

Materials and Methods

Rasps for 37.5, 44, 50 mm offset, No.1, 150 mm length stems (Exeter, Stryker Orthopaedics, Mahwah NJ) were compared with shortened length models using SOMA™ (Stryker Orthopaedics Modeling and Analytics technology). 637 patients' CT scanned femora were filtered for appropriate offset and size by measuring femoral-head to femoral-axis distance and midsection cancellous bone width (AP view). These femora were analyzed for distal contact (rasp to cortices) for 150 mm and 125 mm models (Figure 1). The widths of the rasp's distal tip and the cancellous bone boundary were compared to assess contact for each femur in the AP and ML views; the rasp was aligned along an ideal axis and flexed in order to pass through the femoral neck (ML view only).


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 921 - 927
1 Jul 2005
Glyn-Jones S Gill HS Beard DJ McLardy-Smith P Murray DW

Polished, tapered stems are now widely used for cemented total hip replacement and many such designs have been introduced. However, a change in stem geometry may have a profound influence on stability. Stems with a wide, rectangular proximal section may be more stable than those which are narrower proximally. We examined the influence of proximal geometry on stability by comparing the two-year migration of the Exeter stem with a more recent design, the CPS-Plus, which has a wider shoulder and a more rectangular cross-section. The hypothesis was that these design features would increase rotational stability.

Both stems subsided approximately 1 mm relative to the femur during the first two years after implantation. The Exeter stem was found to rotate into valgus (mean 0.2°, sd 0.42°) and internally rotate (mean 1.28°, sd 0.99°). The CPS-Plus showed no significant valgus rotation (mean 0.2°, sd 0.42°) or internal rotation (mean −0.03°, sd 0.75°). A wider, more rectangular cross-section improves rotational stability and may have a better long-term outcome.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 46 - 46
14 Nov 2024
Teixeira SPB Pardo A Taboada P Wolleb M Snedeker J Reis RL Gomes MME Domingues RMA
Full Access

Introduction

PIEZO mechanoreceptors are increasingly recognized to play critical roles in fundamental physiological processes like proprioception, touch, or tendon biomechanics. However, their gating mechanisms and downstream signaling are still not completely understood, mainly due to the lack of effective tools to probe these processes. Here, we developed new tailor-made nanoswitches enabling wireless targeted actuation on PIEZO1 by combining molecular imprinting concepts with magnetic systems.

Method

Two epitopes from functionally relevant domains of PIEZO1 were rationally selected in silico and used as templates for synthesizing molecularly imprinted nanoparticles (MINPs). Highly-responsive superparamagnetic zinc-doped iron oxide nanoparticles were incorporated into MINPs to grant them magnetic responsiveness. Endothelial cells (ECs) and adipose tissue-derived stem cells (ASCs) incubated with each type of MINP were cultured under or without the application of cyclical magnetomechanical stimulation. Downstream effects of PIEZO1 actuation on cell mechanotransduction signaling and stem cell fate were screened by analyzing gene expression profiles.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 49 - 49
1 May 2016
Inaba Y Kobayashi N Oba M Ike H Tezuka T Kubota S Saito T
Full Access

Introduction

Resorptive bone remodeling secondary to stress shielding has been a concern associated with cementless total hip arthroplasty (THA). At present, various types of cementless implants are commercially available. The difference in femoral stem design may affect the degree of postoperative stress shielding. In the present study, we aimed to compare the difference in bone mineral density (BMD) change postoperatively in femurs after the use of 1 of the 3 types of cementless stems.

Methods

Ninety hips of 90 patients who underwent primary cementless THA for the treatment of osteoarthritis were included in this study. A fit-and-fill type stem was used for 28 hips, a tapered-rectangular Zweymüller type stem was used for 32 hips, and a tapered-wedge type stem was used for 30 hips. The male/female ratio of the patients was 7/21 in the fit-and-fill type stem group, 6/26 in the tapered-rectangular Zweymüller type stem group, and 6/24 in the tapered-wedge type stem group. The mean age at surgery was 59.9 (39–80) in the fit-and-fill type stem group, 61.7 (48–84) in the tapered-rectangular Zweymüller type stem group and 59.6 (33–89) in the tapered-wedge type stem group. To assess BMD change after THA, we obtained dual-energy X-ray absorptiometry scans preoperatively and at 6, 12, 24, and 36 months postoperatively.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 18 - 18
23 Jun 2023
Morlock M Melsheimer O
Full Access

The early revision rate in elective Total Hip Arthroplasty (THA) three years after surgery in elderly patients over 80 years is significantly lower for cemented stems in the German Arthroplasty Register (EPRD): cemented 3,1% (3.0 – 3.2) vs. uncemented 4.2% (4.1 – 4.3; p < 0.001). However, the mortality rate in elderly patients is elevated for cemented fixation. This study presents a detailed analysis of the influence of stem type and fixation on revision and mortality rate in this patient cohort. Elective primary THA cases for primary Coxarthrosis using uncemented cups from the EPRD data base were analysed (n. 0. = 37,183). Four stem type groups were compared: cementless, cementless with collar, cementless short, and cemented. Stems with at least 300 cases at risk three years after surgery were analysed individually. The reference stem was determined as the stem with the lowest revision rate and at least 1000 cases under surveillance 3 years after surgery (n. 3. = 28,637). The revision rate for cemented stems (2.5% [2.2–1.81] was lower than for uncemented (4.5% [4.2–4.9]; p<0.001) and uncemented short stems (4.2% [3.1–5.7]; p=0.002). The revision rate of uncemented collared stems (2.3% [1.5–3.6]) was similar to cemented stems (p=0.89) and lower than for uncemented stems (p=0.02). One year mortality showed no sig. differences between the groups (p>0.17): cemented 3.2% [2.9–3.6], uncemented 3.4% [3.1–3.7], uncemented short 3.5% [2.5–4.9], uncemented collar 2.0% [1.2–3.2]. “Cementless” and “cementless short” stems should not be used in patients over 80 years due to the higher revision risk. If cementing should be avoided, “cementless collared” stems seem to be a good alternative combined with a tendency for a lower one year mortality rate


Bone & Joint 360
Vol. 13, Issue 4 | Pages 13 - 16
2 Aug 2024

The August 2024 Hip & Pelvis Roundup. 360. looks at: Understanding perceived leg length discrepancy post-total hip arthroplasty: the role of pelvic obliquity; Influence of femoral stem design on revision rates in total hip arthroplasty; Outcomes of arthroscopic labral treatment of femoroacetabular impingement in adolescents; Characteristics and quality of online searches for direct anterior versus posterior approach for total hip arthroplasty; Rapid return to braking after anterior and posterior approach total hip arthroplasty; How much protection does a collar provide?; Timing matters: reducing infection risk in total hip arthroplasty with corticosteroid injection intervals; Identifying pain recovery patterns in total hip arthroplasty using PROMIS data


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 13 - 13
1 Dec 2022
Reeves J Spangenberg G Elwell J Stewart B Vanasse T Roche C Faber KJ Langohr GD
Full Access

Shoulder arthroplasty humeral stem design has evolved to accommodate patient anatomy characteristics. As a result, stems are available in numerous shapes, coatings, lengths, sizes, and vary by fixation method. This abundance of stem options creates a surgical paradox of choice. Metrics describing stem stability, including a stem's resistance to subsidence and micromotion, are important factors that should influence stem selection, but have yet to be assessed in response to the diametral (i.e., thickness) sizing of short stem humeral implants. Eight paired cadaveric humeri (age = 75±15 years) were reconstructed with surgeon selected ‘standard’ sized short-stemmed humeral implants, as well as 2mm ‘oversized’ implants. Stem sizing conditions were randomized to left and right humeral pairs. Following implantation, an anteroposterior radiograph was taken of each stem and the metaphyseal and diaphyseal fill ratios were quantified. Each humerus was then potted in polymethyl methacrylate bone cement and subjected to 2000 cycles of 90º forward flexion loading. At regular intervals during loading, stem subsidence and micromotion were assessed using a validated system of two optical markers attached to the stem and humeral pot (accuracy of <15µm). The metaphyseal fill ratio did not differ significantly between the oversized and standard stems (0.50±0.06 vs 0.50±0.10; P = 0.997, Power = 0.05); however, the diaphyseal fill ratio did (0.52±0.06 vs 0.45±0.07; P < 0.001, Power = 1.0). Neither fill ratio correlated significantly with stem subsidence or micromotion. Stem subsidence and micromotion were found to plateau following 400 cycles of loading. Oversizing stem thickness prevented implant head-back contact in all but one specimen with the least dense metaphyseal bone, while standard sizing only yielded incomplete head-back contact in the two subjects with the densest bone. Oversized stems subsided significantly less than their standard counterparts (standard: 1.4±0.6mm, oversized: 0.5±0.5mm; P = 0.018, Power = 0.748;), and resulted in slightly more micromotion (standard: 169±59µm, oversized: 187±52µm, P = 0.506, Power = 0.094,). Short stem diametral sizing (i.e., thickness) has an impact on stem subsidence and micromotion following humeral arthroplasty. In both cases, the resulting three-dimensional stem micromotion exceeded, the 150µm limit suggested for bone ingrowth, although that limit was derived from a uniaxial assessment. Though not statistically significant, the increased stem micromotion associated with stem oversizing may in-part be attributed to over-compacting the cancellous bed during broaching, which creates a denser, potentially smoother, interface, though this influence requires further assessment. The findings of the present investigation highlight the importance of proper short stem diametral sizing, as even a relatively small, 2mm, increase can negatively impact the subsidence and micromotion of the stem-bone construct. Future work should focus on developing tools and methods to support surgeons in what is currently a subjective process of stem selection


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 55 - 55
1 Oct 2020
Mahan C Blackburn B Anderson LA Peters CL Pelt CE Gililland JM
Full Access

Introduction. Porous metaphyseal cones are increasingly used for fixation in revision total knee arthroplasty (RTKA). Both cemented shorter length stems and longer diaphyseal engaging stems are currently utilized with metaphyseal cones with no clear evidence of superiority. The purpose of this study was to evaluate our experience with 3D printed titanium metaphyseal cones with both short cemented and longer cementless stems from a clinical and radiographic perspective. Methods. In total 136 3D printed titanium metaphyseal cones were implanted. The mean patient age was 63 and 48% were female. The mean BMI was 33 and the mean ASA class was 2.5. There were 42 femoral cones in which 28 cemented and 14 cementless stems were utilized. There were 94 tibial cones in which 67 cemented and 27 cementless stems were utilized. The choice for stem fixation was surgeon dependent and in general cones were utilized for AORI type 2 and 3 bone defects on the femur and tibia. The most common fixation scenario was short cemented stems on both the femur and tibia followed by cemented stem fixation on the tibia and cementless fixation on the femur. Clinical data such as revision, complication, and PRO was collected at last follow-up (minimum follow-up 1 year). Radiographic analysis included cone bony ingrowth and coronal and sagittal alignment on long-standing radiographs. Descriptive statistics were used to compare demographics between patients who had malalignment (HKA beyond +/− 3 degrees and flexion/extension beyond +/− 3 degrees). Adjusted logistic regression models were run to assess malalignment risk by stem type. Results. Patient reported outcomes demonstrated modest improvements with Pre-op KOOS improving from 44 pre-op to 59 post -op and PF-CAT improving from 33 to 37 post-op. PROMIS pain scores decreased significantly from 54 to 44 post-op. 36% of patients had malalignment in either the coronal or sagittal plane. Patients with malalignment were more likely to be female (66.7% vs 40.4%, p-value=0.02). After adjusting for age, sex and BMI, there was a significantly increased risk for coronal plane malalignment when both the femur and tibia had cementless compared to cemented stems (odds ratio=5.54, 95%CI=1.15, 26.80). There was no significantly increased risk when comparing patients with mixed stems to patients with cemented stems. Sagittal plane malalignment was more common with short cemented stems although both coronal plane and sagittal plane malalignment with either stem type was not associated with inferior clinical outcome. Overall cone survivorship was excellent with only two cones removed for infection. Conclusion. Metaphyseal titanium cones provide reliable fixation in revision TKA. However, PROs in this complex patient population show only modest improvement consistent with other variables such as co-morbidities and poor baseline physical function. Small cone inner diameter may adversely influence cementless stem position leading to coronal plane malalignment. Short cemented stems are subject to greater sagittal plane malalignment with no apparent influence on clinical outcome


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 1 - 1
1 Nov 2018
Docheva D
Full Access

Tendon and ligament tissues are fascinating in their simplistic appearance of tissue architecture coupled with outstanding biomechanical properties. In the last decade, the mechanisms governing their development, degenerative disease progression and step-wise repair process are becoming better understood. In this talk, I will present an overview of our basic research work on these following points. (i) Tendon generation: I will discuss our finding on the role of growth and biomechanical factors influencing tendon stem/progenitor cells; (ii) Tendon degeneration: I will provide evidences how disturbed cell-cell and cell-matrix contacts are involved in loss of tissue integrity; (iii) Tendon regeneration: I will present in vivo data on the application and performance of various cell populations in tendon repair


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 28 - 28
1 May 2019
Pryce G Al-Hajjar M Wilcox R Thompson J Board T Williams S
Full Access

Impingement of total hip replacements (THRs) can cause rim damage of polyethylene liners, and lead to dislocation and/or mechanical failure of liner locking mechanisms[1]. Previous work has focussed on the influence of femoral neck profile on impingement without consideration of neck-shaft angle. This study assessed the occurrence of impingement with two different stem designs (Corail standard [135°] and coxa vara [125°]) under different activities with varying acetabular cup orientation (30° to 70° inclination; 0° to 50° anteversion) using a geometric modelling tool. The tool was created in a computer aided design software programme, and incorporated an individual's hemi-pelvis and femur geometry[3] with a THR (DePuy Synthes Pinnacle. ®. shell and neutral liner; size 12 Corail. ®. standard or coxa vara and 32mm head). Kinematic data of activities associated with dislocation[2], such as stooping to pick an object from the floor was applied and incidences of impingement were recorded. Predicted implant impingement was influenced by stem design. The coxa vara stem was predicted to cause implant impingement less frequently across the range of activities and cup orientations investigated, compared to the standard stem [Fig. 1]. The cup orientations predicted to cause impingement the least frequently were at lower inclination and anteversion angles, relative to the standard stem [Fig. 1]. The coxa vara stem included a collar, while the standard stem was collarless; additional analysis indicated that differences were due to neck angle and not the presence of a collar. This study demonstrated that stem neck-shaft angle is an important variable in prosthetic impingement in THR and surgeons should be aware of this when choosing implants. Future work will consider further implant design and bone geometry variables. This tool has the potential for use in optimising stem design and position and could assist with patient specific stem selection based on an individual's activity profile. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 11 - 11
1 Sep 2012
Mehmood S Gill H Murray D Glyn-Jones S
Full Access

Introduction. Stem geometry is known to influence the outcome in THA; however it is unknown whether the material properties, stiffness in particular can influence the stem stability and outcome. The aim of this study was to measure the influence of stem material properties on micromotion and migration using Roentgen Stereophotogrammetric Analysis (RSA) system. Methods. 41 patients were implanted with a collarless polished tapered (CPT) femoral stem (Zimmer, Warsaw, Indiana), which was made of either cobalt-chromium (CoCr) (n=21) or stainless steel (n=20). RSA was used to measure dynamically inducible micromotion (DIMM: difference in stem position in going from double-leg stance (DLS) to single leg stance (SLS)), prosthesis bending (difference in the head-tip distance when going from DLS to SLS), and mean migration of the head, tip and the cement restrictor. DIMM and bending were measured at 3 months, migration at 6, 12 and 24 months. All analyses were carried out using SPSS for windows (v.15.0.0, Chicago. IL, USA). Results were reported as mean ± 95% confidence interval (CI) and regarded as significant when p < 0.05. Results. Preliminary analysis showed that DIMM of head was significantly (p = 0.02) greater for CoCr (0.97mm ± 0.6mm) than stainless steel (0.27mm ± 0.6mm). The mean stem bending for CoCr was 0.08mm (± 0.06mm) and for stainless steel 0.15mm (± 0.06mm) (p =0.77). Both implants heads migrated posteriorly, medially and distally. The mean subsidence for the cobalt-chromium and stainless steel stems was 1.02mm (±0.19mm) (p < 0.001) and 1.12mm (± 0.34mm) (p=0.001) (p= 0.07) at 24 months. Conclusion. Dynamically induced micromotion was greater for the stiffer stem, however there were no differences in terms of over all migration, indicating that survival (in terms of loosening) should be the similar for both stainless steel and CoCr versions of this implant


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIV | Pages 24 - 24
1 Jul 2012
Mehmood S Gill H Murray D Glyn-Jones S
Full Access

Stem geometry is known to influence the outcome in THA; however it is unknown whether the material properties, stiffness in particular can influence the stem stability and outcome. The aim of this study was to measure the influence of stem material properties on micromotion and migration using Roentgen Stereophotogrammetric Analysis (RSA) system. 41 patients were implanted with a collarless polished tapered (CPT) femoral stem (Zimmer, Warsaw, Indiana), which was made of either cobalt-chromium (CoCr) (n=21) or stainless steel (n=20). RSA was used to measure dynamically inducible micromotion (DIMM: difference in stem position in going from double-leg stance (DLS) to single leg stance (SLS)), prosthesis bending (difference in the head-tip distance when going from DLS to SLS), and mean migration of the head, tip and the cement restrictor. DIMM and bending were measured at 3 months, migration at 6, 12 and 24 months. All analyses were carried out using SPSS for windows (v.15.0.0, Chicago. IL, USA). Results were reported as mean ± 95% confidence interval (CI) and regarded as significant when p < 0.05. Preliminary analysis showed that total head DIMM was significantly (p = 0.02) greater for CoCr (0.97mm ± 0.6mm) than stainless steel (0.27mm ± 0.6mm). The mean stem bending for CoCr was 0.08mm (± 0.06mm) and for stainless steel 0.15mm (± 0.06mm) (p =0.77). Both implants heads migrated posteriorly, medially and distally. The mean subsidence for the cobalt-chromium and stainless steel stems was 1.02mm (± 0.19mm) (p < 0.001) and 1.12mm (± 0.34mm) (p=0.001) (p= 0.07) at 24 months. It was interesting to note that the dynamically induced micromotion was greater for the stiffer stem, however there were no differences in terms of overall migration, indicating that survival (in terms of loosening) should be the similar for both steel and CoCr versions of this implant


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 515 - 515
1 May 2024
Kayani B D. Luo T S. Haddad F


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 130 - 136
1 Mar 2024
Morlock M Perka C Melsheimer O Kirschbaum SM

Aims

Despite higher rates of revision after total hip arthroplasty (THA) being reported for uncemented stems in patients aged > 75 years, they are frequently used in this age group. Increased mortality after cemented fixation is often used as a justification, but recent data do not confirm this association. The aim of this study was to investigate the influence of the design of the stem and the type of fixation on the rate of revision and immediate postoperative mortality, focusing on the age and sex of the patients.

Methods

A total of 333,144 patients with primary osteoarthritis (OA) of the hip who underwent elective THA between November 2012 and September 2022, using uncemented acetabular components without reconstruction shells, from the German arthroplasty registry were included in the study. The revision rates three years postoperatively for four types of stem (uncemented, uncemented with collar, uncemented short, and cemented) were compared within four age groups: < 60 years (Young), between 61 and 70 years (Mid-I), between 71 and 80 years (Mid-II), and aged > 80 years (Old). A noninferiority analysis was performed on the most frequently used designs of stem.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 509 - 509
1 Sep 2012
Thomas G Hossain M Monk A Gill H Glyn-Jones S Andrew J Murray D Beard D Epos Group N
Full Access

Introduction. Malalignment of some designs of stem is associated with an increased risk of aseptic loosening and revision. We investigated whether the alignment of the cemented polished, double-taper design adversely affected outcome, in a multicentre prospective study. Methods. A multicentre prospective study of 1189 total hip replacements was undertaken to investigate whether there is an association between surgical outcome and femoral stem alignment. All patients underwent a primary THR with the Exeter femoral stem (Stryker Howmedica Osteonics, Mahwah, NJ) and a variety of acetabular components. The primary outcome measure was the Oxford hip score (OHS) and change in OHS at five years. Secondary outcomes included rate of dislocation and revision. Radiographic evaluation of the femoral component was also undertaken. The long axis of the Exeter femoral component and the long axis of the femoral canal were located, and the angle at the point of intersection measured. The cementing quality was determined as defined by Barrack et al. Radiolucent lines at the cement-stem and cement-bone interface in the five year radiographs were defined using the zones described by Gruen et al. Subsidence was measured as the vertical dimension of the radiolucency craniolateral to the shoulder of the stem in Gruen zone 1 as described by Fowler et al. Cement fractures were recorded. Results. The incidence of varus (>5 ° to the femoral axis), and valgus (>5 °) malignment were 3.7% and 0.8% respectively. Pre-operative demographics and OHS were similar in all groups (p > 0.4). There was no significant difference in OHS or change in OHS between neutral and malaligned groups at 5 years (neutral, mean=40.1, change=23.1; varus, mean=40.1, change=23.7; valgus, mean=42.0, change=26.6; p=0.46 and p=0.45 respectively). There was no significant difference in dislocation rate between the groups (p=0.66). There was also no significant difference in revision rate (p=0.34). There were no statistically significant differences in the incidence of femoral radiolucency, stem subsidence or cement fracture (p > 0.1). Conclusion. This study provides evidence that both varus and valgus implantation does not compromise the short to medium term clinical results of the cemented, polished, double-taper stems. Longer follow-up is required to establish the influence of stem alignment on the incidence of aseptic loosening and revision