There have been many attempts to reduce the risk of femoral component loosening. Using a tapered stem having a highly polished stem surface results in stem stabilization subsequent to debonding and stem-cement taper-lock and is consistent with force-closed fixation design. In this study, we assessed the subsidence of two different polished triple tapered stems and two different cements in primary THA.Introduction
Purpose
Excellent long-term survival rates associated with the absence of stem subsidence have been achieved with total hip arthroplasty (THA) using femoral components cemented line-to-line (“French Paradox”). Recently, short stems have been introduced in order to preserve diaphyseal bone and to accommodate to minimal invasive THA and a variety of clinical situations. The aim of the current study was to quantify the rotational and tilting stability of a Kerboull stem of varying length after line-to-line cementation using a validated in-vitro model. The femoral component made of M30NW stainless steel was derived from the original Kerboull stem. It had a double taper, a highly polished surface, and a quadrangular cross-section. Four stem lengths were designed from the original length with a distal reduction of 6, 12, 17 and 22%, whereas the proximal body geometry of the implant remained unaffected. For each stem length, five specimens were implanted into a non-canal synthetic femoral model. The femoral preparation was performed in order to obtain rotational and tilting stability of the stem prior to the line-to-line cementation. Spatial micro-motions of the specimens were investigated using a validated rotational measuring set-up. In addition, in a second separate step, the specimens were exposed to a ventro-dorsal moment to mimic varus-valgus moment. Statistical analysis was performed using ANOVA with Fisher PLSD.Introduction
Materials & methods
Extensive bone defects of the proximal femur e.g. due to aseptic loosening might require the implantation of megaprostheses. In the literature high loosening rates of such megaprostheses have been reported. However, different fixation methods have been developed to achieve adequate implant stability, which is reflected by differing design characteristics of the commonly used implants. Yet, a biomechanical comparison of these designs has not been reported. The aim of our study was to analyse potential differences in the biomechanical behaviour of three megaprostheses with different designs by measuring the primary rotational stability in vitro. Four different stem designs [Group A: Megasystem-C® (Link), Group B: MUTARS®(Implantcast), Group C: GMRS™ (Stryker) and Group D: Segmental System (Zimmer); see Fig. 1] were implanted into 16 Sawbones® after generating a segmental AAOS Typ 2 defect. Using an established method to analyse the rotational stability, a cyclic axial torque of ± 7.0 Nm along the longitudinal stem axis was applied. Micromotions were measured at defined levels of the bone and the implant [Fig. 2]. The calculation of relative micromotions at the bone-implant interface allowed classifying the rotational implant stability.Introduction:
Methods:
The Exeter cemented polished tapered stem design was introduced into clinical practice in the early 1970's. [i] Design and cement visco-elastic properties define clinical results [ii]; a recent study by Carrington et al. reported the Exeter stem has 100% survivorship at 7 years. [iii] Exeter stems with offsets 37.5–56 mm have length 150 mm (shoulder to tip). Shorter stems, lengths 95–125 mm, exist in offsets 30–35.5 mm. The Australian National Joint Replacement Registry recently published that at 7 years the shorter stems are performing as well as longer stems on the registry [iv]. Clinical observation indicates in some cases of shorter, narrower femora that fully seating a 150 mm stem's rasp in the canal can be difficult, which may affect procedural efficiency. This study investigates the comparative risk of rasp distal contact for the Exeter 150 mm stem or a 125 mm stem. Rasps for 37.5, 44, 50 mm offset, No.1, 150 mm length stems (Exeter, Stryker Orthopaedics, Mahwah NJ) were compared with shortened length models using SOMA™ (Stryker Orthopaedics Modeling and Analytics technology). 637 patients' CT scanned femora were filtered for appropriate offset and size by measuring femoral-head to femoral-axis distance and midsection cancellous bone width (AP view). These femora were analyzed for distal contact (rasp to cortices) for 150 mm and 125 mm models (Figure 1). The widths of the rasp's distal tip and the cancellous bone boundary were compared to assess contact for each femur in the AP and ML views; the rasp was aligned along an ideal axis and flexed in order to pass through the femoral neck (ML view only).Introduction
Materials and Methods
Resorptive bone remodeling secondary to stress shielding has been a concern associated with cementless total hip arthroplasty (THA). At present, various types of cementless implants are commercially available. The difference in femoral stem design may affect the degree of postoperative stress shielding. In the present study, we aimed to compare the difference in bone mineral density (BMD) change postoperatively in femurs after the use of 1 of the 3 types of cementless stems. Ninety hips of 90 patients who underwent primary cementless THA for the treatment of osteoarthritis were included in this study. A fit-and-fill type stem was used for 28 hips, a tapered-rectangular Zweymüller type stem was used for 32 hips, and a tapered-wedge type stem was used for 30 hips. The male/female ratio of the patients was 7/21 in the fit-and-fill type stem group, 6/26 in the tapered-rectangular Zweymüller type stem group, and 6/24 in the tapered-wedge type stem group. The mean age at surgery was 59.9 (39–80) in the fit-and-fill type stem group, 61.7 (48–84) in the tapered-rectangular Zweymüller type stem group and 59.6 (33–89) in the tapered-wedge type stem group. To assess BMD change after THA, we obtained dual-energy X-ray absorptiometry scans preoperatively and at 6, 12, 24, and 36 months postoperatively.Introduction
Methods
Shoulder arthroplasty humeral stem design has evolved to accommodate patient anatomy characteristics. As a result, stems are available in numerous shapes, coatings, lengths, sizes, and vary by fixation method. This abundance of stem options creates a surgical paradox of choice. Metrics describing stem stability, including a stem's resistance to subsidence and micromotion, are important factors that should
Introduction. Stem geometry is known to influence the outcome in THA; however it is unknown whether the material properties, stiffness in particular can
Stem geometry is known to influence the outcome in THA; however it is unknown whether the material properties, stiffness in particular can
Patients, and their femurs, come in all shapes, sizes, and types. Fortunately, so do cementless femoral stems! A simple approach is to separately consider A) the part inside the bone and B) the part outside the bone. The inner-cortical geometry (Dorr type), bone density, and presence of any deformity,
Background. Impaction bone grafting (IBG) using a circumferential metal mesh is one of the options that allow restoration of the femoral bone stock and stability of the implant in hip arthroplasty. Here we examined the clinical and radiographic outcome of this procedure with a cemented stem and analyzed experimentally the initial stability of mesh–grafted bone–cemented stem complexes. Methods. We retrospectively reviewed 6 hips (6 patients) that had undergone femoral revisions with a circumferential metal mesh, impacted bone allografts, and a cemented stem. The mean follow-up period was 2.9 years (range, 1.4–3.8 years). Hip joint function was evaluated with the Japanese Orthopaedic Association hip score, and radiographic changes were determined from radiographs. The initial resistance of cemented stem complexes to axial and rotational force was measured in a composite bone model with various segmental losses of the proximal femur. Results. The hip score improved from 50 (range, 10–84) preoperatively to a mean of 74 (range, 67–88) at the final follow-up. The overall implant survival rate was 100% at 4 years when radiological loosening or revision for any reason was used as the endpoint. No stem subsided more than 3 mm vertically within 1 year after implantation. Computed tomography showed reconstitution of the femoral canal in a metal mesh. In mechanical analyses, there was no
INTRODUCTION. Modular knee implants are used to manage large bone defects in revision total knee arthroplasty. These implants are confronted with varying fixation characteristics, changes in load transfer or stiffen the bone. In spite of their current clinical use, the influence of modularity on the biomechanical implant-bone behavior (e.g. implant fixation, flexibility, etc.) still is inadequately investigated. Aim of this study is to analyze, if the modularity of a tibial implant could change the biomechanical implant fixation behavior and the implant-bone flexibility. MATERIAL & METHODS. Nine different stem and sleeve combinations of the clinically used tibial revision system Sigma TC3 (DePuy) were compared, each implanted standardized with n=4 in a total of 36 synthetic tibial bones. Four additional un-implanted bones served as reference. Two different cyclic load situations were applied on the implant: 1. Axial torque of ±7Nm around the longitudinal stem axis to determine the rotational implant stability. 2. Varus-valgus-torque of ±3,5Nm to determine the bending behavior of the stem. A high precision optical 3D measurement system allowed simultaneous measuring of spatial micromotions of implant and bone. Based on these micromotions, relative motions at the implant-bone-interface and implant flexibility could be calculated. RESULTS. Lowest relative micromotions were measured along the tibial base component and the sleeve; however, these motions varied depending on the implant construct used. Maximum relative micromotions were detected at the distal end of the implant for all groups, indicating a more proximal fixation of all modular combinations. Regarding varus-valgus-torque measurement, all groups showed a deviant flexibility behavior compared to the reference group. When referred to the un-implanted bone, implants without stems revealed the highest flexibility, whereas implants with shorter stems had lowest flexibility. DISCUSSION & CONCLUSION. All groups showed a more proximal fixation behavior; moreover, both extent and location of fixation could be influenced by varying the modular combination. Larger stems seemed to support a more distal fixation behavior, whereas the implant fixation moved proximal while extending the sleeve. Here the influence of the sleeve on fixation behavior seemed to be dominant compared to the
Introduction. Recent implant design trends have renewed concerns regarding metal wear debris release from modular connections in THA. Previous studies regarding modular head-neck taper corrosion were largely based on cobalt chrome (CoCr) alloy femoral heads. Comparatively little is known about head-neck taper corrosion with ceramic femoral heads or about how taper angle clearance influences taper corrosion. This study addressed the following research questions: 1) Could ceramic heads mitigate electrochemical processes of taper corrosion compared to CoCr heads? 2) Which factors
Purpose. CentPillar GB HA stem (stryker®) is developed as the stem fitting the Japanese femur, and now there is CentPillar TMZF HA stem (stryker®) as the improvement type of the stem by coating the PureFix HA with plasma spray. We observed the factors which