Advertisement for orthosearch.org.uk
Results 1 - 20 of 57
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 20 - 20
7 Jun 2023
Navacchia A Pagkalos J Davis E
Full Access

We have previously reported on the improved all-cause revision and improved revision for instability risk in lipped liner THAs using the NJR dataset. These findings corroborate studies from the Australian (AOANJRR) and New Zealand (NZOA) joint registries. The optimal orientation of the lip in THAs utilising a lipped liner remains unclear to many surgeons. The aim of this study was to identify impingement-free optimal liner orientations whilst considering femoral stem version, cup inclination and cup version. A cementless THA kinematic model was developed using a 20 degree XLPE liner. Physiological ROM and provocative dislocation manoeuvre analyses were performed. A total of 9 cup positions were analysed (inclination 30–40–50 degrees, anteversion 5-15-25 degrees) and combined with 3 stem positions (anteversion 0-15-30 degrees) and 5 lip orientations (right hip 11 to 7 o'clock). Some lip orientation/component position combinations lead to impingement within the physiological ROM range. Using a lipped liner increases the femoral head travel distance prior to dislocation when impingement occurs in the plane of the lip. In THAs with a cup inclination of 30 and 40 degrees, inferior lip orientations (7–8 o'clock for a right hip) performed best. Superior lip orientation performed best with a cup inclination of 50 degrees. Femoral stem version has a significant effect on the range of movement prior to impingement and hence the preferred lip orientation. The optimal orientation of the lip in lipped liner THA is dependent on the position of both the acetabular and femoral components. In the common component orientation combination of stem anteversion 15, cup inclination 40 and cup anteversion 15, the optimal lip orientation was postero-inferiorly (8 o'clock for a right hip). Preventing impingement during physiological ROM is possible with appropriate lip liner orientation


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 56 - 56
1 Oct 2019
Barnes CL Severin AC Tackett SA Mannen E
Full Access

Introduction. Golf is a recommended form of physical activity for older adults. However, clinicians have no evidence-based research regarding the demands on the hips of older adults during golf. The purpose of our in vivoobservational study was to quantify the hip biomechanics of older adult golfers. Methods. Seventeen healthy older male golfers(62.2±8.8 years, handicap 8.7±4.9) free from orthopaedic injuries and surgeries volunteered for participation in this IRB-approved study. A 10-camera motion capture system recorded kinematics, and two force plates collected kinetic data. Participants performed eight shots using their own driver. Data processing was performed in Visual3D. The overall range of excursion and three-dimensional net joint moments normalized to body weight for the lead and trail hips were extracted. Results. Kinematics (mean excursion and range) of lead and trail hips in all three planes during a golf swing are presented in Table 1. The trail leg experiences higher excursion in the sagittal plane, while the lead leg has more frontal plane movement. Average maximum net joint moments of the lead and trail hips were 1.2 ± 0.2 and 1.7 ± 0.3 Nm/kg, respectively. Conclusion. Our study is the first to quantify the kinematics and kinetics of the hip joint in healthy older male golfers. While the golf swing is often considered to be a predominant transverse plane motion, our results indicate considerable excursion at the hip joints in all three planes. Furthermore, the trail leg experiences 40% greater loading than the lead leg throughout the swing, suggesting that the trail leg may have a larger impact on golf performance while also leaving it more susceptible to overuse injury. For clinicians with patients who experience osteoarthritis of the hip or who have recently undergone hip surgery, this study may provide novel insight into the demands of golf on the hips. For any tables or figures, please contact the authors directly


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims. The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. Methods. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock). Results. The position of the lip changes the ROM prior to impingement, with certain combinations leading to impingement within the physiological ROM. Inferior lip positions (7 to 8 o’clock) performed best with cup inclinations of 30° and 40°. Superior lip positions performed best with cup inclination of 50°. When impingement occurs in the plane of the lip, the lip increases the travel distance prior to dislocation. Inferior lip positions led to the largest increase in jump distance in a posterior dislocation provocation manoeuvre. Conclusion. The lip orientation that provides optimal physiological ROM depends on the orientation of the cup and stem. For a THA with stem anteversion 15°, cup inclination 40°, and cup anteversion 15°, the optimal lip position was posterior-inferior (8 o’clock). Maximizing jump distance prior to dislocation while preventing impingement in the opposite direction is possible with appropriate lip positioning. Cite this article: Bone Joint Res 2023;12(9):571–579


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 82 - 82
23 Jun 2023
Halvorson RT Khattab K Ngwe H Ornowski J Akkaya Z Matthew RP Souza R Bird A Lotz J Vail TP Bailey JF
Full Access

Patients demonstrate distinct trajectories of recovery after THA. The purpose of this study was to assess the impact of adjacent muscle quality on postoperative hip kinematics. We hypothesized that patients with better adjacent muscle quality (less fatty infiltration) would have greater early biomechanical improvement. Adults undergoing primary THA were recruited. Preoperative MRI was obtained and evaluated via Scoring Hip Osteoarthritis with MRI Scores (SHOMRI, Lee, 2015). Muscle quality was assessed by measuring fat fraction [FF] from water-fat sequences. Biomechanics were assessed preoperatively and six weeks postoperatively during a staggered stance sit-to-stand using the Kinematic Deviation Index (KDI, Halvorson, 2022). Spearman's rho was used to assess correlations between muscle quality and function. Ten adults (5M, 5F) were recruited (average age: 60.1, BMI: 23.79, SHOMRI: 40.6, KDI: 2.96). Nine underwent a direct anterior approach and one a posterior approach. Preoperatively, better biomechanical function was very strongly correlated with lower medius FF (rho=0.89), strongly correlated with lower FF in the minimus (rho=0.75) and tensor fascia lata (TFL) FF (rho=0.70), and weakly correlated with SHOMRI (rho=0.29). At six weeks, greater biomechanical improvement was strongly correlated with lower minimus FF (rho=0.63), moderately correlated with medius FF (rho=0.59), and weakly correlated with TFL FF (rho=0.26) and SHOMRI (rho=0.39). Lastly, medius FF was moderately correlated with SHOMRI (rho=0.42) with negligible correlations between SHOMRI and FF in the minimus and TFL. These findings suggest adjacent muscle quality may be related to postoperative function following THA, explaining some of the variability and supporting specialized muscle rehabilitation or regeneration therapy to improve outcomes


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_6 | Pages 15 - 15
2 May 2024
Williams S Smeeton M Isaac G Anderson J Wilcox R Board T Williams S
Full Access

Dual Mobility (DM) Total Hip Replacements (THRs), are becoming widely used but function in-vivo is not fully understood. The aim of this study was to compare the incidence of impingement of a modular dual mobility with that of a standard cup. A geometrical model of one subject's bony anatomy \[1\] was developed, a THR was implanted with the cup at a range of inclination and anteversion positions (Corail® stem, Pinnacle® cup (DePuy Synthes)). Two DM variants and one STD acetabular cup were modelled. Joint motions were taken from kinematic data of activities of daily living associated with dislocation \[2\] and walking. The occurrence of impingement was assessed for each component combination, orientation and activity. Implant-implant impingement can occur between the femoral neck and the metal or PE liner (DM or STD constructs respectively) or neck-PE mobile liner (DM only). The results comprise a colour coded matrix which sums the number of impingement events for each cup position and activity and for each implant variant. Neck-PE mobile liner impingement, occurred for both DM sizes, for all activities, and most cup placement positions indicating that the PE mobile liner is likely to move at the start of all activities including walking. For all constructs no placement positions avoided neck-metal (DM) or neck-PE liner (STD) impingementevents in all activities. The least number of events occurred at higher inclination and anteversion component positions. In addition to implant-implant impingement, some instances of bone-bone and implant-bone impingement were also observed. Consistent with DM philosophy, neck-PE mobile liner impingement and liner motion occurred for all activities including walking. Neck-liner impingement frequency was comparable between both DM sizes (metal liner) and a standard cup (PE liner)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 41 - 41
19 Aug 2024
Cobb J Maslivec A Clarke S Halewood C Wozencroft R
Full Access

A ceramic-on-ceramic hip resurfacing implant (cHRA) was developed and introduced in an MHRA-approved clinical investigation to provide a non metallic alternative hip resurfacing product. This study aimed to examine function and physical activity levels of patients with a cHRA implant using subjective and objective measures both before and 12 months following surgery in comparison with age and gender matched healthy controls. Eighty-two unilateral cHRA patients consented to this study as part of a larger prospective, non-randomised, clinical investigation. In addition to their patient reported outcome measures (PROMs), self- reported measures of physical activity levels and gait analysis were undertaken both pre- operatively (1.5 weeks) and post operatively (52 weeks). This data was then compared to data from a group of 43 age gender and BMI matched group of healthy controls. Kinetics and kinematics were recorded using an instrumented treadmill and 3D Motion Capture. Statistical parametric mapping was used for analysis. cHRA improved the median Harris Hip Score from 63 to 100, Oxford Hip score from 27 to 48 and the MET from 5.7 to 10.3. cHRA improved top walking speed (5.75km vs 7.27km/hr), achieved a more symmetrical ground reaction force profile, (Symmetry Index value: 10.6% vs 0.9%) and increased hip range of motion (ROM) (31.7° vs 45.9°). Postoperative data was not statistically distinguishable from the healthy controls in any domain. This gait study sought to document the function of a novel ceramic hip resurfacing, using those features of gait commonly used to describe the shortcomings of hip arthroplasty. These features were captured before and 12 months following surgery. Preoperatively the gait patterns were typical for OA patients, while at 1 year postoperatively, this selected group of patients had gait patterns that were hard to distinguish from healthy controls despite an extended posterior approach. Applications for regulatory approval have been submitted


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_4 | Pages 9 - 9
1 Apr 2022
Williams S Pryce G Board T Isaac G Williams S
Full Access

The 10 year survivorship of THR is generally over 95%. However, the incidence of revision is usually higher in year one. The most common reason being dislocation which at least in part is driven by inadequate range of motion (ROM) leading to impingement, subluxation and ultimately dislocation which is more frequently posterior. ROM is affected by patient activity, bone and component geometry, and component placement. To reduce the incidence of dislocation, supported by registry data, there has been an increase in the use of so-called ‘lipped’ liners. Whilst this increases joint stability, the theoretical ROM is reduced. The aim of this study was to investigate the effect of lip placement on impingement. A rigid body geometric model was incorporated into a CT scan hemi-pelvis and femur, with a clinically available THR virtually implanted. Kinematic activity data associated with dislocation was applied, comprising of five posterior and two anterior dislocation risk activities, resulting from anterior and posterior impingement respectively. Cup inclination and anteversion was varied (30°-70°, 0°-50° respectively) to simulate extremes of clinical outcomes. The apex position of a ‘lipped’ liner was rotated from the superior position, anteriorly and posteriorly in steps of 45°. Incidence and location of implant and bone impingement was recorded in 5346 cases generated. A liner with the lip placed superior increased the occurrence of implant-implant impingement compared with a neutral liner. Rotation of the lip from superior reduced this incidence. This effect was more marked with posterior rotation which after 90° reduced anterior impingement to levels similar to a neutral liner. Complete inversion of the lipped liner reduced impingement, but this and anterior rotation both negate its function – additional stability. This study comprises one bone geometry and component design and one set of activity profiles. Nevertheless, it indicates that appropriate lip placement can minimise the likelihood of impingement for a range of daily activities whilst still providing additional joint stability


Bone & Joint Open
Vol. 4, Issue 1 | Pages 3 - 12
4 Jan 2023
Hardwick-Morris M Twiggs J Miles B Al-Dirini RMA Taylor M Balakumar J Walter WL

Aims

Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation.

Methods

This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC).


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 792 - 801
1 Aug 2024
Kleeman-Forsthuber L Kurkis G Madurawe C Jones T Plaskos C Pierrepont JW Dennis DA

Aims

Spinopelvic pathology increases the risk for instability following total hip arthroplasty (THA), yet few studies have evaluated how pathology varies with age or sex. The aims of this study were: 1) to report differences in spinopelvic parameters with advancing age and between the sexes; and 2) to determine variation in the prevalence of THA instability risk factors with advancing age.

Methods

A multicentre database with preoperative imaging for 15,830 THA patients was reviewed. Spinopelvic parameter measurements were made by experienced engineers, including anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), sacral slope (SS), lumbar lordosis (LL), and pelvic incidence (PI). Lumbar flexion (LF), sagittal spinal deformity, and hip user index (HUI) were calculated using parameter measurements.


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 19 - 27
1 Jan 2024
Tang H Guo S Ma Z Wang S Zhou Y

Aims

The aim of this study was to evaluate the reliability and validity of a patient-specific algorithm which we developed for predicting changes in sagittal pelvic tilt after total hip arthroplasty (THA).

Methods

This retrospective study included 143 patients who underwent 171 THAs between April 2019 and October 2020 and had full-body lateral radiographs preoperatively and at one year postoperatively. We measured the pelvic incidence (PI), the sagittal vertical axis (SVA), pelvic tilt, sacral slope (SS), lumbar lordosis (LL), and thoracic kyphosis to classify patients into types A, B1, B2, B3, and C. The change of pelvic tilt was predicted according to the normal range of SVA (0 mm to 50 mm) for types A, B1, B2, and B3, and based on the absolute value of one-third of the PI-LL mismatch for type C patients. The reliability of the classification of the patients and the prediction of the change of pelvic tilt were assessed using kappa values and intraclass correlation coefficients (ICCs), respectively. Validity was assessed using the overall mean error and mean absolute error (MAE) for the prediction of the change of pelvic tilt.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims

Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients.

Methods

A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_10 | Pages 12 - 12
1 Oct 2020
Lamontagne M Catelli DS Cotter B Mazuchi FAS Grammatopoulos G
Full Access

Introduction. Spinopelvic mobility has been associated with THA outcome. To-date spine assessments have been made quasi-statically, using radiographs, in standing and seated positions but dynamic spinopelvic mobility has not been well explored. This study aims to determine the association between dynamic (motion analysis) and quasi-static (radiographic) sagittal assessments and examine the association between axial and sagittal spinal kinematics in hip OA patients and controls. Methods. This is a prospective, IRB approved, cohort study of 12 patients with hip OA pre-THA (6F/6M, 67±10 years) and six healthy controls (3F/3M, 46±18 years). All underwent lateral spinopelvic radiographs in standing and seated bend-and-reach (SBR) positions. Pelvic tilt (PT), pelvic-femoral-angle (PFA) and lumbar lordosis (LL) angles were measured in both positions and the differences (Δ) in angles between SBR and standing were computed. All participants performed two dynamic tasks at the motion laboratory: seated maximal trunk rotation (STR) and seated bend and reach (SBR). Three-dimensional joint motion data were collected and processed by a 10-camera infrared motion analysis system (Vicon, Nexus 2.10, UK). Total axial and sagittal spine (mid-thoracic to lumbar) range of motion (ROM) were calculated for STR and SBR, respectively. Results. ΔLL for SBR and motion analysis spinal flexion for SBR moderately correlated (ρ=0.4, p=0.007). Dynamic spinal rotation and flexion significantly, strongly, correlated (ρ=0.6 p=0.007). OA patients compared to healthy participants showed significant less ΔPFA (53°±21° vs. 77°±14°; p<0.001); ΔPT (−17°±8° vs. 9°±15°; p<0.001), ΔLL (35°±15° vs. 43° ±9°; p<0.001), axial spinal rotation during STR (62° ±12°vs. 79° ±8°, p<.001) and less, but not significant, spine flexion during SBR (36° ±15° vs. 44° ±10°, P=.1). Conclusion. Dynamic sagittal and axial spinal ROM showed moderately correlated. Motion analysis can provide valid assessments for spine mobility. OA patients compared to healthy participants showed significant less ΔPFA, ΔPT, ΔLL, axial spinal rotation during STR. Surgeons should be aware that patients with less spine mobility that could affect the stability of THA and increase the risk of poor outcomes


The Bone & Joint Journal
Vol. 99-B, Issue 4_Supple_B | Pages 41 - 48
1 Apr 2017
Fernquest S Arnold C Palmer A Broomfield J Denton J Taylor A Glyn-Jones S

Aims. The aim of this study was to examine the real time in vivo kinematics of the hip in patients with cam-type femoroacetabular impingement (FAI). Patients and Methods. A total of 50 patients (83 hips) underwent 4D dynamic CT scanning of the hip, producing real time osseous models of the pelvis and femur being moved through flexion, adduction, and internal rotation. The location and size of the cam deformity and its relationship to the angle of flexion of the hip and pelvic tilt, and the position of impingement were recorded. Results. In these patients with cam-type FAI, there was significant correlation between the alpha angle and flexion to the point of impingement (mean 41.36°; 14.32° to 57.95°) (R = -0.5815 and p = < 0.001). Patients with a large cam deformity (alpha angle > 78°) had significantly less flexion to the point of impingement (mean 36.30°; 14.32° to 55.18°) than patients with a small cam deformity (alpha angle 60° to 78°) (mean 45.34°; 27.25° to 57.95°) (p = < 0.001). Conclusion. This study has shown that cam-type impingement can occur early in flexion (40°), particularly in patients with large anterior deformities. These patients risk chondrolabral damage during routine activities such as walking, and going up stairs. These findings offer important insights into the cause of the symptoms, the mechanisms of screening and the forms of treatment available for these patients. Cite this article: Bone Joint J 2017;99-B(4 Supple B):41–8


The Bone & Joint Journal
Vol. 98-B, Issue 7 | Pages 910 - 916
1 Jul 2016
Pierrepont JW Feyen H Miles BP Young DA Baré JV Shimmin AJ

Aims. Long-term clinical outcomes for ceramic-on-ceramic (CoC) bearings are encouraging. However, there is a risk of squeaking. Guidelines for the orientation of the acetabular component are defined from static imaging, but the position of the pelvis and thus the acetabular component during activities associated with edge-loading are likely to be very different from those measured when the patient is supine. We assessed the functional orientation of the acetabular component. Patients and Methods. A total of 18 patients with reproducible squeaking in their CoC hips during deep flexion were investigated with a control group of 36 non-squeaking CoC hips. The two groups were matched for the type of implant, the orientation of the acetabular component when supine, the size of the femoral head, ligament laxity, maximum hip flexion and body mass index. . Results. The mean functional anteversion of the acetabular component at the point when patients initiated rising from a seated position was significantly less in the squeaking group than in the control group, 8.1° (-10.5° to 36.0°) and 21.1° (-1.9° to 38.4°) respectively (p = 0.002). . Conclusion. The functional orientation of the acetabular component during activities associated with posterior edge-loading are different from those measured when supine due to patient-specific pelvic kinematics. Individuals with a large anterior pelvic tilt during deep flexion might be more susceptible to posterior edge-loading and squeaking as a consequence of a significant decrease in the functional anteversion of the acetabular component. . Cite this article: Bone Joint J 2016;98-B:910–16


Bone & Joint Research
Vol. 11, Issue 3 | Pages 180 - 188
1 Mar 2022
Rajpura A Asle SG Ait Si Selmi T Board T

Aims

Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane.

Methods

Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 22 - 22
1 Jun 2017
Tadross D Lunn D Redmond A Macdonald D Stone M Chapman G
Full Access

In the UK, the posterior approach (PA) and direct lateral approach (DLA) are the most common total hip arthroplasty (THA) procedures. Few studies however, have compared the subsequent functional outcomes. This exploratory study aimed to examine the effect of PA and DLA approaches on post-operative hip kinematics, strength and hip muscle cross-sectional area (CSA), compared to healthy controls. Participants comprised of 15 cases in the DLA group, > 12 month post-operatively, (ten male, age 68.9+/-5.5 years, BMI 26.9+/-3.0), 13 cases in the PA group (six male; age 72.9+/-6.9 years, BMI 27.1+/-3.6) and 11 age/BMI-matched healthy control participants. All participants underwent 3D kinematic (Vicon, Oxford, UK) and kinetic (AMTI, USA) analysis whist performing self-selected and fast walking as well as sit-to-stand and stand-to-sit. Isometric dynamometry was performed (Biodex Medical systems, USA) for all major muscle groups around the operated hip, and a subset of five participants (three DLA v two PA) underwent “slice encoding for metal artefact correction” (SEMAC) MRI imaging to measure muscle CSA. Patient-reported outcome measures were collected. Both post-operative surgical groups exhibited altered gait, particularly in limited hip extension, compared to the control participants. The DLA group demonstrated forced hip extension matching controls only under fast walking conditions while the PA group did not achieve hip extension. Both surgical approaches achieved high PROMs scores. The PA group were weaker for all strength activities tested, whereas the DLA cases demonstrated similar hip strength to controls. SEMAC imaging revealed reduced CSA for those muscles dissected during surgery, compared to the contralateral side. This exploratory study demonstrated small but measurable differences between surgical approaches for muscle CSA, hip strength of major hip muscle groups and a number of gait variables, although both approaches produce satisfactory functional outcomes for patients after surgery


The Bone & Joint Journal
Vol. 99-B, Issue 6 | Pages 732 - 740
1 Jun 2017
Meermans G Konan S Das R Volpin A Haddad FS

Aims. The most effective surgical approach for total hip arthroplasty (THA) remains controversial. The direct anterior approach may be associated with a reduced risk of dislocation, faster recovery, reduced pain and fewer surgical complications. This systematic review aims to evaluate the current evidence for the use of this approach in THA. Materials and Methods. Following the Cochrane collaboration, an extensive literature search of PubMed, Medline, Embase and OvidSP was conducted. Randomised controlled trials, comparative studies, and cohort studies were included. Outcomes included the length of the incision, blood loss, operating time, length of stay, complications, and gait analysis. Results. A total of 42 studies met the inclusion criteria. Most were of medium to low quality. There was no difference between the direct anterior, anterolateral or posterior approaches with regards to length of stay and gait analysis. Papers comparing the length of the incision found similar lengths compared with the lateral approach, and conflicting results when comparing the direct anterior and posterior approaches. . Most studies found the mean operating time to be significantly longer when the direct anterior approach was used, with a steep learning curve reported by many. Many authors used validated scores including the Harris hip score, and the Western Ontario and McMaster Universities Arthritis Index. These mean scores were better following the use of the direct anterior approach for the first six weeks post-operatively. Subsequently there was no difference between these scores and those for the posterior approach. Conclusion . There is little evidence for improved kinematics or better long-term outcomes following the use of the direct anterior approach for THA. There is a steep learning curve with similar rates of complications, length of stay and outcomes. . Well-designed, multi-centre, prospective randomised controlled trials are required to provide evidence as to whether the direct anterior approach is better than the lateral or posterior approaches when undertaking THA. Cite this article: Bone JointJ 2017;99-B:732–40


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 184 - 191
1 Feb 2017
Pierrepont J Hawdon G Miles BP Connor BO Baré J Walter LR Marel E Solomon M McMahon S Shimmin AJ

Aims. The pelvis rotates in the sagittal plane during daily activities. These rotations have a direct effect on the functional orientation of the acetabulum. The aim of this study was to quantify changes in pelvic tilt between different functional positions. Patients and Methods. Pre-operatively, pelvic tilt was measured in 1517 patients undergoing total hip arthroplasty (THA) in three functional positions – supine, standing and flexed seated (the moment when patients initiate rising from a seated position). Supine pelvic tilt was measured from CT scans, standing and flexed seated pelvic tilts were measured from standardised lateral radiographs. Anterior pelvic tilt was assigned a positive value. Results. The mean pelvic tilt was 4.2° (-20.5° to 24.5°), -1.3° (-30.2° to 27.9°) and 0.6° (-42.0° to 41.3°) in the three positions, respectively. The mean sagittal pelvic rotation from supine to standing was -5.5° (-21.8° to 8.4°), from supine to flexed seated was -3.7° (-48.3° to 38.6°) and from standing to flexed seated was 1.8° (-51.8° to 39.5°). In 259 patients (17%), the extent of sagittal pelvic rotation could lead to functional malorientation of the acetabular component. Factoring in an intra-operative delivery error of ± 5° extends this risk to 51% of patients. Conclusion. Planning and measurement of the intended position of the acetabular component in the supine position may fail to predict clinically significant changes in its orientation during functional activities, as a consequence of individual pelvic kinematics. Optimal orientation is patient-specific and requires an evaluation of functional pelvic tilt pre-operatively. Cite this article: Bone Joint J 2017;99-B:184–91


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 28 - 28
1 May 2019
Pryce G Al-Hajjar M Wilcox R Thompson J Board T Williams S
Full Access

Impingement of total hip replacements (THRs) can cause rim damage of polyethylene liners, and lead to dislocation and/or mechanical failure of liner locking mechanisms[1]. Previous work has focussed on the influence of femoral neck profile on impingement without consideration of neck-shaft angle. This study assessed the occurrence of impingement with two different stem designs (Corail standard [135°] and coxa vara [125°]) under different activities with varying acetabular cup orientation (30° to 70° inclination; 0° to 50° anteversion) using a geometric modelling tool. The tool was created in a computer aided design software programme, and incorporated an individual's hemi-pelvis and femur geometry[3] with a THR (DePuy Synthes Pinnacle. ®. shell and neutral liner; size 12 Corail. ®. standard or coxa vara and 32mm head). Kinematic data of activities associated with dislocation[2], such as stooping to pick an object from the floor was applied and incidences of impingement were recorded. Predicted implant impingement was influenced by stem design. The coxa vara stem was predicted to cause implant impingement less frequently across the range of activities and cup orientations investigated, compared to the standard stem [Fig. 1]. The cup orientations predicted to cause impingement the least frequently were at lower inclination and anteversion angles, relative to the standard stem [Fig. 1]. The coxa vara stem included a collar, while the standard stem was collarless; additional analysis indicated that differences were due to neck angle and not the presence of a collar. This study demonstrated that stem neck-shaft angle is an important variable in prosthetic impingement in THR and surgeons should be aware of this when choosing implants. Future work will consider further implant design and bone geometry variables. This tool has the potential for use in optimising stem design and position and could assist with patient specific stem selection based on an individual's activity profile. For any figures or tables, please contact the authors directly


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 352 - 358
1 Mar 2022
Kleeman-Forsthuber L Vigdorchik JM Pierrepont JW Dennis DA

Aims

Pelvic incidence (PI) is a position-independent spinopelvic parameter traditionally used by spinal surgeons to determine spinal alignment. Its relevance to the arthroplasty surgeon in assessing patient risk for total hip arthroplasty (THA) instability preoperatively is unclear. This study was undertaken to investigate the significance of PI relative to other spinopelvic parameter risk factors for instability to help guide its clinical application.

Methods

Retrospective analysis was performed of a multicentre THA database of 9,414 patients with preoperative imaging (dynamic spinopelvic radiographs and pelvic CT scans). Several spinopelvic parameter measurements were made by engineers using advanced software including sacral slope (SS), standing anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), lumbar lordosis (LL), and PI. Lumbar flexion (LF) was determined by change in LL between standing and flexed-seated lateral radiographs. Abnormal pelvic mobility was defined as ∆SPT ≥ 20° between standing and flexed-forward positions. Sagittal spinal deformity (SSD) was defined as PI-LL mismatch > 10°.