Study purpose and background.
Purpose & Background. Back and lower limb injuries are prevalent in athletes who perform novel weight-lifting techniques with inappropriate
Background. Trunk muscle activity and thoraco-lumbar
Purpose and Background. Physical mechanisms underlying back pain impairment are poorly understood. Measuring movement features linked to back pain should help understand its causes and decide on best management. Previous
Purpose and background. Recent research has identified possible functional biomarkers in chronic, nonspecific back pain (CNSLBP) based on intervertebral
Symptomatic spinal stenosis is a very common problem, and decompression surgery has been shown to be superior to nonoperative treatment in selected patient groups. However, performing an instrumented fusion in addition to decompression may avoid revision and improve outcomes. The aim of the SpInOuT feasibility study was to establish whether a definitive randomized controlled trial (RCT) that accounted for the spectrum of pathology contributing to spinal stenosis, including pelvic incidence-lumbar lordosis (PI-LL) mismatch and mobile spondylolisthesis, could be conducted. As part of the SpInOuT-F study, a pilot randomized trial was carried out across five NHS hospitals. Patients were randomized to either spinal decompression alone or spinal decompression plus instrumented fusion. Patient-reported outcome measures were collected at baseline and three months. The intended sample size was 60 patients.Aims
Methods
Objectives. Many studies have investigated the
Introduction. Low back pain (LBP) is the top leading global cause of years lived with disability. In order to examine LBP, researchers have typically viewed the spine in isolation. Clinically, it is imperative that the lower limbs are also considered. The aim of this study was to design a holistic and reliable multi-segmental
Background. Previous work has identified differential
Purpose of the study. To incorporate magnetic resonance (MR) image data in a finite element (FE) model to estimate intervertebral disc stress as a function of posture. Background. Determining the stresses on the intervertebral discs is important for understanding disc degeneration and developing treatment strategies. The effect of different postures on disc stress has previously been investigated through disc pressure measurements and through computational modelling.
Purpose and Background:. Despite the rise of back pain disability, objective mechanical assessment is generally lacking. Quantification of intervertebral
Background and Purpose of Study:. Differences in regional lumbar angles in sitting have been observed between subgroups of NSCLBP patients exhibiting motor control impairments (MCI) (O'Sullivan, 2005; Dankaerts et al, 2006). However, differences in standing posture and other spinal regions are unknown. This study aimed to compare regional spinal angles in healthy and MCI subgroups in sitting and standing. Methods:. An observational, cross-sectional study investigated spinal
Statement of Purpose. It is well known that individuals with a history of low back pain (hLBP) exhibit altered movement patterns that are caused by changes in neuromuscular control. Postural disturbance provides an effective method for creating these differentiable movement patterns. This study has explored the response of the lower limb and spine to a translational perturbation similar to that experienced on public transport in healthy volunteers and those with hLBP. Methods. Healthy volunteers (n=16) and subjects with hLBP (n=10) were subjected to 31 identical postural disturbances at varying time intervals while standing atop a moving platform. Skeletal
Background and purpose. Investigating inter-vertebral biomechanics in vivo using end-of-range imaging is difficult due to high intra subject variation, measurement errors and insufficient data. Quantitative fluoroscopy (QF) can reliably measure continuous motion but may suffer from contamination from uncontrolled loading and muscle contraction which compromises comparisons between studies and limits interpretation of results. This study presents the methods used to overcome these limitations. Methods and results. Forty chronic, non-specific low back pain (CNSLPB) patients and 40 matched controls underwent QF using a passive recumbent protocol which standardised the rate and range of trunk rotation, thus reducing intra-subject variation and excluding loading and muscle contraction factors. Left, right, flexion and extension were recorded from L2-5 and vertebral motion registered using image processing algorithms, Resultant continuous inter-vertebral rotation data were normalised to produce proportional contributions of each segment throughout the trunk bend. The expected continuous proportional contributions at each level and direction were determined by calculating reference intervals (mean +/− 2SD) from controls. Prevalence of patients exceeding these ranges was determined and the association with CNSLBP calculated using Chi-squared analysis. Additionally the variance of the normalised data throughout the continuous motion for each direction was determined and summed to produce an combined number. This was used to measure the difference between patients and controls and entered into ROC curve analysis to investigate discrimination between patients and controls. Conclusion. A methodology for assessment of the differences between the continuous in vivo spine
Objective. To compare the effectiveness of the Aspen, Aspen Vista, Philadelphia, Miami-J and Miami-J Advanced collars at restricting cervical spine movement in the sagittal, coronal and axial planes. Methods. Nineteen healthy volunteers (12 female, 7 male) were recruited to the study. Collars were fitted by an approved physiotherapist. Eight ProReflex (Qualisys, Sweden) infra-red cameras were used to track the movement of retro reflective marker clusters placed in predetermined positions on the head and trunk. 3D
Statement of Purpose. The purpose of this experiment was to characterize the biomechanical properties of a minimally-invasive flexion-restricting stabilization system (FRSS) developed to address flexion instability. Background. Lumbar flexion instability is associated with degenerative pathology such as degenerative spondylolisthesis (DS) as well as resection of posterior structures during neural decompression. Flexion instability may be measured by increased total flexion/extension range of motion (ROM), as well as reduced stiffness within the high flexibility zone (HFZ, the range in which most activities occur). Flexion and segmental translation are known to be coupled; therefore increased flexion may exacerbate translational instability, particularly in DS. Method. Five cadaveric lumbar spines were tested intact; after L4-L5 destabilization including nucleotomy and midline decompression; and following restabilization with the FRSS secured to the spinous processes. Specimens were loaded in flexion (8Nm) and extension (6Nm) under 400N compressive follower preload. Flexion stiffness in the HFZ and segmental translation were also measured. Results. Destabilization increased L4-L5 flexion by 69%±31% (p<.01); decreased HFZ flexion stiffness 56%±12% (p=.01) and increased segmental translation 70%±49% from 1.5±0.4mm to 2.4±0.4mm (p<.01). With the FRSS segmental flexion was reduced by 45%±15% (p<.01); average HFZ flexion stiffness was increased by 232%±104% (p<.01); and segmental translation was reduced by 25%±9% to 1.8±0.2mm (p<.01). These values were not significantly different from the intact condition (p=.54, p=.21, p=.19). Discussion and Conclusion. The destabilization modeled here simulated degenerative and iatrogenic destabilizations often seen clinically. Implantation of the FRSS on the destabilized segments restored flexion, stiffness and translation to intact levels. The segmental coupling of translation and flexion seen in this experiment indicates that translation may be manipulated by altering flexion
The aim of this study was to compare the peak pull-out force
(PPF) of pedicle-lengthening screws (PLS) and traditional pedicle
screws (TPS) using instant and cyclic fatigue testing. A total of 60 lumbar vertebrae were divided into six groups:
PLS submitted to instant pull-out and fatigue-resistance testing
(groups A1 and A2, respectively), TPS submitted to instant pull-out
and fatigue-resistance testing (groups B1 and B2, respectively)
and PLS augmented with 2 ml polymethylmethacrylate, submitted to
instant pull-out and fatigue-resistance testing (groups C1 and C2,
respectively). The PPF and normalized PPF (PPFn) for bone mineral density
(BMD) were compared within and between all groups.Aims
Materials and Methods
Loss of motion following spine segment fusion results in increased strain in the adjacent motion segments. However, to date, studies on the biomechanics of the cervical spine have not assessed the role of coupled motions in the lumbar spine. Accordingly, we investigated the biomechanics of the cervical spine following cervical fusion and lumbar fusion during simulated whiplash using a whole-human finite element (FE) model to simulate coupled motions of the spine. A previously validated FE model of the human body in the driver-occupant position was used to investigate cervical hyperextension injury. The cervical spine was subjected to simulated whiplash exposure in accordance with Euro NCAP (the European New Car Assessment Programme) testing using the whole human FE model. The coupled motions between the cervical spine and lumbar spine were assessed by evaluating the biomechanical effects of simulated cervical fusion and lumbar fusion.Objectives
Methods
Pedicle-lengthening osteotomy is a novel surgery for lumbar spinal stenosis (LSS), which achieves substantial enlargement of the spinal canal by expansion of the bilateral pedicle osteotomy sites. Few studies have evaluated the impact of this new surgery on spinal canal volume (SCV) and neural foramen dimension (NFD) in three different types of LSS patients. CT scans were performed on 36 LSS patients (12 central canal stenosis (CCS), 12 lateral recess stenosis (LRS), and 12 foraminal stenosis (FS)) at L4-L5, and on 12 normal (control) subjects. Mimics 14.01 workstation was used to reconstruct 3D models of the L4-L5 vertebrae and discs. SCV and NFD were measured after 1 mm, 2 mm, 3 mm, 4 mm, or 5 mm pedicle-lengthening osteotomies at L4 and/or L5. One-way analysis of variance was used to examine between-group differences.Objectives
Methods
This prospective multicentre study was undertaken
to determine segmental movement, disc height and sagittal alignment
after total disc replacement (TDR) in the lumbosacral spine and
to assess the correlation of biomechanical properties to clinical
outcomes. A total of 173 patients with degenerative disc disease and low
back pain for more than one year were randomised to receive either
TDR or multidisciplinary rehabilitation (MDR). Segmental movement
in the sagittal plane and disc height were measured using distortion
compensated roentgen analysis (DCRA) comparing radiographs in active flexion
and extension. Correlation analysis between the range of movement
or disc height and patient-reported outcomes was performed in both
groups. After two years, no significant change in movement in the
sagittal plane was found in segments with TDR or between the two
treatment groups. It remained the same or increased slightly in
untreated segments in the TDR group and in this group there was
a significant increase in disc height in the operated segments.
There was no correlation between segmental movement or disc height
and patient-reported outcomes in either group. In this study, insertion of an intervertebral disc prosthesis
TDR did not increase movement in the sagittal plane and segmental
movement did not correlate with patient-reported outcomes. This
suggests that in the lumbar spine the movement preserving properties
of TDR are not major determinants of clinical outcomes. Cite this article: