Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1359 - 1367
3 Oct 2020
Hasegawa K Okamoto M Hatsushikano S Watanabe K Ohashi M Vital J Dubousset J

Aims. The aim of this study is to test the hypothesis that three grades of sagittal compensation for standing posture (normal, compensated, and decompensated) correlate with health-related quality of life measurements (HRQOL). Methods. A total of 50 healthy volunteers (normal), 100 patients with single-level lumbar degenerative spondylolisthesis (LDS), and 70 patients with adult to elderly spinal deformity (deformity) were enrolled. Following collection of demographic data and HRQOL measured by the Scoliosis Research Society-22r (SRS-22r), radiological measurement by the biplanar slot-scanning full body stereoradiography (EOS) system was performed simultaneously with force-plate measurements to obtain whole body sagittal alignment parameters. These parameters included the offset between the centre of the acoustic meatus and the gravity line (CAM-GL), saggital vertical axis (SVA), T1 pelvic angle (TPA), McGregor slope, C2-7 lordosis, thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), PI-LL, sacral slope (SS), pelvic tilt (PT), and knee flexion. Whole spine MRI examination was also performed. Cluster analysis of the SRS-22r scores in the pooled data was performed to classify the subjects into three groups according to the HRQOL, and alignment parameters were then compared among the three cluster groups. Results. On the basis of cluster analysis of the SRS-22r subscores, the pooled subjects were divided into three HRQOL groups as follows: almost normal (mean 4.24 (SD 0.32)), mildly disabled (mean 3.32 (SD 0.24)), and severely disabled (mean 2.31 (SD 0.35)). Except for CAM-GL, all the alignment parameters differed significantly among the cluster groups. The threshold values of key alignment parameters for severe disability were TPA > 30°, C2-7 lordosis > 13°, PI-LL > 30°, PT > 28°, and knee flexion > 8°. Lumbar spinal stenosis was found to be associated with the symptom severity. Conclusion. This study provides evidence that the three grades of sagittal compensation in whole body alignment correlate with HRQOL scores. The compensation grades depend on the clinical diagnosis, whole body sagittal alignment, and lumbar spinal stenosis. The threshold values of key alignment parameters may be an indication for treatment. Cite this article: Bone Joint J 2020;102-B(10):1359–1367


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_6 | Pages 7 - 7
1 Feb 2016
Critchley J Prempeh M Jia W Daniell H Crawford R
Full Access

Purpose:. To produce objective evidence that lifting is more comfortable in lumbar flexion than lumbar extension. Traditionally, lifting is taught in lumbar extension (“straight back”) but in our experience is more comfortable and stronger in flexion with backward lumbar tilt. Method and results:. 58 subjects performed maximal comfortable static lifts:. 1. ‘Natural’ lifting position - hip flexion, knee extension, lumbar extension. 2. Traditionally taught position - hip flexion, knee flexion, lumbar extension. 3. Backward pelvic tilt - hip flexion, knee flexion, lumbar flexion. The order of these lifting methods varied to allow for variation due to fatigue/recruitment. All lifts were measured with a computerised dynamometer. The mean force for natural lifting was 13.4 kgs, for traditionally taught lifting 15.1 kgs and for backward pelvic tilt lifting 22.2 kgs. This represented a 13% greater load for traditionally taught lift compared with natural lift, 66% greater for backward pelvic tilt compared with natural lift and 48% greater for backward pelvic tilt compared with traditionally taught lift. Conclusion:. Contrary to accepted teaching and intra-discal pressure studies, this study confirms the observation that lifting strength is greater when the lumbar spine is in flexion. Thus, patients can avoid provoking their back pain when lifting by flexing the lumbar spine. A possible explanation is reduced facet joint compression in lumbar flexion and load sharing with the lumbar fascia and ligaments


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_4 | Pages 17 - 17
1 Feb 2014
Pavlova AV Meakin JR Cooper K Barr RJ Aspden RM
Full Access

Background and Aim. Low back pain is highly prevalent, particularly in manual occupations. We previously showed that the lumbar spine has an intrinsic shape, identifiable in lying, sitting and standing postures, that affects the spine's response to load. Its effects on motion are unknown. Here we investigate whether intrinsic spinal shape is detectable throughout a greater range of postures and its effect on how healthy adults lift a weighted box. Methods. The lumbar spine was imaged using a positional MRI with participants (n=30) in 6 postures ranging from extension to full flexion. Active shape modelling was used to identify and quantify ‘modes’ of variation in lumbar spine shape. 3D motion capture analysed participants' motion while lifting a box (6–15 kg, self-selected). Results. Two modes accounted for 89.5% of variation in spinal shape, describing the overall curvature (mode 1) and distribution of curvature (mode 2). Within the first 9 modes, scores were significantly correlated between all six postures (r = 0.4−0.97, P<0.05), showing that intrinsic shape was partially maintained throughout. Individuals with straighter spines lifted with greater knee flexion (r = 0.4, P = 0.03) typical of squatting. Knee flexion negatively correlated with lumbar (r = −0.5 to −0.86, P<0.01) and pelvic flexion (r = −0.81, P<0.001). Those with curvier spines flexed significantly more at the back (r = −0.79, P=0.02) typical of stooping. Conclusion. In summary, individuals with straight spines squatted to lift while those with curvy spines stooped, indicating that the way we move to pick up a load is associated with the shape of our spine


Bone & Joint Open
Vol. 2, Issue 3 | Pages 163 - 173
1 Mar 2021
Schlösser TPC Garrido E Tsirikos AI McMaster MJ

Aims

High-grade dysplastic spondylolisthesis is a disabling disorder for which many different operative techniques have been described. The aim of this study is to evaluate Scoliosis Research Society 22-item (SRS-22r) scores, global balance, and regional spino-pelvic alignment from two to 25 years after surgery for high-grade dysplastic spondylolisthesis using an all-posterior partial reduction, transfixation technique.

Methods

SRS-22r and full-spine lateral radiographs were collected for the 28 young patients (age 13.4 years (SD 2.6) who underwent surgery for high-grade dysplastic spondylolisthesis in our centre (Scottish National Spinal Deformity Service) between 1995 and 2018. The mean follow-up was nine years (2 to 25), and one patient was lost to follow-up. The standard surgical technique was an all-posterior, partial reduction, and S1 to L5 transfixation screw technique without direct decompression. Parameters for segmental (slip percentage, Dubousset’s lumbosacral angle) and regional alignment (pelvic tilt, sacral slope, L5 incidence, lumbar lordosis, and thoracic kyphosis) and global balance (T1 spino-pelvic inclination) were measured. SRS-22r scores were compared between patients with a balanced and unbalanced pelvis at final follow-up.


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 358 - 365
1 Mar 2015
Zhu L F. Zhang Yang D Chen A

The aim of this study was to evaluate the feasibility of using the intact S1 nerve root as a donor nerve to repair an avulsion of the contralateral lumbosacral plexus. Two cohorts of patients were recruited. In cohort 1, the L4–S4 nerve roots of 15 patients with a unilateral fracture of the sacrum and sacral nerve injury were stimulated during surgery to establish the precise functional distribution of the S1 nerve root and its proportional contribution to individual muscles. In cohort 2, the contralateral uninjured S1 nerve root of six patients with a unilateral lumbosacral plexus avulsion was transected extradurally and used with a 25 cm segment of the common peroneal nerve from the injured leg to reconstruct the avulsed plexus.

The results from cohort 1 showed that the innervation of S1 in each muscle can be compensated for by L4, L5, S2 and S3. Numbness in the toes and a reduction in strength were found after surgery in cohort 2, but these symptoms gradually disappeared and strength recovered. The results of electrophysiological studies of the donor limb were generally normal.

Severing the S1 nerve root does not appear to damage the healthy limb as far as clinical assessment and electrophysiological testing can determine. Consequently, the S1 nerve can be considered to be a suitable donor nerve for reconstruction of an avulsed contralateral lumbosacral plexus.

Cite this article: Bone Joint J 2015; 97-B:358–65.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 337 - 344
1 May 2017
Kim J Hwang JY Oh JK Park MS Kim SW Chang H Kim T

Objectives

The objective of this study was to assess the association between whole body sagittal balance and risk of falls in elderly patients who have sought treatment for back pain. Balanced spinal sagittal alignment is known to be important for the prevention of falls. However, spinal sagittal imbalance can be markedly compensated by the lower extremities, and whole body sagittal balance including the lower extremities should be assessed to evaluate actual imbalances related to falls.

Methods

Patients over 70 years old who visited an outpatient clinic for back pain treatment and underwent a standing whole-body radiograph were enrolled. Falls were prospectively assessed for 12 months using a monthly fall diary, and patients were divided into fallers and non-fallers according to the history of falls. Radiological parameters from whole-body radiographs and clinical data were compared between the two groups.


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1244 - 1249
1 Sep 2013
Jeon C Park J Chung N Son K Lee Y Kim J

We investigated the spinopelvic morphology and global sagittal balance of patients with a degenerative retrolisthesis or anterolisthesis. A total of 269 consecutive patients with a degenerative spondylolisthesis were included in this study. There were 95 men and 174 women with a mean age of 64.3 years (sd 10.5; 40 to 88). A total of 106 patients had a pure retrolisthesis (R group), 130 had a pure anterolisthesis (A group), and 33 had both (R+A group).

A backward slip was found in the upper lumbar levels (mostly L2 or L3) with an almost equal gender distribution in both the R and R+A groups. The pelvic incidence and sacral slope of the R group were significantly lower than those of the A (both p < 0.001) and R+A groups (both p < 0.001). The lumbar lordosis of the R+A group was significantly greater than that of the R (p = 0.025) and A groups (p = 0.014). The C7 plumb line of the R group was located more posteriorly than that of the A group (p = 0.023), but was no different from than that of the R+A group (p = 0.422). The location of C7 plumb line did not differ between the three groups (p = 0.068). The spinosacral angle of the R group was significantly smaller than that of the A group (p < 0.001) and R+A group (p < 0.001).

Our findings imply that there are two types of degenerative retrolisthesis: one occurs primarily as a result of degeneration in patients with low pelvic incidence, and the other occurs secondarily as a compensatory mechanism in patients with an anterolisthesis and high pelvic incidence.

Cite this article: Bone Joint J 2013;95-B:1244–9.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 206 - 209
1 Feb 2013
Samartzis D Modi HN Cheung KMC Luk KDK

Ankylosing spondylitis (AS) is a progressive multisystem chronic inflammatory disorder. The hallmark of this pathological process is a progressive fusion of the zygapophyseal joints and disc spaces of the axial skeleton, leading to a rigid kyphotic deformity and positive sagittal balance. The ankylosed spine is unable to accommodate normal mechanical forces, rendering it brittle and susceptible to injury. Traumatic hyperextension injury of the cervical spine leading to atlantoaxial subluxation (AAS) in AS patients can often be fatal. We report a non-traumatic mechanism of injury in AS progressing to AAS attributable to persistent hyperextension, which resulted in fatal migration of C2 through the foramen magnum.

Cite this article: Bone Joint J 2013;95-B:206–9.