Advertisement for orthosearch.org.uk
Results 1 - 20 of 228
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 134 - 134
1 Mar 2017
Salvadore G Meere P Verstraete M Victor J Walker P
Full Access

INTRODUCTION. During TKA surgery, the usual goal is to achieve equal balancing between the lateral and medial side, which can be achieved by ligament releases or “pie crusting”. However little is known regarding a relationship between the balancing forces on the medial and lateral plateaus during TKA surgery, and the varus and valgus and rotational laxities when the TKA components are inserted. It seems preferable that the laxity after TKA is the same as for the normal intact knee. Hence the first aim of this study was to compare the laxity envelope of a native knee, with the same knee after TKA surgery. The second aim was to examine the relationship between the Varus-Valgus (VV) laxity and the contact forces on the tibial plateau. METHODS. A special rig that reproduced surgical conditions and fit onto an operating table was designed (Figure 1) (Verstraete et al. 2015). The rig allows application of a constant varus/valgus moment, and an internal-external (IE) torque. A series of heel push tests under these loading conditions were performed on 12 non-arthritic half semibodies hip-to-toe cadaveric specimens. Five were used for method development. To measure laxities, the flexion angle, the VV and the IE angle were measured using a navigation system. After testing the native knee, a TKA was performed using the Journey II BCS implant, the navigation assuring correct alignments. Soft tissue balancing was achieved by measuring compressive forces on the lateral and medial condyles with an instrumented tibial trial (Orthosensor, Dania Beach, Florida). At completion of the procedure, the laxity tests were repeated for VV and IE rotation and the contact forces on the tibial plateau were recorded, for the full range of flexion. RESULTS. The average of the varus-valgus and the IE laxity envelope is plotted for the native (yellow), the TKA (pink) and the overlap between the two (orange) (Figure 2). The average for six specimens of the contact force ratio (medial/medial+lateral force) during the varus and valgus test is plotted as a function of the laxity for each flexion angle (Figure 3). DISCUSSION. The Journey II implant replicated the VV laxity of the native knee except for up to 3 degrees more valgus in high flexion. For the IE, the TKA was equal in internal rotation, but up to 5 degrees more constrained in varus in mid range. Plotting contact force ratio against VV laxity (figure 3), as expected during the varus test the forces were clustered in a 0.85–0.95 ratio, implying predominant medial force with likely lateral lift-off. For the valgus test, the force ratio is more spread out, with all the values below 0.6. This could be due to the different stiffness of the MCL and LCL ligaments which are stressed during the VV test. During both tests the laxity increases progressively with flexion angle. Evidently the geometry knee reproduces more lateral laxity at higher flexion as in the anatomic situation. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 103 - 103
10 Feb 2023
Petterwood J Sullivan J Coffey S McMahon S Wakelin E Plaskos C Orsi A
Full Access

Preoperative ligament laxity can be characterized intraoperatively using digital robotic tensioners. Understanding how preoperative knee joint laxity affects preoperative and early post-operative patient reported outcomes (PROMs) may aid surgeons in tailoring intra-operative balance and laxity to optimize outcomes for specific patients. This study aims to determine if preoperative ligament laxity is associated with PROMs, and if laxity thresholds impact PROMs during early post-operative recovery. 106 patients were retrospectively reviewed. BMI was 31±7kg/m. 2. Mean age was 67±8 years. 69% were female. Medial and lateral knee joint laxity was measured intraoperatively using a digital robotic ligament tensioning device after a preliminary tibial resection. Linear regressions between laxity and KOOS12-function were performed in extension (10°), midflexion (45°), and flexion (90°) at preoperative, 6-week, and 3-month time points. Patients were separated into two laxity groups: ≥7 mm laxity and <7 mm laxity. Student's t-tests determined significant differences between laxity groups for KOOS12-function scores at all time points. Correlations were found between preoperative KOOS12-function and medial laxity in midflexion (p<0.001) and flexion (p<0.01). Patients with <7 mm of medial laxity had greater preoperative KOOS12-function scores compared to patients with ≥7 mm of medial laxity in extension (46.8±18.2 vs. 29.5±15.6, p<0.05), midflexion (48.4±17.8 vs. 32±16.1, p<0.001), and flexion (47.7±18.3 vs. 32.6±14.7, p<0.01). No differences in KOOS12-function scores were observed between medial laxity groups at 6-weeks or 3-months. All knees had <5 mm of medial laxity postoperatively. No correlations were found between lateral laxity and KOOS12-function. Patients with preoperative medial laxity ≥7 mm had lower preoperative PROMs scores compared to patients with <7 mm of medial laxity. No differences in PROMs were observed between laxity groups at 6 weeks or 3 months. Patients with excessive preoperative joint laxity achieve similar PROMs scores to those without excessive laxity after undergoing gap balancing TKA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 87 - 87
23 Feb 2023
Orsi A Wakelin E Plaskos C McMahon S Coffey S
Full Access

Inverse Kinematic Alignment (iKA) and Gap Balancing (GB) aim to achieve a balanced TKA via component alignment. However, iKA aims to recreate the native joint line versus resecting the tibia perpendicular to the mechanical axis. This study aims to compare how two alignment methods impact 1) gap balance and laxity throughout flexion and 2) the coronal plane alignment of the knee (CPAK). Two surgeons performed 75 robotic assisted iKA TKA's using a cruciate retaining implant. An anatomic tibial resection restored the native joint line. A digital joint tensioner measured laxity throughout flexion prior to femoral resection. Femoral component position was adjusted using predictive planning to optimize balance. After femoral resection, final joint laxity was collected. Planned GB (pGB) was simulated for all cases posthoc using a neutral tibial resection and adjusting femoral position to optimize balance. Differences in ML balance, laxity, and CPAK were compared between planned iKA (piKA) and pGB. ML balance and laxity were also compared between piKA and final (fiKA). piKA and pGB had similar ML balance and laxity, with mean differences <0.4mm. piKA more closely replicated native MPTA (Native=86.9±2.8°, piKA=87.8±1.8°, pGB=90±0°) and native LDFA (Native=87.5±2.7°, piKA=88.9±3°, pGB=90.8±3.5°). piKA planned for a more native CPAK distribution, with the most common types being II (22.7%), I (20%), III (18.7%), IV (18.7%) and V (18.7%). Most pGB knees were type V (28.4%), VII (37.8%), and III (16.2). fiKA and piKA had similar ML balance and laxity, however fiKA was more variable in midflexion and flexion (p<0.01). Although ML balance and laxity were similar between piKA and pGB, piKA better restored native joint line and CPAK type. The bulk of pGB knees were moved into types V, VII, and III due to the neutral tibial cut. Surgeons should be cognizant of how these differing alignment strategies affect knee phenotype


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 57 - 57
1 Feb 2021
Elmasry S Chalmers B Sculco P Kahlenberg C Mayman D Wright T Westrich G Cross M Imhauser C
Full Access

Introduction. Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture to restore range of motion and knee function. However, the effect of joint line elevation on the resulting TKA kinematics including frontal plane laxity is unclear. Thus, our goal was to quantify the effect of additional distal femoral resection on passive extension and mid-flexion laxity. Methods. Six computational knee models with capsular and collateral ligament properties specific to TKA were developed and implanted with a contemporary posterior-stabilized TKA. A 10° flexion contracture was modeled by imposing capsular contracture as determined by simulating a common clinical exam of knee extension and accounting for the length and weight of each limb segment from which the models were derived (Figure 1). Distal femoral resections of 2 mm and 4 mm were simulated for each model. The knees were then extended by applying the measured knee moments to quantify the amount of knee extension. The output data were compared with a previous cadaveric study using a two-sample two-tailed t-test (p<0.05) [1]. Subsequently, varus and valgus torques of ±10 Nm were applied as the knee was flexed from 0° to 90° at the baseline, and after distal resections of 2 mm, and 4 mm. Coronal laxity, defined as the sum of varus and valgus angulation in response to the applied varus and valgus torques, was measured at 30° and 45°of flexion, and the flexion angle was identified where the increase in laxity was the greatest with respect to baseline. Results. With 2 mm and 4 mm of distal femoral resection, the knee extended an additional 4°±0.5° and 8°±0.75°, respectively (Figure 2). No significant difference was found between the extension angle predicted by the six models and the results of the cadaveric study after 2 mm (p= 0.71) and 4 mm (p= 0.47). At 2 mm resection, mean coronal laxity increased by 3.1° and 2.7° at 30° and 45°of flexion, respectively. At 4 mm resection, mean coronal laxity increased by 6.5° and 5.5° at 30° and 45° of flexion, respectively (Figures 3a and 3b). The flexion angle corresponding to the greatest increase in coronal laxity for 2 mm of distal resection occurred at 22±7° of flexion with a mean increase in laxity of 4.0° from baseline. For 4 mm distal resection, the greatest increase in coronal laxity occurred at 16±6° of flexion with a mean increase in laxity of 7.8° from baseline. Conclusion. A TKA computational model representing a knee with preoperative flexion contracture was developed and corroborated measures from a previous cadaveric study [1]. While additional distal femoral resection in primary TKA increases passive knee extension, the consequent joint line elevation induced up to 8° of additional coronal laxity in mid-flexion. This additional midflexion laxity could contribute to midflexion instability; a condition that may require TKA revision surgery. Further studies are warranted to understand the relationship between joint line elevation, midflexion laxity, and instability. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 14 - 14
1 Jul 2020
Marquis M Kerslake S Hiemstra LA Heard SM Buchko G
Full Access

The aim of an anterior cruciate ligament (ACL) reconstruction is to regain functional stability of the knee following ACL injury, ideally allowing patients to return to their pre-injury level of activity. The purpose of this study was to assess clinical, functional and patient-reported outcomes following primary ACL reconstruction with hamstring autograft. A prospective case-series design (n=1610) was used to gather data on post-operative ACL graft laxity, functional testing performance and scores on the ACL quality of life (ACL-QOL) questionnaire. Demographic data were collected for all patients. Post-operative ACL laxity assessment using the Lachman and Pivot-shift tests was completed independently on each patient by a physiotherapist and an orthopaedic surgeon at the 6-, 12- and 24-months post-operative appointments. A battery of functional tests was also assessed including single leg Bosu balance, and 4 single-leg hop tests. The hop tests provided a comparative assessment of limb-to-limb function. Patients completed the ACL-QOL at all time points. The degree and frequency of post-operative laxity was calculated. A Spearman's rank correlation matrix was undertaken to assess for relationships between post-operative laxity, functional test performance, and the ACL-QOL scores. A linear regression model was used to assess for relationships between the ACL-QOL scores, as well as the functional testing results, and patient demographic factors. ACLR patients were 55% male, with a mean age of 29.7 years (SD=10.4), mean BMI of 25 (SD=3.9), and mean Beighton score of 3.3 (SD=2.5). At clinical assessment 2-years post-operatively, 20.6% of patients demonstrated a positive Lachman test and 7.7% of patients demonstrated a positive Pivot-shift test. The mean ACL-QOL score was 28.6/100 (SD=13.4) pre-operatively, 58.2/100 (SD=17.6) at 6-months, 71.8/100 (SD=18.1) at 12-months, and 77.4/100 (SD=19.2) at 24-months post-operative. Functional tests assessing operative to non-operative limb performance demonstrated that patients were continuing to improve up to the 24-month mark, with limb symmetry indices ranging from 96.6–103.1 for the single-leg hop tests. Spearman's correlation coefficient demonstrated a significant relationship between the presence of ACL graft laxity and ACL-QOL score at 12- and 24-months post-operative (p < 0 .05). Functional performance on the single leg balance and single-leg hop tests demonstrated significant correlations to the 6-, 12- and 24-month ACL-QOL scores (p < 0 .05). There was no statistically significant correlation between the functional testing results and the presence of ACL graft laxity. This study demonstrated that up to 20.6% of patients had clinically measurable graft laxity 2-years after ACLR. In this cohort, patients with graft laxity demonstrated lower ACL-QOL scores, but did not demonstrate lower functional testing performance. Patient-reported ACL-QOL scores improved significantly at each time point following ACLR, and functional performance continued to improve up to 2-years after surgery. The ACL-QOL score was strongly correlated to the patient's ability to perform single-limb functional tests, indicating that the ACL-QOL score accurately predicted level of function


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 72 - 72
1 Jul 2020
Kerslake S Tucker A Heard SM Buchko GM Hiemstra LA Lafave M
Full Access

The primary purpose of this study was to assess whether patients presenting with clinical graft laxity following primary anatomic anterior cruciate ligament (ACL) reconstruction using hamstring autograft reported a significant difference in disease-specific quality-of-life (QOL) as measured by the ACL-QOL questionnaire. Clinical ACL graft laxity was assessed in a cohort of 1134/1436 (79%) of eligible patients using the Lachman and Pivot-shift tests pre-operatively and at 12- and 24-months following ACL reconstruction. Post-operative ACL laxity was assessed by an orthopaedic surgeon and a physical therapist who were blinded to each other's examination. If there was a discrepancy between the clinical examination findings from these two assessors, then a third impartial examiner assessed the patient to ensure a grading consensus was reached. Patients completed the ACL-QOL questionnaire pre-operatively, and 12- and 24-months post-operatively. Descriptive statistics were used to assess patient demographics, rate of post-operative ACL graft laxity, surgical failures, and ACL-QOL scores. A Spearman rho correlation coefficient was utilised to assess the relationships between ACL-QOL scores and the Lachman and Pivot-shift tests at 24-months post-operative. An independent t-test was used to determine if there were differences in the ACL-QOL scores of subjects who sustained a graft failure compared to the intact graft group. ACL-QOL scores and post-operative laxity were assessed using a one-way analysis of variance (ANOVA). There were 70 graft failures (6.17%) in the 1134 patients assessed at 24-months. A total of 226 patients (19.9%) demonstrated 24-months post-operative ACL graft laxity. An isolated positive Lachman test was assessed in 146 patients (12.9%), an isolated positive Pivot-shift test was apparent in 14 patients (1.2%), and combined positive Lachman and Pivot-shift tests were assessed in 66 patients (5.8%) at 24-months post-operative. There was a statistically significant relationship between 24-month post-operative graft laxity and ACL-QOL scores (p < 0.001). Specifically, there was a significant correlation between the ACL-QOL and the Lachman test (rho = −0.20, p < 0.001) as well as the Pivot-shift test (rho = −0.22, p < 0.001). There was no significant difference between the scores collected from the graft failure group prior to failure occurring (mean = 74.38, SD = 18.61), and the intact graft group (mean = 73.97, SD = 21.51). At 24-months post-operative, the one-way ANOVA demonstrated a statistically significant difference between the ACL-QOL scores of the no laxity group (mean = 79.1, SD = 16.9) and the combined positive Lachman and Pivot-shift group (mean = 68.5, SD = 22.9), (p = 0, mean difference = 10.6). Two-years post ACL reconstruction, 19.9% of patients presented with clinical graft laxity. Post-operative graft laxity was significantly correlated with lower ACL-QOL scores. The difference in ACL-QOL scores for patients with an isolated positive Lachman or Pivot-shift test did not meet the threshold of a clinically meaningful difference. Patients with clinical laxity on both the Lachman and Pivot-shift tests demonstrated the lowest patient-reported ACL-QOL scores, and these results exceeded the minimal clinically important difference


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 127 - 127
1 Jan 2016
Woodard E Williams J Mihalko W
Full Access

Introduction. When performing total knee arthroplasty (TKA), surgeons often utilize a posterior-stabilized (PS) design which compensates for the loss of the posterior cruciate ligament (PCL). These designs attempt to replicate normal knee kinematics and loading using a cam and post to provide posterior restraint of the tibia during flexion. However, these designs may not be able to compensate for the increase in flexion space or the inherent loss of coronal stability after PCL release compared to a cruciate retaining (CR) design. This study aimed to compare stability of PS and CR TKA designs by assessing laxity in three planes. Methods. The specimens utilized in this study were lower extremities from fresh cadavers of donors who had previously undergone a total knee replacement (Medical Education and Research Institute (Memphis, TN) and Restore Life USA (Johnson City, TN)). IRB approval was obtained prior to performing the study. Twenty-three knee specimens (8 left, 15 right) were retrieved and all skin, subcutaneous tissue and muscle was removed. The femur and tibia were cut transversely 180 mm superior and inferior to the knee joint line, respectively, and specimens were mounted in a custom knee testing machine. Specimens were tested with the knee joint at full extension and at 30, 60, and 90 degrees of flexion. Laxity was assessed at 1.5 Nm of internal and external torque and 10 Nm varus and valgus torque, as well as a 35 N anterior and posterior force. Laxity was expressed as degrees of tibial displacement in the coronal plane under a varus/valgus torque and degrees of displacement in the transverse plane under an internal/external torque, as well as mm of anterior or posterior displacement. TKA components were retrieved to determine PS or CR design and grouped accordingly. Results. Of the 23 implants, 10 were PS designs and 13 were CR. PS posterior laxity was 1 mm greater in full extension (p = 0.02, Figure 1), and PS varus laxity increased by 6 degrees at 90 degrees of flexion over CR laxity (p = 0.04, Figure 3). Varus to valgus laxity range of PS knees was greater than CR knees for all flexion angles. PS external rotational laxity at 90 degrees of flexion was greater than that of CR laxity by 7 degrees (p = 0.02, Figure 2). Discussion. Results indicate significant laxity differences between PS and CR designs in both full extension and 90 degrees of flexion. PS designs have decreased coronal stability compared to CR, but appear to mimic AP constraint in midflexion and flexion. Mihalko et al. (2000) showed that loss of the PCL during TKA leads to a decrease in coronal stability, which is confirmed here. The post and cam mechanism of the PS designs restores AP stability during flexion but does not restore this coronal stability. These results may be limited by variations in implant design


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 17 - 17
1 Aug 2020
Hupin M Goetz TJ Robertson N Murphy D Cresswell M Murphy K
Full Access

Postero-lateral rotator instability (PLRI) is the most common pattern of recurrent elbow instability. Unfortunately, current imaging to aid PLRI diagnosis is limited. We have developed an ultrasound (US) technique to measure ulnohumeral joint gap with and without stress of the lateral ulnocollateral ligament. We sought to define lateral ulnohumeral joint gap measurements in the resting and stressed state to provide insight into how US may aid diagnosis of PLRI. Sixteen elbows were evaluated in eight healthy volunteers. Lateral ulnohumeral gap was measured on US in the resting position and with posterolateral drawer stress test maneuver applied. Joint laxity was calculated as the difference between stress and rest conditions. Measurements were performed by two independent readers with comparison performed between stress and rest positions. A highly significant difference in ulnohumeral gap was seen between stress and rest conditions (Reader 1: p < 0 .0001 and Reader 2: p=0.0002) with median values of 2.93 mm and 2.50 mm at rest and 3.92 mm and 3.40 mm at stress for Reader 1 and 2 respectively. Median joint laxity was 1.02 mm and 0.74 mm respectively for each reader. Correlation and agreement between readers was good. This study provides key new insight into use of US for diagnosis as PLRI as it defines normal ulnohumeral distances and demonstrates widening when applying the posterolateral drawer stress maneuver. Further evaluation of this technique is required in patients with PLRI


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 13 - 13
1 Mar 2017
Mihalko W Lowell J Woodard E Arnholt C MacDonald D Kurtz S
Full Access

Introduction. Total knee arthroplasty (TKA) is a successful procedure for end stage arthritis of the knee that is being performed on an exponential basis year after year. Most surgeons agree that soft tissue balancing of the TKA is a paramount to provide a successful TKA. We utilized a set of retrieved lower extremities with an existing TKA to measure the laxity of the knee in all three planes to see if wear scores of the implants correlated to the laxity measured. This data has never been reported in the literature. Methods. IRB approval was obtained for the local retrieval program. Each specimen was retrieved after removing the skin, subcutaneous tissue and muscle from mid thigh to mid tibia. The femur, tibia and fibula were then transversely cut to remove the specimen for testing. Each specimen was then imaged using a flouroscopic imaging unit (OEC, Inc) in the AP, Lateral and sunrise views. These images were used to analyze whether there were any signs of osteolysis. Each specimen was mounted into a custom knee testing machine (Little Rock AR). Each specimen then was tested at full extension, 30, 60, and 90 degrees of flexion. At each flexion angle the specimen was subjected to a 10Nm varus and valgus torque, a 1.5Nm internal and external rotational torque and a 35N anterior and posterior directed force. Each specimen's implants were removed to record manufacturer and lot numbers. Polyethylene damage scores (Hood et al. JBMR 1983) were then calculated in the medial, lateral and backside of the polyethylene insert as well as on the medial and lateral femoral condyle. (Figure 1) Correlation coefficients were then calculated to show any relationship with soft tissue balancing in all three planes and wear scores. Results. No correlation > 0.4 existed for any surface damage on the polyethylene or femoral condyle to laxity in any plane (Figure 2). The highest correlations were found with backside wear (0.5) to internal and external rotational laxity. Two thirds of the specimens had more varus than valgus laxity in the coronal plane (p=0.03). Discussion/Conclusion. This is the first report of necropsy obtained retrievals where the soft tissue laxity of the knee was recorded. Although small numbers with different implant types the data shows that limited correlation exists between implant surface damage and increased laxity. The strongest correlation we found was backside wear to transverse plane laxity in flexion and extension, but this most likely is related to locking mechanism design. It seems in this set of implants that the soft tissue laxity did not affect implant bone interfaces as all were over 10 years from surgery. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 113 - 113
1 Jan 2016
Kiyomatsu H Hino K Kutsuna T Watamori K Onishi Y Miura H
Full Access

Introduction. Total knee arthroprasty (TKA) is an excellent treatment with osteoarthritis of the knee joint. The acquisition of joint stability after TKA is one of the most important factors to improve the patient's quality of life. Deep flexion of knee joint is often demanded in daily life, and stability in flexed knee position is also important. But there were few papers reporting about laxity in flexed knee position. This study aimed to analyze influence of pre-operative alignment on post-operative varus-valgus joint laxity in TKA. We investigated the varus-valgus laxity of knee joint throughout flexion intra-operatively before and after prosthetic implantation. Methods. A total of 20 knees underwent TKA using posterior-stabilised (PS) type component by the measured resection method were included in this study. The varus-valgus joint laxity of knee was measured using an intra-operative navigation system at every 10 ° throughout the range of movement under general anesthesia. We examined the correlations between the pre-operative femorotibial angle (FTA) and varus-valgus joint laxity by method of least squeres. We divided the patients group into two populations according to pre-operative FTA. Large FTA group had more than or equal to 186 °of pre-operative FTA. Small FTA group had less than 186 °pre-operative FTA. T- test was performed between those populations. Result. After TKA, mean FTA improved from 189.15 °(SD = 5.87 SD: Standard Deviation) to 172.65 °(SD = 1.59). All of patients were improved in the Knee Society Score (KSS) and range of motion (ROM) (Fig 1). There were significant positive correlations between the pre-operative FTA and varus-valgus joint laxity in flexion of 90 °(CC = 0.48, P < 0.05 CC: Correlation Coefficient P: probability value), 100 °(CC = 0.57, P < 0.01), 110 °(CC = 0.55, P < 0.05), and 120 °(CC = 0.57, P < 0.01). In the large FTA group, the varus-valgus joint laxities were larger than that of small FTA group in initial flexed position before TKA (Fig 2), whereas the varus-valgus joint laxities were larger in flexed position after TKA (Fig 3). Discussion. Our results showed that in patients who had large FTA and were underwent TKA using PS type component by the measured resection method, they had large varus-valgus joint laxities in flexed knee position. There is a possibility that the increase of laxity in the flexed knee position was due to acquisition of stability with releasing of medial collateral ligament in the extended knee position not but in flexed knee position. In this study we demonstrated correlations between the pre-operative FTA and varus-valgus joint laxity in flexed knee position. In the further study, we would like to investigate how the increasing laxities in the flexion knee position affect the clinical symptoms


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 63 - 63
1 Aug 2013
Klingenstein G Cross M Plaskos C Li A Nam D Lyman S Pearle AD Mayman D
Full Access

Introduction. The aim of this study was to quantify mid-flexion laxity in a total knee arthroplasty with an elevated joint line, as compared to a native knee and a TKA with joint line maintained. Our hypothesis was joint line elevation of 4mm would increase coronal plane laxity throughout mid-flexion in a pattern distinct from the preoperative knee or in a TKA with native joint line. Methods. Six fresh-frozen cadaver legs from hip-to-toe underwent TKA with a posterior stabilised implant (APEX PS, OMNIlife Science, Inc.) using a computer navigation system equipped with a robotic cutting-guide, in this controlled laboratory cadaveric study. After the initial tibial and femoral resections were performed, the flexion and extension gaps were balanced using navigation, and a 4mm recut was made in the distal femur. The remaining femoral cuts were made, the femoral component was downsized by resecting an additional 4mm of bone off the posterior condyles, and the polyethylene was increased by 4mm to create a situation of a well-balanced knee with an elevated joint line. The navigation system was used to measure overall coronal plane laxity by measuring the mechanical alignment angle at maximum extension, 30, 45, 60 and 90(of flexion, when applying a standardised varus/valgus load of 9.8Nm across the knee using a 4kg spring-load located at 25cm distal to the knee joint line. Laxity was also measured in the native knee, as well as the native knee after a standard approach during TKA which included a medial release. Coronal plane laxity was defined as the absolute difference (in degrees) between the mean mechanical alignment angle obtained from applying a standardised varus and valgus stress at 0, 30, 45, 60 and 90(. Results. In full extension, 30(, 45(, 60(, and 90(of flexion, the native knee showed coronal plane laxity of 2.4, 6.5, 7.0, 7.8, and 9.5(, respectively. The above soft tissue releases produced increased laxity in extension and 30(of flexion. After TKA, the mean coronal plane motion was decreased at all flexion angles and remained consistent throughout arc of motion. With 4mm of joint line elevation, coronal-plane laxity increased by a mean of 1.4° at 30° of flexion (p=.0.0103), 1.5° at 45° of flexion (p=.0.0001), and 1.3° at 60° of flexion (p=0.0018) compared to the TKA with native joint line. Conversely, there was no difference in laxity at 0° and 90° between the initial TKA and after 4mm joint line elevation. Conclusions. The computer navigated, well balanced TKA with a maintained joint line showed consistent coronal plane laxity throughout all flexion angles, while the native knee showed greater laxity at 90° than in mid-flexion. Further, as suggested by retrospective clinical reports, this cadaver study confirms that joint line elevation of only 4mm results in greater coronal plane laxity in mid-flexion. These finding suggest that maintaining the joint line in TKA is necessary to avoid increased mid-flexion, coronal plane laxity


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 196 - 196
1 Mar 2013
Hino K Miura H Ishimaru M
Full Access

Functional joint stability and accurate component alignment are crucial for a successful clinical outcome after TKA. However, there are few methods to evaluate joint stability during TKA surgery. Activities of daily living often cause mechanical load to the knee joint not only in full extension but also in mid-flexion. Computer navigation systems are useful for intra-operative monitoring of joint positioning and movements. The purpose of this study was to compare the varus-valgus stability between knees treated with cruciate-retaining (CR) and posterior-stabilized (PS) TKA at different angles in the range of motion (ROM) especially in mid-flexion, using the navigation technique. Thirty two knees that underwent TKA with computer navigation technology (precisionN Knee Navigation Software version 4.0, Stryker, Kalamazoo, MI) were evaluated (CR:16; PS:16). The investigator gently applied physiologically allowable maximal manual varus-valgus stress to the knee without angular acceleration, while moving the leg from full extension to flexion, and the mechanical femoral-tibial angle was measured automatically by the navigation system at every 10 degrees throughout the ROM. This measurement cycle was repeated for 3 to 4 times, and maximal varus-valgus laxity was determined as the sum of varus and valgus stress angles for each of the predetermined knee flexion angles. The results of the navigated measurements were used to evaluate varus-valgus instability throughout the ROM and the differences in varus-valgus laxity between pre-TKA (Prior to bone cutting, after navigation registration and suturing of the joint capsule) and post-TKA(After confirming that the TKA components and inserts were firmly placed in an appropriate position, the surgical incision was completely closed). The differences in varus-valgus laxity between the CR and PS groups were compared using the Student's t-test. The knees examined showed the greatest preoperative laxity at 20 to 40 degrees of flexion, with no statistically significant difference between the CR and PS groups (See Figure 1). However, postoperative assessment revealed that PS knees had more varus-valgus laxity than CR knees at all ROM angles examined, and the differences were statistically significant in the flexion range of 10 to 70 degrees (See Figure.2). The differences between preoperative and postoperative joint laxity were analyzed separately for the CR and PS groups. After CR-TKA, joint laxity decreased across all degrees of knee flexion. The differences between preoperative and postoperative joint laxity were statistically significant for the flexion range of 110 to 120 degrees (See Figure.3). On the other hand, knees treated with PS-TKA showed an increase in joint laxity for the flexion range of 10 to 90 degrees. The differences between the preoperative and postoperative values were statistically significant for the flexion range of 10 to 20 degrees in PS-TKA (See Figure.4). We successfully evaluated varus-valgus laxity in this study using a navigation system. The results showed that PS knees had greater varus-valgus laxity than CR knees throughout the ROM, and the differences were statistically significant for the flexion range of 10 to 70 degrees. Altogether, we conclude that PS knees have more mid-flexion laxity than CR knees


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 133 - 133
1 Mar 2017
Salvadore G Meere P Chu L Zhou X Walker P
Full Access

INTRODUCTION. There are many factors which contribute to function after TKA. In this study we focus on the effect of varus-valgus (VV) balancing measured externally. A loose knee can show instability (Sharkey 2014) while too tight, flexion can be limited. Equal lateral-medial balancing at surgery leads to a better result (Unitt 2008; Gustke 2014), which is generally the surgical goal. Indeed similar varus and valgus laxity angles have been found in most studies in vitro (Markolf 2015; Boguszewski 2015) and in vivo (Schultz 2007; Clarke 2016; Heesterbeek 2008). The angular ranges have been 3–5 degrees at 10–15 Nm of knee moment, females having the higher angles. The goal of this study was to measure the varus and valgus laxity, as well as the functional outcome scores, of two cohorts; well-functioning total knees after at least one year follow-up, and subjects with healthy knees in a similar age group to the TKR's. Our hypothesis was that the results will be equal in the two groups. METHODS & MATERIALS. 50 normal subjects average age 66 (27 male, 23 female) and 50 TKA at 1 year follow-up minimum average age 68 years (16 male, 34 female) were recruited in this IRB study. The TKA's were performed by one surgeon (PAM) of one TKA design, balancing by gap equalization. Subjects completed a KSS evaluation form to determine functional, objective, and satisfaction scores. Varus and valgus measurements were made using the Smart Knee Fixture (Figure 1)(Borukhov 2016) at 20 deg flexion with a moment of 10 Nm. RESULTS. The statistical results are summarized in table 1. There was no significant difference in either varus or valgus laxity between the two groups (p= 0.9, 0.3 respectively). Pearson's correlation coefficient between varus and valgus laxity of the healthy group was 0.42, while for the TKA group was 0.55. In both cohorts varus laxity was significant higher than valgus laxity (p= 0.001 for healthy subjects and p=0.0001 for TKA). The healthy group had higher functional and objective KSS scores (p= 0.005, and p=0.004 respectively), but the same satisfaction scores as the TKA (p=0.3) (Table 2). No correlation was found between the total laxity of the TKA group and the KSS scores (functional, objective and satisfaction). Total laxity in females was significantly higher than in males in the healthy group, but no differences was found in the TKA group. DISCUSSION. The hypothesis of equal varus and valgus angles in the 2 groups was supported. The larger varus angle implied a less stiff lateral collateral compared with the medial collateral. If the TKA's were balanced equally at surgery, it is possible there was ligament remodeling over time. However the functional scores were inferior for the TKA compared with normal. This finding has not been highlighted in the literature so far. The causes could include weak musculature (Yoshida 2013), non-physiologic kinematics due to the TKA design, or the use of rigid materials in the TKA. The result presents a challenge to improve outcomes after TKA. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 320 - 320
1 Dec 2013
Gejo R Motomura H Nogami M Sugimori K Kimura T
Full Access

Introduction:. One of the important factors for success in TKA is to achieve proper stability of the knee joint. It is currently unknown that how much joint laxity exists in mid-range to deep knee flexion, postoperatively. We hypothesized that retaining the PCL or not during TKA has an influence on the postoperative joint laxity from mid-range to deep knee flexion. The purpose of this study was to investigate the postoperative coronal joint laxity throughout the full range of motion by the 3-dimensional in vivo analysis, both in PS and CR TKA. Methods:. We implanted 5 knees with a PS TKA using a NexGen LPS-flex and 5 knees with a CR TKA using a NexGen CR-flex. All of them were the osteoarthritis patients. We performed all operations with a measured resection technique. Four weeks after TKA, the valgus- and varus-stress radiographic assessments were performed at the five flexion angles from full extension to maximum flexion. The patients sat on the radiolucent chair with their lower legs hanging down. The examiner held their thigh, and a force of 50N was applied 30 cm distal to the tibiofemoral joint. The series of static fluoroscopic images via a flat panel detector were stored digitally. A 3-dimentional to 2-dimentional techniqueusing an automated shape-matching algorithm was employed to determine the relative 3-dimentional positions of the femoral component and tibial component in each fluoroscopic image (KneeMotion; LEXI, Tokyo). On the coronal plane of the tibial component, the angle between the tangent line of the condyles of the femoral component and the tibial plateau was measured as the joint laxity for valgus (α valgus) or varus (α varus). The flexion angle between the femoral component and tibial component was also measured. Results:. The total laxity (α valgus + α varus) tended to increase until deep knee flexion in PS TKA. While in CR TKA, the total laxity tended to increase until mid-range of knee flexion and then decreased until maximum flexion (Fig. 1). PS TKA: In varus stress, the mean tilting angles were 2.4, 3.6, 3.6, 4.1, 5.4 degrees at −2.3, 25.3, 42.2, 72.1, 97.1 degrees of knee flexion, respectively. The tilting angle measured at maximum flexion was significantly larger than that measured at full extension (p < 0.05) (Fig. 2). CR TKA: In valgus stress, the mean tilting angles were 0.8, 2.8, 2.8, 2.0, 0.6 degrees at −6.4, 24.1, 35.8, 67.7, 87.8 degrees of knee flexion, respectively. The tilting angles measured at full extension and maximum flexion were significantly smaller than that measured at 24.1 and 35.8 degrees of knee flexion (p < 0.05) (Fig. 3). Discussion:. In PS TKA, joint laxity for varus at maximum flexion was significantly larger than that at full extension. While in CR TKA, joint laxity for varus indicated no significant differences among at each flexion angle. Moreover, joint laxity for valgus at full extension and maximum flexion were significantly smaller than that at mid-range flexion in CR TKA. Retaining the PCL during TKA has a strong influence on the postoperative coronal joint laxity especially in deep knee flexion


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 6 - 6
1 Mar 2013
Cross MB Klingenstein G Plaskos C Nam D Li A Pearle A Mayman DJ
Full Access

Introduction. The aim of this study was to quantitatively analyze the amount coronal plane laxity in mid-flexion that occurs with a loose extension gap in TKA. In the setting of a loose extension gap, we hypothesized that although full extension is achieved, a loose extension gap will ultimately lead to increased varus and/or valgus laxity throughout mid flexion. Methods. After obtaining IRB approval, six fresh-frozen cadaver legs from hip-to-toe underwent TKA with a posterior stabilized implant (APEX PS OMNIlife Science, Inc.) using a computer navigation system equipped with a robotic cutting-guide, in this controlled laboratory cadaveric study. After the initial tibial and femoral resections were performed, and the flexion and extension gaps were balanced using navigation, a 4 mm distal recut was made in the distal femur to create a loose extension gap (using the same thickness of polyethylene as the well-balanced case). Real implants were used in the study to eliminate error in any laxity inherent to the trials. The navigation system was used to measure overall coronal plane laxity by measuring the mechanical alignment angle at maximum extension, 30, 45, 60 and 90 degrees of flexion, when applying a standardized varus/valgus load of 9.8 [Nm] across the knee using a 4 kg spring-load located at 25 cm distal to the knee joint line. (Figure 1). Coronal plane laxity was defined as the absolute difference (in degrees) between the mean mechanical alignment angle obtained from applying a standardized varus and valgus stress at 0, 30, 45, 60 and 90 degrees. Each measurement was performed three separate times. Two tailed student t-tests were performed to analyze whether there was difference in the mean mechanical alignment angle at 0°, 30°, 45°, 60°, and 90° between the well balanced scenario and following a 4 mm recut in the distal femur creating a loose extension gap. Results. In the setting of a loose extension gap (4 mm distal recut), overall coronal-plane laxity was increased by a mean of 3.6° at 30° of flexion, 3.4° at 45° of flexion, and 2.8° at 60° of flexion (p < 0.05 for each flexion angle). (Figure 2) However, there was no difference in coronal plane laxity between the well-balanced TKA and the TKA with a loose extension gap at 0° and 90° of flexion, when applying a standardized varus and valgus load. Conclusions. Using a reliable, accurate, and reproducible method of measuring coronal plane laxity, we have shown that in the setting of a loose extension gap during total knee arthroplasty, coronal plane laxity will be significantly higher in mid-flexion compared to the well balanced state


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 128 - 128
1 Mar 2013
Klingenstein G Cross MB Plaskos C Nam D Li A Pearle A Mayman DJ
Full Access

Introduction. The aim of this study was to quantitatively analyze the amount coronal plane laxity in mid-flexion that occurs in a well-balanced knee with an elevated joint line of 4 mm. In the setting an elevated joint line, we hypothesized that we would observe an increased varus and/or valgus laxity throughout mid flexion. Methods. After obtaining IRB approval, nine fresh-frozen cadaver legs from hip-to-toe underwent TKA with a posterior stabilized implant (APEX PS, OMNIlife Science, Inc.) using a computer navigation system equipped with a robotic cutting-guide, in this controlled laboratory cadaveric study. After the initial tibial and femoral resections were performed, the flexion and extension gaps were balanced using navigation, and a 4 mm recut was made in the distal femur. The remaining femoral cuts were made, the femoral component was downsized by resecting an additional 4 mm of bone off the posterior condyles, and the polyethylene was increased by 4 mm to create a situation of a well-balanced knee with an elevated joint line. Real implants were used in the study to eliminate any inherent error or laxity in the trials. The navigation system was used to measure overall coronal plane laxity by measuring the mechanical alignment angle at maximum extension, 30, 45, 60 and 90 degrees of flexion, when applying a standardized varus/valgus load of 9.8 [Nm] across the knee using a 4 kg spring-load located at 25 cm distal to the knee joint line (Figure 1). Coronal plane laxity was defined as the absolute difference (in degrees) between the mean mechanical alignment angle obtained from applying a standardized varus and valgus stress at 0, 30, 45, 60 and 90 degrees. Each measurement was performed three separate times. Two tailed student t-tests were performed to analyze whether there was difference in the mean mechanical alignment angle at 0°, 30°, 45°, 60°, and 90° between the well balanced scenario and following a 4 mm joint line elevation with an otherwise well balanced knee. Results. In the setting of a 4 mm elevated joint line, overall coronal-plane laxity was increased by a mean of 1.5° at 45° of flexion, and 1.3° at 60° of flexion (p < 0.05 for each flexion angle). (Figure 2) However, there was no difference at 0° and 90° in the coronal plane laxity between the well-balanced TKA and the TKA that was well balanced but had a 4 mm elevated joint line. Conclusions. Using a reliable, accurate, and reproducible method of measuring coronal plane laxity, we have shown that in the setting of a an elevated joint during total knee arthroplasty, regardless if the knee is well balanced in full extension and 90° of flexion, coronal plane laxity will be significantly higher in mid-flexion compared to the well balanced state


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 67 - 67
1 Dec 2016
Schachar R Heard S Hiemstra L Buchko G Lafave M Kerslake S
Full Access

The aim of an anterior cruciate ligament (ACL) reconstruction is to regain functional stability of the knee following ACL injury, ideally allowing patients to return to their pre-injury level of activity. The purpose of this study was to assess clinical, functional and patient-centered outcomes a minimum of 1-year following ACL reconstruction. This study assessed for relationships between post-operative ACL graft laxity, functional testing performance, and scores on the ACL Quality of Life (ACL-QOL) questionnaire. A prospective cohort study design (n = 1938) was used to gather data on clinical laxity, functional performance and quality of life outcomes. Post-operative ACL laxity assessment using the Lachman and Pivot-shift tests was completed independently on each patient by a physiotherapist and an orthopaedic surgeon at a minimum of 12-months post-operatively. A battery of functional tests was performed including single leg balance, single leg landing, 4 single-leg hop tests, and tuck jumps. The hop tests provided a comparative assessment of limb-to-limb function including a single hop for distance, a 6m timed hop, a triple hop for distance, and a triple crossover hop. Patients com¬pleted the ACL-QOL at the 12-month and 24-month post-operative appointments. Descriptive and demographic data were collected for all patients. The degree and frequency of post-operative laxity was calculated. A Pearson r correlation coefficient was employed to determine the relationship between the presence of post-operative laxity and the ACL-QOL scores, between the battery of functional tests and the ACL-QOL scores, as well as between the functional tests and the laxity assessments. Data was gathered for 1512/1938 patients (78%). At clinical assessment a minimum of 1-year post-operatively, 13.2% of patients demonstrated a positive Lachman and/or Pivot-shift test. The mean ACL-QOL score for patients with no ACL laxity was 80.8/100, for patients with a positive Lachman or Pivot-shift test the mean score was 72.3/100, and for patients with both positive Lachman and Pivot-shift tests the score was 66.9/100. Pearson r correlation coefficient demonstrated a significant relationship between the presence of ACL graft laxity and ACL-QOL score (p < 0.05). Statistically significant correlations were evident between all of the operative limb single-leg hop tests and the post-operative ACL-QOL scores (p < 0.05). Statistically significant correlations were evident between the operative limb triple-hop tests and presence of ACL graft laxity (p < 0.05). Patients with clinically measurable ACL graft laxity demonstrate lower ACL-QOL scores as well as lower performance on a battery of functional tests. The disease-specific outcome measure was strongly correlated to the patient's ability to perform single-limb functional tests, indicating that the ACL-QOL score accurately predicted level of function


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 69 - 69
1 Dec 2016
Kopka M Rahnemani-Azar A Abebe E Labrum J Irrgang J Fu F Musahl V
Full Access

Knee laxity following anterior cruciate ligament (ACL) injury is a complex phenomenon influenced by various biomechanical and anatomical factors. The contribution of soft tissue injuries – such as ligaments, menisci, and capsule – has been previously defined, but less is known about the effects of bony morphology. (Tanaka et al, KSSTA 2012) The pivot shift test is frequently employed in the clinical setting to assess the combined rotational and translational laxity of the ACL deficient knee. In order to standardise the maneuver and allow for reproducible interpretation, the quantitative pivot shift test was developed. (Hoshino et al, KSSTA 2013) The aim of this study is to employ the quantitative pivot shift test to determine the effects of bone morphology as determined by magnetic resonance imaging (MRI) on rotatory laxity of the ACL deficient knee. Fifty-three ACL injured patients scheduled for surgical reconstruction (36 males and 17 females; 26±10 years) were prospectively enrolled in the study. Preoperative magnetic resonance imaging (MRI) scans were reviewed by two blinded observers and the following parameters were measured: medial and lateral tibial slope, tibial plateau width, femoral condyle width, bicondylar width, and notch width. (Musahl et al. KSSTA 2012). Preoperatively and under anaesthesia, a quantitative pivot shift test was performed on each patient by a single experienced examiner. An image analysis technique was used to quantify the lateral compartment translation during the maneuver. Subjects were classified as “high laxity” or “low laxity” based upon the median value of lateral compartment translation. (Hoshino et al. KSSTA 2012) Independent t-tests and univariate logistic regression were used to investigate the relationship between the pivot shift grade and various features of bone morphology. Statistical significance was set at p<0.05. A high inter-rater reliability was observed in all MRI measurements of bone morphology (ICC=0.72–0.88). The median lateral compartment translation during quantitative pivot shift testing was 2.8mm. Twenty-nine subjects were classified as “low laxity” (2.8mm). The lateral tibial plateau slope was significantly increased in “high laxity” patients (9.3+/−3.4mm versus 6.1+/−3.7mm; p<0.05). No other significant difference in bone morphology was observed between the groups. This study employed an objective assessment tool – the quantitative pivot shift test – to assess the contribution of various features of bone morphology to rotatory laxity in the ACL deficient knee. Increased lateral tibial plateau slope was shown to be a significant independent predictor of high laxity. These findings could help guide treatment strategies in patients with high grade rotatory laxity. Further research into the role of tibial osteotomies in this sub-group is warranted


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 44 - 44
1 Oct 2012
Song E Seon J Kang K Park C Yim J
Full Access

This study was performed to measure intra-operative varus-valgus laxities from 0° to 90° of flexion during cruciate retaining total knee arthroplasty (TKA) using the modified balanced gap technique. Forty nine patients awaiting unilateral TKA for osteoarthritis were enrolled into this prospective study. Flexion and extension gaps were measured at full extension and at 90° of flexion using a tensioning device before femoral bone cutting. After implantation and closing the medial parapatellar arthrotomy, varus-valgus laxities at 0, 30, 60 and 90° of flexion were also measured using a navigation system. Mean total varus-valgus laxities were significantly less at 0° of flexion (3.8±1.7°) than at the other selected flexion angles. Mean varus laxity was peaked at 3.1±2.2° at 60° of flexion and reached a nadir of 2.0±1.0° at 0° of flexion, which represented a significant difference. On increasing flexion from 0° to 60°, mean valgus laxity increased from 1.8±1.3° to 2.9±1.6°, which was significant, but no significant difference was found for other angles. The use of the balanced gap technique for cruciate retaining TKA using a navigation system, which allows accurate soft tissue balancing via real time gap size feedback, could be helpful for achieving good in vivo laxities throughout range of motion without significant mid flexion laxity


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 269 - 269
1 Mar 2013
Moon J Park K Byun J Seon J
Full Access

Background. One of advantages of single-radius femoral design was to offer better ligament stability based on a maintained isometry of extensor muslce during the whole range of motion. The purpose of this study was to compare intraoperative varus-valgus laxities from 0° to 90° of flexion in patients that received TKA using either a single-radius femoral design or multiradius femoral design. Methods. 56 TKAs with a single-radius femoral design (SR group) and 59 TKAs with multiradius femoral design (MR group) were included in this study. We measured and compared varus-valgus laxities at 0°, 30°, 60°, 90° of flexion using the navigation system and manual force between the 2 groups. Results. The mean total varus-valgus laxities in both groups were significantly less at 0° of flexion(3.2 ± 1.5° in SR group and 3.5 ± 1.8° in MR group) than other selected flexion anlge (p=0.011); but the difference was not significant between 2 groups (p=0.062). At 30°, 60° of flexion, the mean total varus-valgus laxities in SR group (6.2 ± 3.5° at 30° of flexion and 6.8 ± 1.5° at 60° of flexion) were significant less than those in MR group (9.2 ± 4.3° at 30° of flexion and 8.3 ± 3.8° at 60° of flexion) (p=0.027 and p=0.042, respectively). Conclusions. The single radius femoral designs showed significantly less intra-operative mid-flexion laxities compared with the multiradius femoral designs