Advertisement for orthosearch.org.uk
Results 1 - 20 of 22
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 59 - 59
1 Nov 2016
Goyal P Yuan X Teeter M McCalden R MacDonald S Vasarhelyi E McAuley J Naudie D Lanting B Howard J
Full Access

Studies that have previously examined the relationship between inclination angle and polyethylene wear have shown increased wear of conventional polyethylene with high inclination angles. To date, there have been no long term in vivo studies examining the correlation between cup position and polyethylene wear with highly crosslinked polyethylene.

An institutional arthroplasty database was used to identify patients who had metal-on-highly crosslinked polyethylene primary total hip arthroplasty (THA) using the same component design with a minimum follow up of 10 years ago. A modified RSA examination setup was utilised, recreating standard anteroposterior (AP) and cross-table lateral exams in a single biplane RSA acquisition. Three dimensional head penetration was measured using the centre index method. The same radiographs were used to measure inclination angle and anteversion. Spearman correlation was used to show an association between the parameters of acetabular position and wear rate.

A total of 43 hips were included for analysis in this study. Average follow-up was 12.3 ± 1.2 years. The average linear wear rate was calculated to be 0.066 ± 0.066 mm/year. Inclination angle was not correlated with polyethylene wear rate (p=0.82). Anteversion was also not correlated with polyethylene wear rate (p=0.11). There was no statistical difference between wear rates of hips within Lewinnek's “safe zone” and those outside this “safe zone” (p=0.11). Males had a higher wear rate of 0.094 ± 0.089 mm/year compared to females with a wear rate of 0.046 ± 0.032 mm/year (p=0.045).

At long term follow up of greater than 10 years, highly cross linked polyethylene has very low wear rates. This excellent tribology is independent of acetabular position, but gender did impact wear rates. Due to the low wear rates, follow-up of even longer term is suggested to examine variables affecting wear.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 32 - 32
1 Dec 2022
Fransen B Bengoa F Neufeld M Sheridan G Garbuz D Howard L
Full Access

With the introduction of highly crosslinked polyethylene (HXLPE) in total hip arthroplasty (THA), orthopaedic surgeons have moved towards using larger femoral heads at the cost of thinner liners to decrease the risk of instability. Several short and mid-term studies have shown minimal liner wear with the use HXLPE liners, but the safety of using thinner HXPLE liners to maximize femoral head size remains uncertain and concerns that this may lead to premature failure exist. Our objective was to analyze the outcomes for primary THA done with HXLPE liners in patients who have a 36-mm head or larger and a cup of 52-mm or smaller, with a minimum of 10-year follow-up. Additionally, linear and volumetric wear rates of the HXLPE were evaluated in those with a minimum of seven-year follow-up. We hypothesized that there would be minimal wear and good clinical outcome. Between 2000 and 2010, we retrospectively identified 55 patients that underwent a primary THA performed in a high-volume single tertiary referral center using HXLPE liners with 36-mm or larger heads in cups with an outer diameter of or 52-mm or smaller. Patient characteristics, implant details including liner thickness, death, complications, and all cause revisions were recorded. Patients that had a minimum radiographic follow-up of seven years were assessed radiographically for linear and volumetric wear. Wear was calculated using ROMAN, a validated open-source software by two independent researchers on anteroposterior X-rays of the pelvis. A total of 55 patients were identified and included, with a mean age of 74.8 (range 38.67 - 95.9) years and a mean BMI of 28.98 (range 18.87 - 63-68). Fifty-one (94.4%) of patients were female. Twenty-six (47.7%) patients died during the follow-up period. Three patients were revised, none for liner wear, fracture or dissociation. Twenty-two patients had a radiographic follow-up of minimum seven years (mean 9.9 years, min-max 7.5 –13.7) and were included in the long-term radiographic analysis. Liner thickness was 5.5 mm at 45 degrees in all cases but one, who had a liner thickness of 4.7mm, and all patients had a cobalt-chrome head. Cup sizes were 52mm (n=15, 68%) and 50mm (n=7, 32%). Mean linear liner wear was 0.0470 mm/year (range 0 - 0.2628 mm) and mean volumetric wear was 127.69 mm3/year (range 0 - 721.23 mm3/year). Using HXLPE liners with 36-mm heads or bigger in 52-mm cups or smaller is safe, with low rates of linear and volumetric wear in the mid to long-term follow-up. Patients did not require revision surgery for liner complications, including liner fracture, dissociation, or wear. Our results suggest that the advantages of using larger heads should outweigh the potential risks of using thin HXLPE liners


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 13 - 13
1 Feb 2021
Gardner C Karbanee N Wang L Traynor A Cracaoanu I Thompson J Hardaker C
Full Access

Introduction. Total Hip Arthroplasty (THA) devices are now increasingly subjected to a progressively greater range of kinematic and loading regimes from substantially younger and more active patients. In the interest of ensuring adequate THA solutions for all patient groups, THA polyethylene acetabular liner (PE Liner) wear representative of younger, heavier, and more active patients (referred to as HA in this study) warrants further understanding. Previous studies have investigated HA joint related morbidity [1]. Current or past rugby players are more likely to report osteoarthritis, osteoporosis, and joint replacement than a general population. This investigation aimed to provide a preliminary understanding of HA patient specific PE liner tribological performance during Standard Walking (SW) gait in comparison to IS0:14242-1:2014 standardized testing. Materials and Methods. Nine healthy male subjects volunteered for a gait lab-based study to collect kinematics and loading profiles. Owing to limitations in subject selection, five subjects wore a weighted jacket to increase Body Mass Index ≥30 (BMI). An induced increase in Bodyweight was capped (<30%BW) to avoid significantly effecting gait [3] (mean=11%BW). Six subjects identified as HA per BMI≥30, but with anthropometric ratios indicative of lower body fat as previously detailed by the author [2] (Waist-to-hip circumference ratio and waist circumference-to-height ratio). Three subjects identified as Normal (BMI<25). Instrumented force plate loading profiles were scaled (≈270%BW) in agreement with instrumented hip force data [4]. A previously verified THA (Pinnacle® Marathon® 36×56mm, DePuy Synthes) Finite Element Analysis wear model based on Archard's law and modified time hardening model [5] was used to predict geometrical changes due to wear and deformation, respectively (Figure 1). Subject dependent kinematic and loading conditions were sampled to generate, for both legs, 19 SW simulation runs using a central composite design of response surface method. Results. HA group demonstrated comparable SW gait characteristics and Range of Motion (RoM) to the Normal group (p>0.1) (Figure 2) but statistically greater SW peak loads, PE liner wear rates, deformation, and penetration after 3Mc (Million cycles) of SW (p<0.01). HA group demonstrated comparable RoM (p>0.4) and peak loading to ISO-14242-1:2014 (p>0.1) although, up to 8° increase in flexion-extension angle was observed. The HA group demonstrated statistically greater wear rates (mean 7.5% increase) to ISO-14242-1:2014 (p<0.05) (Figure 3). No difference in PE liner deformation or penetration was observed (p>0.4). Discussion. This study detailed only a 19. th. percentile within a broader HA population (BW=91kg, n=485) [6] however, were statistically worst-case compared to a Normal group and ISO-14242-1:2014. A 95. th. percentile HA population (BW=127kg) may produce lower PE liner tribological performance than reported in this investigation and therefore, warrants further investigation. Further studies would be beneficial to determine whether the increase in PE liner wear rate for HA patients is predictable based on kinematics and loading alone, or whether influences exist in design inputs and surgical factors. Conclusion. The HA population detailed in this study (representative of a 19. th. percentile) demonstrated statistically greater SW PE liner wear rates compared to ISO-14242-1:2014. This study may have implications for the test methods considered appropriate to verify novel designs. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 42 - 42
1 Dec 2022
Fransen B Howard L MacDonell T Bengoa F Garbuz D Sheridan G Neufeld M
Full Access

Increased femoral head size reduces the rate of dislocation after total hip arthroplasty (THA). With the introduction of highly crosslinked polyethylene (HXLPE) liners in THA there has been a trend towards using larger size femoral heads in relatively smaller cup sizes, theoretically increasing the risk of liner fracture, wear, or aseptic loosening. Short to medium follow-up studies have not demonstrated a negative effect of using thinner HXLPE liners. However, there is concern that these thinner liners may prematurely fail in the long-term, especially in those with thinner liners. The aim of this study was to evaluate the long-term survival and revision rates of HXLPE liners in primary THA, as well as the effect of liner thickness on these outcomes. We hypothesized that there would be no significant differences between the different liner thicknesses. We performed a retrospective database analysis from a single center of all primary total hip replacements using HXLPE liners from 2010 and earlier, including all femoral head sizes. All procedures were performed by fellowship trained arthroplasty surgeons. Patient characteristics, implant details including liner thickness, death, and revisions (all causes) were recorded. Patients were grouped for analysis for each millimeter of PE thickness (e.g. 4.0-4.9mm, 5.0-5.9mm). Kaplan-Meier survival estimates were estimated with all-cause and aseptic revisions as the endpoints. A total of 2354 patients (2584 hips) were included (mean age 64.3 years, min-max 19-96). Mean BMI was 29.0 and 47.6% was female. Mean follow-up was 13.2 years (range 11.0-18.8). Liner thickness varied from 4.9 to 12.7 mm. Seven patients had a liner thickness <5.0mm and 859 had a liner thickness of <6.0mm. Head sizes were 28mm (n=85, 3.3%), 32mm (n=1214, 47.0%), 36mm (n=1176, 45.5%), and 40mm (n=109, 4.2%), and 98.4% were metal heads. There were 101 revisions, and in 78 of these cases the liner was revised. Reason for revision was instability/dislocation (n=34), pseudotumor/aseptic lymphocyte-dominant vasculitis associated lesion (n=18), fracture (n=17), early loosening (n=11), infection (n=7), aseptic loosening (n=4), and other (n=10). When grouped by liner thickness, there were no significant differences between the groups when looking at all-cause revision (p=0.112) or aseptic revision (p=0.116). In our cohort, there were no significant differences in all-cause or aseptic revisions between any of the liner thickness groups at long-term follow-up. Our results indicate that using thinner HXPE liners to maximize femoral head size in THA does not lead to increased complications or liner failures at medium to long term follow-up. As such, orthopedic surgeons can consider the use of larger heads at the cost of liner thickness a safe practice to reduce the risk of dislocation after THA when using HXLPE liners


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 25 - 25
1 Jun 2012
Chotai P Shon WY Han SB Yoon YC Park YH Siddaraju VM
Full Access

CLS Spotorno expansion acetabular cup is in use since 1984 for uncemented Metal-Polyethylene (PE) total hip arthroplasties (THA). Metal-PE articulations are notoriously known to wear and lead to failure of THA. However, catastrophic breakage of expansion acetabular cup is rare. Our 74-year-old male who was diagnosed with bilateral osteonecrosis of femoral head, underwent bilateral THA using CLS Spotorno metal expansion acetabular cups (Protek, AG, Bern) in 1991. He had irregular follow-up since then. In 2005, he presented with right hip pain and inability to walk without support. Anteroposterior (AP) hip radiographs established the diagnosis of catastrophic failure of right THA secondary to severe liner wear and acetabular osteolysis. Patient chose to postpone the revision surgery and opted for wheel chair ambulation. He presented 4 years later, when the right hip pain became unbearable. Anteroposterior as well as lateral hip radiographs showed worsening of cup breakage with superolateral migration of metal femoral head. Pelvic CT scans confirmed severe acetabular osteolysis in DeLee and Charnley's Zone 1, 2 & 3 with secondary loss of bony support to the expansion cup [Fig. 1]. A revision THA was strongly advised. However, patient sought for a pain-free rather than a fully ambulatory right hip and decided against a second THA. We performed resection arthroplasty of right hip with bone cement loading, respecting patient's decision. Intra-operatively, the metal femoral head was lying in the huge osteolytic defect in the roof of acetabulum. The 3 cranial wings of metal expansion shell were broken with corresponding wear of the cranial pole of polyethylene liner [Fig. 2]. We were able to gratify patient's expectations and patient is able to ambulate with the aid of one crutch at latest follow-up. However, it is clearly evident that a timely and regular follow-up would have identified the initial PE wear and secondary osteolysis. Additionally, it can avoid extensive procedures like a revision THA or resection arthroplasty by allowing simple procedures like modular PE liner and the femoral head exchange. A comprehensive review of literature for catastrophic acetabular component breakage revealed 10 such cases, although with different cup designs. To the best of our knowledge, this is the first case of CLS expansion cup breakage for metal-PE articulation. Majority of these cases have a presence of extensive liner wear and pelvic osteolysis along with a post-operative irregular follow up. This case stresses on importance of regular follow-up even after many years of index THA to identify early PE wear and prevent secondary catastrophic complications


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 74 - 74
1 Apr 2019
Micera G Moroni A Orsini R Sinapi F Fabbri D Acri F Miscione MT Mosca S
Full Access

Objectives. Total hip arthroplasty (THA) is one of the most successful surgical procedures; several bearing technologies have been used, however none of these is optimal. Metal on polycarbonate-urethane (PCU) is a new bearing technology with several potential advantages: PCU is a hydrophilic soft pliable implant quite similar in elasticity to human cartilage, offers biostability, high resistance to hydrolysis, oxidation, and calcification, no biodegradation, low wear rate and high corrosion resistance and can be coupled with large metal heads (Tribofit Hip System, THS). The aim of this prospective study was to report the survivorship and the clinical and radiographic outcomes and the metal ions dosage of a group of patients operated with metal on PCU arthroplasty featuring large metal diameter heads, at 5 years from surgery. Study Design & Methods. 68 consecutive patients treated with the THS were included. The patients have been contacted by phone call and invited to return to our centre for clinical (Oxford Hip Score, OHS, and Harris Hip Score, HHS), radiographic exam and metal ion levels evaluation. All the patients were operated with uncemented stems. Results. The survival rate is 100% and no major complications were seen. The average preoperative OHS was 17 (6–34), at follow-up it was 44 (40–48). The average preoperative HHS was 48 (12–76), at follow-up it was 93 (84–100). On the x rays taken at follow-up, no signs of periprosthetic bone rarefaction and/or osteolysis were seen. No signs of PCU liner wear were visible. At follow up mean Co serum level was 0.52 ng/mL (<0.1–2.5, sd 0.5), mean Cr level was 0.27 ng/mL (0.1–2.2, sd 0.2). In this prospective study at a mean follow up of 5 years, all implants were well functioning, with no radiological signs of loosening and normal serum levels of cobalt and chrome. Although large diameter metal heads and metal sleeve were used no trunnionosis occurred. Conclusions. We believe that these positive outcomes are due the positive biomechanical characteristics of PCU. These results need to be confirmed at a longer follow up and in a more active younger patient population


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 106 - 106
1 Apr 2019
Feskanin H Barnes B Loftus E Stroud N
Full Access

INTRODUCTION. Since the early 2000s, highly cross-linked (HXL) UHMWPE's have become a popular option with multiple experimental and clinical studies showing that gamma or electron radiation doses between 50–100kGY reduce wear and potentially extend the bearing life of UHMWPE. However, the increased wear resistance came at a compromise to mechanical properties due to the cross-linking process. Vitamin E has been added to some HXL UHMWPE materials to offer a solution to the compromise by increasing oxidation resistance and maintaining sufficient fatigue strength. However, limited data is available on the effect of the fabrication process, especially the method of irradiation, on the properties of the Vitamin E blended HXL UHMWPE. The purpose of this study was to evaluate the effects of adding the antioxidant vitamin E to highly crosslinked UHMWPE on wear rates. METHODS. Wear testing was performed on six highly crosslinked UHMWPE acetabular liners containing vitamin E (0.1% wt. alpha tocopherol) fabricated using the Cold Irradiation Mechanically Annealed (CIMA) process, initially cross-linked with approximately 100 kGy gamma irradiation, and terminally gamma sterilized. The liners were paired with three 40mm CoCr femoral heads and 40mm three ceramic femoral heads. Testing was completed per ASTM F1714 and ISO 14242 on an orbital hip joint wear simulator (Shore Western, California) and lubricated with 90% bovine calf serum, 20mM EDTA, 0.2% wt. NaN. 3. and DI water. A 1.1Hz Paul-type loading waveform with a peak of 2kN was used for a total of 5E6 wear cycles. Three loaded soak controls were used in parallel to adjust for fluid absorption. Samples were weighed every 5E5 wear cycles. RESULTS. The wear rates for the HXL blended vitamin-E liners were calculated using the slope of the linear regression over the steady state and resulted in a wear rate of 0.49mg/Mc. This is a decrease of approximately 95% compared to the 9.54 mg/Mc 28mm ID conventional UHMWPE wear rates as well as a notable difference for the other HXL UHMWPE liner wear rates discussed in the review. DISCUSSION. HXL blended vitamin-E 40mm liners demonstrated an approximate 95% reduction in wear rates compared to a 28mm ID conventional UHMWPE. The reduced wear rate confirmed the design expectation that a higher irradiation dose in the fabrication process resulted in an increased amount of polymer crosslinking. Additionally, the wear rate of the HXL blended vitamin-E liners studied was well below 20mg/Mc, which was shown by Dowd et al. to be the threshold of osteolysis in THA. SIGNIFICANCE. The HXL vitamin E blended UHMWPE liner tested in this study demonstrated reduced wear rates by approximately 95% compared to conventional polyethylene. Osteolysis-causing wear debris is reduced while maintaining other mechanical properties. This liner material and manufacturing process is a promising alternative to conventional polyethylene, but long-term clinical results are warranted


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 34 - 34
1 Dec 2017
Song E Seon J Lee D Yeo J
Full Access

Total knee arthroplasty using navigation system is known to be more effective than conventional methods in achieving more accurate bone resection and neutral alignment. Mobile bearing is also known to reduce wear and automatically correct rotational mal-alignment of the tibia but the long-term follow-up results of more than 10 years are extremely rare. The purpose of this study is to investigate the results of clinical and radiologic long-term follow-up and complications of total knee arthroplasty using navigation and multi-directional mobile bearing. From 2003 to 2006, a total of 111 navigation TKAs using multi-directional mobile bearing design were carried out and reviewed retrospectively. TKAs were performed by two experienced surgeons at one institute. Of the 111 patients, 102 were women and 9 were men. The mean duration of follow-up was 11.4 ± 1.0 years (range, 10.1 to 14.08 years). Clinical outcomes were evaluated in terms of Knee Society Score, Hospital for Special Surgery score, Western Ontario and McMaster University (WOMAC) score, range of motion and complications. Long-term radiological outcomes and survival rates were evaluated at least 10 years. Average preoperative HSS score was 66.5 ± 9.8 and KSS pain and function score were 25.0 ± 11.8 and 44.5 ± 12.3, respectively. Scores improved to 94.1 ± 8.2, 46.6 ± 11.6 and 88.2 ± 14.6 at the last follow up, respectively. Mean preoperative WOMAC scores of 75.8 ± 16.5 improved to 13.8 ± 16.0 at last follow-up. Five knees required re-operation, two for liner breakage for liner wear, one for distal femoral fracture and one for infection. The estimated 10-year prosthesis survival rates for any reason and for prosthesis-related problems were 95.5% and 97.4%, respectively. TKAs using each techniques resulted in similar good clinical outcomes and post-operative leg alignments. Robotic and navigation TKA appeared to reduce the number of postoperative leg alignment outliers and revision rate compared to conventional TKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 49 - 49
1 Mar 2017
Nambu S Hines G Timmerman I
Full Access

Background. Published simulator studies for metal/UHMWPE bearings couples showed that increasing the femoral head diameter by 1 mm increases wear by approximately 10% due to increased contact area. Therefore, there are concerns about increased wear with dual mobility hip bearings. Purpose of the study. The purpose of the study was to compare wear from dual mobility hip bearings to that with traditional fixed bearings. In addition, for the dual mobility bearings, the effect of femoral head material type on the liner wear was also evaluated. Methods. The bearings selected for the study are listed in Table 1. Prior to the start of the test all liners were soaked in lubricant for 48 hours. Hip testing was performed on a Shore Western Orbital Bearing machine in the anatomically oriented position. A simulated gait profile (synchronized at +/-23° biaxial rocking motion) with a minimum/maximum 200/2000N force was applied to the bearings at frequency of 1Hz. The lubricant used for the testing was 25% bovine serum with 0.2 % sodium azide, 20 mMol EDTA and distilled water. The test was interrupted at regular intervals for gravimetric assessment of wear amount. Findings of Study. Figure 1 shows total wear at 3 Mc and wear rates (determined from the slope of the linear regression) for all the groups. At 3 Mc, dual mobility bearings with stainless steel femoral head demonstrated 5% lower wear rate than those articulated against CoCrMo femoral heads. However, there was no statistically significant difference in the observed wear rate due to the femoral head material type. The results from the study also exhibited lower wear and wear rate for dual mobility bearings compared to fixed bearings. Dual mobility bearings with CoCrMo femoral head and stainless steel femoral head demonstrated 17% and 21% lower wear rate when compared to fixed bearings. Although dual mobility bearings possess greater contact area (due to the contact between head-liner and liner-shell compared to only head-liner in fixed bearings), no such increased trend in wear was observed. Conclusions. Dual mobility hip bearings are designed to reduce the risk of dislocation and allow for increased range of motion thus improving joint function and stability. The results from the study demonstrate that dual mobility bearings have comparable wear properties when compared to fixed bearings. For figure/table, please contact authors directly


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 61 - 61
1 Feb 2015
Callaghan J
Full Access

Reoperation on the acetabular side of the total hip arthroplasty construct because of acetabular liner wear with or without extensive osteolysis is the most common reoperation performed in revision hip surgery today. The options of revision of the component or component retention, liner exchange (cemented or direct reinsertion) and bone grafting represent a classic surgeon dilemma of choices and compromises. CT scanning is helpful in determining the size and location of osteolytic lesions. My preference is to retain the existing shell when possible especially when there are large osteolytic lesions but where structural support is maintained. The advantages of complete revision are easy access to lytic lesions, ability to change component position and the ability to use contemporary designs with optimal bearing surfaces (for wear and dislocation prevention). The disadvantage is bone disruption including pelvic discontinuity with component removal (less so with Explant Systems) and difficult reconstructions due to excessive bone loss from the osteolytic defects (sometimes requiring cup cages). The advantage of component retention is that structural integrity of the pelvis is maintained and in general, a higher quality polyethylene is utilised. For large lesions I use windows to debride and bone graft the lesions. If the locking mechanism is inadequate, cementing a liner, including a constrained liner in some cases, that has been scored in a spider web configuration provides durable results at 5-year follow-up. The downside to liner exchange is potential instability. We immobilise all liner exchange patients postoperatively


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 35 - 35
1 Jan 2016
Shon WY Yun HH Suh DH
Full Access

The PowerPoint (2007 Version; Microsoft, Redmond, Wash) method is reported to have improved repeatability and reproducibility and is better able to detect differences in radiographs than previously established manual wear measurement methods. In this study, the PowerPoint method and the Dorr and Wan method were used to calculate the polyethylene liner wear volume. The wear volumes of retrieved polyethylene liners calculated from the 3D laser scanning method were compared with each method. This study hypothesized that the wear volume calculated by the PowerPoint method would correlate well with the wear volume measured by 3D laser scanning method. Between March 2004 and June 2009, 22 polyethylene liners from 20 patients were collected during revision Total hip arthroplasty(THA). Exclusion criteria included (1) missing an early primary postoperative radiograph or prerevision radiograph, (2) evidence of acetabular loosening or migration, (3) existence of significant mismatch between early primary postoperative radiograph and prerevision radiographs on vertical axis, and (4) liner wear-through. After applying these exclusion criteria, 17 retrieved polyethylene liners from 16 patients were included in this study. Wear volumes were calculated using the PowerPoint, the Dorr and Wan methods by 3 independent experienced observers who were unaware of the study design, and 3-dimensional (3D) laser scanning methods. Spearman correlation coefficients for wear volume results indicated strong correlations between the PowerPoint and 3D laser scanning methods (range, 0.89–0.93). On the other hand, Spearman correlation analysis revealed only moderate correlations between the Dorr and Wan and 3D laser scanning methods (range, 0.67–0.77). The PowerPoint method is an efficient tool for the sequential radiologic follow-up of patients after THA. The PowerPoint method can be used to monitor linear wear after THA and could serve as an alternative method when computerized methods are not available


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 76 - 76
1 Nov 2015
Sculco T
Full Access

There are many types and articulating surfaces in acetabular cups. Most of the designs currently available are modular, the liner snapping into a locking mechanism of some type. These modular inserts may be polyethylene, usually highly crosslinked polyethylene, or ceramic. Metal shells used in metal-on-metal devices are usually of a monoblock design. The elliptical monoblock design has been available for 20 years and was originally made of Titanium with a compression molded polyethylene liner. Tantalum (trabecular metal) was used as the shell material in the more recent designs and the polyethylene is actually molded directly into the tantalum framework. Monoblock acetabular components have a number of advantages. They do not allow access to the ilium because there are no holes in the socket shell with the monoblock construct. They require no locking mechanism which may increase metallic debris. No back surface liner wear can occur because all motion is eliminated at the liner/shell interface. However, because of this absence of screw holes there is an inability to visualise the floor of the acetabulum and perfect coaptation between the shell and the acetabular floor may not occur. The presence of dome gaps of greater than 1.5 mm have been noted in 5% of these components but these have not compromised implant stability and in a review of over 600 cups there has been no change in implant position. Results with over 258 monoblock cups with a minimum of 10-year follow-up (10–15 years) have been excellent. (Poultsides, et al) The incidence of pelvic osteolysis was not seen in any patient in this series. There were 3 revisions for instability but none for mechanical failure. There were 3 femoral revisions for loosening but the cup was intact and not revised in these patients. Utilizing the Livermore measurement method polyethylene wear averages 0.08 mm per year (0.06 – 0.13 mm) and there have been no revisions for wear. Radiographic evaluation demonstrates stable bony interface in all patients. At minimum 10- year follow-up the monoblock acetabular component with compression molded polyethylene confirms the theoretical advantages of this design and results have been excellent. Moen et al have demonstrated no osteolysis in CT scans in tantalum monoblock cups at a follow up of 10.3 years


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 76 - 76
1 Jul 2014
Sculco T
Full Access

There are many types and articulating surfaces in acetabular cups. Most of the designs currently available are modular, the liner snapping into a locking mechanism of some type. These modular inserts may be polyethylene, usually highly crosslinked polyethylene, or ceramic. Metal shells used in metal on metal devices are usually of a monoblock design. The elliptical monoblock design has been available for 20 years and was originally made of Titanium with a compression molded polyethylene liner. Tantalum (trabecular metal) was used as the shell material in the more recent designs and the polyethylene is actually molded directly into the tantalum framework. Monoblock acetabular components have a number of advantages. They do not allow access to the ilium because there are no holes in the socket shell with the monoblock construct. They require no locking mechanism which may increase metallic debris. No back surface liner wear can occur because all motion is eliminated at the liner/shell interface. However, because of this absence of screw holes there is an inability to visualise the floor of the acetabulum and perfect coaptation between the shell and the acetabular floor may not occur. The presence of dome gaps of greater than 1.5mm have been noted in 5% of these components but these have not compromised implant stability and in a review of over 600 cups there has been no change in implant position. The elliptical shape of the cup makes the mouth of the acetabular component 2mm greater than the dome so that an exceptionally strong acetabular rim fit results. Results with over 258 monoblock cups with a minimum of 10-year follow up (10–15 years) have been excellent (Poultsides, et al.). The incidence of pelvic osteolysis was not seen in any patient in this series. There were 3 revisions for instability but none for mechanical failure. There were three femoral revisions for loosening but the cup was intact and not revised in these patients. Utilising the Livermore measurement method polyethylene wear averages 0.08mm per year (0.06mm-0.13mm) and there have been no revisions for wear. Radiographic evaluation demonstrates stable bony interface in all patients. At minimum 10-year follow up the monoblock acetabular component with compression molded polyethylene confirms the theoretical advantages of this design and results have been excellent. Moen et al. have demonstrated no osteolysis in CT scans in tantalum monoblock cups at a follow up of 10.3 years


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 111 - 111
1 Sep 2012
Raman R Johnson G Shaw C Graham V Cleaver N
Full Access

To report the clinical, functional and radiological outcome of consecutive primary hip arthroplasties using large diameter (36mm and above) ceramic bearing couples. We believe this to be one of the first independent series. We prospectively reviewed 519 consecutive primary THA using fully HAC coated acetabular shell and fully HAC coated stem (JRI Ltd) in 502 patients, with minimum follow-up of 32 months. A Biolox-Delta ceramic liner with an 18 deg taper and Biolox-Delta ceramic head (36mm and 40mm) were used in all cases, by 3 surgeons. None were lost to follow-up. Clinical outcome was measured using Harris, Charnley Oxford, EuroQol EQ-5D scores. Radiographs were systematically analysed for implant position, loosening, migration, osteolysis. Return to sports and hobbies were recorded. Mean age was 64.9 yrs (11–82yrs). There were no dislocations. 50–62mm acetabular shells were used. 36 mm head was used in 92% of cases. No acetabular revisions were performed for aseptic loosening. Other re-operations were for infection (1), peri-prosthetic fractures (1). The mean Harris and Oxford scores were 95 (88–97) and 14.1 (12–33) respectively. Harris and Oxford scores were 95 (88–97) and 14.1 (12–33) respectively. The Charnley score was 5.7 (5–6) for pain, 5.8 (4–6) for movement and 5.9 (4–6) for mobility. There was a significant improvement in the range of movement of the hip. There was no migration of acetabular component. Acetabular radiolucencies were present around one shell. No acetabular liner wear was demonstrated in CT Scans. Mean inclination was 7.4deg(37–65). Mean EQ-5D description scores and health thermometer scores were 0.84 (0.71–0.92) and 88 (66–96). With an end point of definite or probable loosening, the probability of survival was 100%. Overall survival with removal or repeat revision of either component for any reason as the end point was 99.1%. The results of this study show an excellent clinical and functional outcome and support the use of a fully coated prosthesis with ceramic bearing couples. We envisage monitoring and prospectively reporting the long-term outcome of this series of patients


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 86 - 86
1 Sep 2012
Harvie P Fletcher T Sloan K Beaver R
Full Access

In order to avoid complications of hip arthroplasty such as dislocation, impingement and eccentric liner wear accurate acetabular orientation is essential. The three-dimensional assessment of acetabular cup orientation using two-dimensional plain radiographs is inaccurate. The aim of this study was to develop a CT-based protocol to accurately measure postoperative acetabular cup inclination and anteversion establishing which bony reference points facilitate the most accurate estimation of these variables. An all-polyethylene acetabular liner was implanted into a cadaveric acetabulum. A conventional pelvic CT scan was performed and reformatted images created in both functional and anterior pelvic planes. CT images were transferred to a Freedom-Plus Graphics software package enabling an identical, virtual, three dimensional model of the cadaveric pelvis to be created. Using a computer interface this model could be ‘palpated’, bony landmarks accurately identified and definitive acetabular cup orientation established. Using original CT scans, acetabular cup inclination and anteversion were measured on five occasions by eight radiographers using differing predetermined bony landmarks as reference points. The intra- and inter-observer variation in measurement of acetabular cup orientation using varying bony reference points was assessed in comparison to the previously elucidated definitive cup position. Statistical analysis using appropriate ANOVA models was performed in order to assess the significance of the results obtained. Virtually derived definitive acetabular cup orientation was measured showing cup inclination and anteversion as 41.0 and 22.5 degrees respectively. Mean CT-based measurement of cup inclination and anteversion by eight radiographers were 43.1 and 20.8 degrees respectively. No statistically significant difference was found in intra- and inter-observer recorded results. No statistically significant differences were found when using different bony landmarks for the measurement of inclination and anteversion (p= 0.255 and 0.324 respectively). CT assessment of acetabular component inclination and anteversion is accurate, reliable and reproducible when measured using differing bony landmarks as reference points. We recommend measuring acetabular inclination and anteversion from the inferior acetabular wall/teardrop and posterior ischium respectively. The Perth CT hip protocol is easily reproducible in the clinical setting both in the routine assessment of hip arthroplasty patients and as research tool. In our unit its initial application will be to validate commercially available hip navigation systems


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 32 - 32
1 May 2013
Mont M
Full Access

Osteonecrosis is a pathologic bone condition caused by a disruption in the osseous circulation and impairment of normal cellular function which ultimately leads to bone infarction, osteocyte death, and joint degeneration. The incidence of osteonecrosis in the general population has been reported to be approximately 3 per 100,000 people. Up to 20,000 new cases are diagnosed each year and this condition is the indication for surgery in approximately 10% of all total hip arthroplasties performed in the United States. The hip is the most common joint affected, with approximately 75% of cases occurring in this joint, although multifocal osteonecrosis (defined as involvement of more than 3 joints) can also occur. Other commonly observed locations for osteonecrotic lesions include the knee, shoulder, wrist, and ankle. Joint preserving procedures may be performed for early stages without evidence of collapse, while intermediate lesions (e.g. femoral head collapse < 2 mm) may be candidates for joint preserving procedures such as bone grafting and rotational or proximal femoral varus osteotomies. However, total hip arthroplasty is usually required in advanced cases where there are large lesions, deformation of the femoral head, or acetabular involvement. Osteonecrosis has been traditionally associated with poor outcomes following total hip arthroplasty. However, recent studies using newer implant designs and surgical techniques have demonstrated outcomes comparable to the general total hip arthroplasty population. Johansson and colleagues, in a systematic reviewed of the literature, observed a decrease in the revision rate from 17% to 3% for arthroplasties performed later than 1990. The clinical outcomes were also comparable between patients who had osteoarthritis and those who had osteonecrosis. The young age at which these patients often present makes bearing surface choice challenging. Bearings that have low liner wear rates, such as ceramic bearings, had concerns with implant durability following reports of chipping and fracture of the ceramic. However, recent studies evaluating ceramic bearings in young patients with osteonecrosis have demonstrated that newer third and fourth generation ceramics have solved many of these issues. Byun et al. evaluated the clinical outcomes of ceramic bearings in patients younger than 30 years who had osteonecrosis and observed that at six year follow-up, none of the bearings had failed and that 95% of patients were able to continue with their prior occupation. Similar results at even longer follow-up periods were reported by Kim and colleagues who observed no failures in 93 ceramic hips at a mean follow-up of 11 years. Polyethylene wear continues to be a concern for these younger, more active patients. Early studies with non-highly cross linked polyethylene demonstrated high wear rates in these patients. Although newer polyethylene designs have become available which have demonstrated substantially lower wear than the traditional ultra high molecular weight polyethylene cups of the recent past, further studies are needed with these newer polyethylene bearings in the osteonecrosis population. The goal of treatment for femoral head osteonecrosis remains early diagnosis and joint preservation. For patients who present with femoral head collapse or acetabular involvement, total hip arthroplasty often is the only treatment option left. Although clinical outcomes for these patients were initially poor in earlier reports, the advent of modern cementless arthroplasty components, refined surgical techniques, and newer bearing designs have greatly improved the outcomes of this procedure


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 215 - 215
1 Sep 2012
Weisenburger J Garvin K Haider H
Full Access

Sub-micron polyethylene wear particles have been identified as a cause of osteolysis frequently found in the bone surrounding total hip replacements (THR). However, the wear of the hard femoral components is much less understood and is often assumed to be negligible; yet, metal particulate and ionic debris are of rising clinical concern. This study investigates not only the wear rates of ultra high molecular weight polyethylene (UHMWPE) acetabular liners, but also the wear rates of metallic femoral heads in several THR designs and sizes, which until now have usually been ignored in this type of wear study. Conventional UHMWPE liners (three 40mm, three 44mm I.D.), highly cross-linked (HXL) UHMWPE liners (three 40mm, three 44mm I.D.), and HXL UHMWPE liners with vitamin E blended (four 36mm and six 40mm I.D.) were tested against CoCrMo femoral heads, appropriately sized and matched to the particular THR design, on a 12 station hip simulator (AMTI, Boston). The specimens were mounted in a physiologically correct manner on custom made fixtures, lubricated with bovine serum (20g/L protein, 37°C) and subjected to the walking cycle specified in ISO-14242-1 at 1Hz for 5 million cycles (Mc). The femoral heads and acetabular liners were carefully cleaned and gravimetrically weighed at standard intervals, and the wear was corrected with the weight gain of active load soak control heads and liners, and calibration weights. The conventional UHMWPE liners showed the highest wear (40mm: 55.7±3.00mg/Mc, 44mm: 72.0±2.81mg/Mc) while HXL liners displayed much lower wear (40mm: 2.58±0.97mg/Mc, 44mm: 14.2±3.57mg/Mc) as expected. Vitamin E liners also showed very low wear (36mm: 20.1±2.00mg/Mc, 40mm: 5.97±0.50mg/Mc). Interestingly however, the CoCr femoral heads also showed measurable wear for all liner types and designs (Conv. 40mm: 0.28±0.16mm. 3. /Mc, 44mm: 0.22±0.014mm. 3. /Mc, HXL 40mm: 0.041±0.0060mm. 3. /Mc, 44mm: 0.21±0.0024mm. 3. /Mc, Vit-E 36mm: 0.029±0.0097mm. 3. /Mc, 40mm: 0.064±0.019mm. 3. /Mc). Heads in a previously reported 44mm metal-on-metal test [1] showed burnishing and scratching (0.22±0.022 mm. 3. /Mc, liners: 0.16±0.013 mm. 3. /Mc). The burnishing of the metal femoral heads from all tests (including the MOM test) can be seen in Fig. 1 [Fig. 1 here]. An example showing the circular scratching patterns seen on nearly all femoral heads is shown in Fig. 2, of a 40mm femoral head that was paired with a HXL vitamin E liner [Fig. 2 here]. Our simulator results confirm low wear for HXL UHMWPE acetabular liners both with and without vitamin E. Wear of metal femoral heads, although much less in weight than liner wear, was still clearly detectable and measurable for CoCr heads articulating against all types of UHMWPE liners. Therefore, in wear studies focusing on hard-on-soft material couples such as MOP, the metal head wear should not be ignored


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 583 - 583
1 Dec 2013
Weisenburger J Garvin K Haider H
Full Access

Testing wear durability of UHMWPE joint replacement bearings under abrasive conditions (mimicking in vivo conditions when metallic components become scratched from bone or cement debris) is useful in screening new bearing materials or alternative processing methods. Adding third body particle debris in testing brings the complications of minimal (if any) increase in wear with particles lodging into the plastic bearings potentially causing unknown errors for gravimetric wear measurements. Alternatively, testing those bearings against already scratched metallic components may provide a cleaner route without such complications. This requires a method to reproducibly create scratches resembling the damage seen on retrievals. This study introduces such a method, and investigates wear of UHMWPE bearings against metallic femoral hip components that have been intentionally scratched. In this technique, femoral hip heads were pressed and sunk into a bed of abrasive beads under a known load (712N, one body weight), and this created longitudinal scratches. Latitudinal scratches were generated by rotating the sunken femoral heads ± 90° about their polar axis while under the same load. This process (pressing into the abrasive beads and then turning ± 90°) was repeated 10 times on each femoral component which resulted in thousands of random scratch patterns, but with statistically repeatable overall severity and similar visually to retrievals (Fig. 1). We then evaluated the technique through a hip wear study. Twelve UHMWPE liners (40 mm I.D.) were tested against CoCrMo femoral heads on a 12-station hip simulator (AMTI). Liners were three materials: a) Three conventional (GUR1020, gamma-sterilized 3.5 Mrad), b) Three highly cross-linked (HXL) (GUR1020, 10 Mrad, annealed, EtO-sterilized, artificially aged), and c) Six HXL w/vitamin-E (GUR1020, 12 Mrad, annealed, EtO-sterilized, aged). The test comprised three phases. Phase-I: standard clean (non-abrasive, non-scratched) test for 5 Mc; Phase-II: Pulverized PMMA was added to serum at 700 mg/L (to introduce abrasive conditions); however, effects were minimal after 2 Mc (7 Mc total). Phase-III: Femoral heads were scratched using our method. Phase-III lasted for 1 Mc, for a testing total of 8 Mc (ISO-14242-1 waveforms). All specimens were lubricated with bovine serum (37°C, 30g/L protein). Plastic liners were cleaned and weighed at standard intervals, and wear was corrected with active loaded soak controls. The wear results are shown in Fig. 2. The conventional liners showed the highest wear (Phase-I: 55.7 ± 3.00 mg/Mc, Phase-II: 49.2 ± 0.520 mg/Mc, Phase-III: 124 ± 28.9 mg/Mc) while HXL liners displayed much lower wear (Phase-I: 2.58 ± 0.969 mg/Mc; Phase-II: 4.93 ± 1.22 mg/Mc; Phase-III: 9.92 ± 4.64 mg/Mc). Vitamin-E HXL liners also showed very low wear (Phase-I: 5.97 ± 0.50 mg/Mc, Phase-II: 8.89 ± 1.40 mg/Mc, Phase-III: 11.9 ± 2.70 mg/Mc). Addition of the PMMA powder during Phase-II increased liner wear, but the surfaces did not appear damaged like retrievals. Wear rates between Phase-I and Phase-III doubled due to scratching the femoral heads for all material types, a statistically significant increase (p < 0.05). Our results confirm that the scratching procedure successfully created a severe wear situation for the bearings. Future work will involve abrasive testing on knee components to determine if the method is successful there too


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 171 - 171
1 Sep 2012
Shen B Lai O Yang J Pei F
Full Access

Background and Objective. Total hip arthroplasty (THA) has been applied to treat pain and disability in patients with post-traumatic arthritis after acetabular fracture for many years. However, the midterm and long-term results of THA for this unique population are still controversial. According to previous studies, we found that uncemented acetabular reconstructions were usually performed in patients who were most likely to have the best results and an abnormal acetabular structure was usually the reason for THA failure. In this study, we evaluated the midterm results of using uncement acetabular components to treat posttraumatic arthritis after acetabular fracture. In addition, we investigated the effects of different acetabular fracture treatments and fracture patterns on THA. Materials and Methods. Between January 2000 to December 2003, 34 uncemented acetabular reconstructions were performed in 34 patients for posttraumatic arthritis after acetabular fractures. Among them, 31 patients underwent complete clinical and radiographic follow-up for an average of 6.3 years (range, 3.1–8.4 years). There were 22 men and 9 women. The patients' average age was 51 ± 12 years (range, 27–74 years) at the time of arthroplasty. The average interval from fracture to THA was 5.58 ± 4.42 years (range, 0.75–17.5 years). Of the 31 patients, 19 had undergone ORIF (open-reduction group) and 12 had received conservative treatment for the acetabular fractures (conservative-treatment group). Then, 14 had simple pattern fractures (simple group) and 17 had complex pattern fractures (complex group). After midterm follow-up, the radiographic and clinic results of the different groups were compared. Results. During 6.3 years' follow up, no infection occurred and no revision was needed in the 31 patients. In the open-reduction and conservative-treatment groups, the respective averages for duration of surgery, intraoperative blood loss, and amount of blood transfused were 138 ± 29 minutes and 98 ± 16 minutes (P < .001), 726 ± 288 mL and 525 ± 101 mL (P = .01), and 1,130 ± 437 mL and 1,016 ± 422 mL (P = .62). In the complex group and the simple group, the respective averages for duration of surgery, intraoperative blood loss, and amount of blood transfused were 132 ± 28 minutes and 109 ± 31 minutes (P = .042), 741 ± 221 mL and 536 ± 248 mL (P = .02), and 1,100 ± 414 mL and 1,075 ± 456 mL (P = .91). The average Harris Hip Score increased from 49 ± 15 before surgery to 89 ± 5 in the latest follow up, and 29 patients (94%) had either excellent or good results. The average Harris Hip Score for the open-reduction group and the conservative-treatment group increased to 87 ± 6 and 91 ± 3 (P = .07), respectively, after surgery; for the complex group and the simple group, it increased to 88 ± 6 and 90 ± 4 (P = .25), respectively. There was no significant difference between the open-reduction group and the conservative-treatment group or between the complex group and the simple group regarding the number of hips with excellent and good results. Of our 31 patients, none had a change in acetabular component abduction of >4°. The average horizontal migration of cup was 1.48 ± 0.46 mm (range, 0.7–2.33 mm), and the average vertical migration was 1.41 ± 0.54 mm (range, 0.5–2.51 mm). The average rate of polyethylene liner wear was 0.25 ± 0.11 mm/y (range, 0.03–0.41 mm/y). Average wear rates were 0.25 ± 0.12 mm/y and 0.24 ± 0.11 mm/y for the open-reduction group and the conservative-treatment group (P = .72), respectively, and 0.24 ± 0.13 mm/y and 0.26 ± 0.10 mm/y in the complex group and the simple group (P = .67), respectively. The average rate of polyethylene wear for all patients was positively related to BMI (r = .36; P = .047). After THA, all 31 patients had a reconstructed hip center within 20 mm of vertical and horizontal symmetry compared with the contralateral hip, including 27 patients (87%) with anatomic restoration and 4 patients with reconstructed hip center between 10–20 mm of vertical and horizontal symmetry. Anatomic restoration was positively related to fracture treatment (r = .48; P = .006), but it had no relation to fracture pattern (r = .16; P = .40). Conclusion. Uncement acetabular reconstruction following acetabular fracture had favorable midterm results. Fracture treatments and patterns are associated with increased operative time and hemorrhage amount. Open reduction and internal fixation of fracture favours anatomic restoration of hip rotational center


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 56 - 56
1 Apr 2018
Clarke I Shon W Lu Z Donaldson T
Full Access

Expectations for ceramic-on-metal (COM) bearings included (i) optimal lubrication due to smoother ceramic heads (ii), reduction of metal ions due to elimination of CoCr heads, and (iii) ‘differential hardness’ reducing adhesive wear and squeaking (Firkins 2001, Williams 2007). Additional benefits included (iv) use of heads larger than for ceramic-on-ceramic (COC), (v) reduction in taper corrosion and (vi) simulator studies clearly demonstrated metal ions and wear both reduced compared to MOM (Firkins 2001, Williams 2007, Ishida 2007). However, contemporary ‘3rd body wear’ paradigms focused only on metal debris size range 0.025–0.035um (Firkins 2001). Thus, neglected was the effect of hip impingement, provoking release of large metal particles sized 20–200um (Clarke 2013). In this study, we compared COM retrievals using hypotheses that adverse COM cases would demonstrate a combination of (a) steeply inclined cups, (b) liner “edge-loading”, (c) Ti6Al4V contamination on ceramic, and (d) evidence of 3rd-body CoCr wear by large particles. As a case example, this 51-year old female had her metal-polyethylene (MPE) bearing revised to COM in June 2011. She reported no symptoms 1-year post-op, but scans revealed a palpable mass in the inguinal region of left hip. By March 2013 the patient reported mild pain in her hip, which progressed to severe by April 2014. Scans showed a solid and cystic iliopsoas bursitis while cup position had changed from 43o to 73o inclination. Revision was performed in June 2014, her joint tissues were found extensively stained due to metal contamination, and histology described formation of a large pseudotumor. Analysis of retrieved components was by interferometry, SEM and EDS. Detailed maps were made of wear areas in heads and cups and volumetric wear was determined by CMM techniques. This adverse COM example revealed large diametral mismatch (595um) compared to COM controls (75–115um). The ceramic head had a broad polar stripe of CoCr contamination, roughness 0.1–0.3um high. Equatorial ceramic areas showed arrays of thin metal smears that demonstrated elemental Ti and Al. The CoCr liner revealed wear area into cup rim, as “edge loading”, and also featured a focal rim-defect over 18o circumferential arc. Liner scratches were 20um wide and larger, and wear-rate of CoCr liner averaged approximately 50mm3 per year. In contrast, ceramic head had minimal wear. Our study highlights the underappreciated risk of impingement by metallic prosthetic components. Prior studies of ceramic heads showed black metallic smears. With COM we can anticipate that the broad polar smear will be CoCr alloy (wear of liner on head). However, Ti6Al4V smearing on ceramic heads is a notable signpost indicating impingement by the Ti6Al4V acetabular shell. The femoral neck (Ti6Al4V: CoCr), may also be damaged. Release of large metal particles, 1500-times larger than prior predictions, provoke a particularly adverse ‘3rd body wear’ (Halim, 2015). Such cases confirm our four hypotheses, that COM bearings will then fail in a way similar to MOM. In contrast, COC bearings are immune to such impingement and 3rd-body metal damage