The objectives of the study were to investigate demographic, injury and surgery/treatment-associated factors that could influence clinical outcome, following Autologous Chondrocyte Implantation (ACI) in a large, “real-world”, 20 year
An adult acquired flatfoot deformity (AAFD) is a complex 3D deformity. Surgical correction consists of a medial calcaneal osteotomy (MCO) but shows limitations due to the current 2D assessment. Therefore, the aim is to determine the influence of an MCO on the
The large bone defects with high risk of delayed bone union and pseudoarthrosis remain significant clinical challenge. Aim of the present study was the investigation of the critical size fracture healing process in transgenic mice using a novel beta-TCP scaffold. The luciferase transgenic mice strains (BALB/C-Tg(NF-kappaB-RE-luc)-Xen) and FVB/N-Tg(Vegfr2-luc)-Xen were used. Critical size fracture on femur was performed and stabilized using external fixation (RISystem). The fracture was bridged with a synthetic scaffold with and without Strontium. In consequence, the expression levels of NF-kappaB and VEGFR2 could be monitored in a
Introduction and Objective. Individuals with type 2 diabetes (T2D) have a 3-fold increased risk of bone fracture compared to non-diabetics, with the majority of fractures occurring in the hip, vertebrae and wrists. However, unlike osteoporosis, in T2D, increased bone fragility is generally not accompanied by a reduction in bone mineral density (BMD). This implies that T2D is explained by poorer bone quality, whereby the intrinsic properties of the bone tissue itself are impaired, rather than bone mass. Yet, the mechanics remain unclear. The objective of this study is to (1) assess the fracture mechanics of bone at the structural and tissue level; and (2) investigate for changes in the composition of bone tissue along with measuring total fluorescent advanced glycation end products (fAGEs) from the skin, as T2D progresses with age in Zucker diabetic fatty (ZDF (fa/fa)) and lean Zucker (ZL (fa/+)) rats. Materials and Methods. Right ulnae and skin sections were harvested from ZDF (fa/fa) (T2D) and ZL (fa/+) (Control) rats at 12 and 46 weeks (wks) of age (n = 8, per strain and age) and frozen. Right ulnae were thawed for 12 hrs before micro-CT (μCT) scanning to assess the microstructure and measure BMD. After scanning, ulnae were loaded until failure via three-point bending. Fourier transform-infrared microspectroscopy (FTIR) was used to measure various bone mineral- and collagen-related parameters such as, mineral-to-matrix ratio and nonenzymatic cross-link ratio. Finally, fAGEs were measured from skin sections using fluorescence spectrometry and an absorbance assay, reported in units of ng quinine/ mg collagen. Results. At 12 and 46 wks bone size was significantly smaller in length (p < 0.01), cortical area (p < 0.001) and cross-sectional moment of inertia (p < 0.001) in T2D rats compared to age-matched controls. A slight reduction in BMD was observed in T2D rats compared to controls at both ages, however, this was not significant. Structural properties of T2D bone were significantly altered at 12 and 46 wks, with bending rigidity increasing approximately 2.5-fold and 1.5-fold in control and T2D rats with age, respectively (p < 0.0001). Similarly, yield and ultimate moment significantly reduced in T2D rats with age in comparison to controls (p < 0.0001). Energy absorbed to failure was significantly reduced in T2D rats at 46 weeks of age compared to controls (p < 0.01). The amount of energy absorbed to failure increased approximately 1.4-fold from 12 to 46 wks in control rats, however, in T2D rats a reduction was seen with age, although not significant. At 12 wks, there was no significant deficits in tissue material properties, whereas, at 46 wks a significant reduction in yield stress, yield strain and ultimate stress was observed for T2D rats in comparison to controls (p < 0.05). Conclusions. These findings show that
Introduction. Skeletal abnormalities caused by disproportioned bone overgrowth (LBO), are a common trait in Marfan syndrome (MFS), a connective tissue disease caused by mutations in the extracellular matrix (ECM) protein and TGFβ regulator fibrillin-1 (Fbn1). The cause of LBO in MFS is unknown and therapies are not available. Fibrillin-1 hypomorphic mouse model (Fbn1mgR/mgR) faithfully replicates MFS skeletal manifestations including elongated bones however, its early demise due aortic rupture limit the magnitude of LBO investigation. Materials and Methods. To circumvent Fbn1mgR/mgR lethality and investigate the contribution of specific skeletal tissues to LBO, Fbn1 gene expression was targeted in developing limbs by crossing Fbn1Lox/Lox mice with Prx1-Cre, in or bone with Osx-Cre, in cartilage and perichondrium with Col2-Cre, in skeletal muscles with Mef2c-Cre, and ligaments and tendons with Scx-Cre. Bones length of Fbn1 conditional mice KO was measured and relevant histological, cellular and biomechanical parameters were assessed. Results. Fbn1Prx1−/+ and Fbn1Prx1−/− mice had longer limbs bones compared to WT mice and amount of fibrillin-1 in the limb matrix was inversely proportional to bone length. Interestingly, Fbn1 gene targeting in ligaments/tendons resulted in LBO, altered tissues' mechanics and TGFβ-induced switch of tendon stem cells to chondrocytes. Gene targeting in other limb's anatomical locations did not result in LBO thus ruling out the participation of surrounding tissues to this bone phenotype. Discussion. Fbn1 gene inactivation in ligament/tendon is associated with increased local TGFβ, altered biomechanical properties and LBO. As previously reported, ligaments/tendons respond to changes in mechanical load by increasing the levels and/or the activity of TGF-β while bones undergo morphological adaptation in response to muscle loads transmitted by tendons. We hypothesize that dysregulation of local TGFβ signaling and altered biomechanical properties of fibrillin-1 deficient ligaments/tendons affect endochondral ossification by improper load transmission to bone. By showing ligament/tendon-dependent regulation of postnatal
This investigation of elite male collegiate basketball players aims to determine 1) the change in 3D dynamic functional variables across a single season and 2) correlate cross-season changes in functional variables with changes in clinical and quantitative ultrasound measures. Eleven male college basketball players (mean age 19, range 18–21 years) from a single team underwent baseline patellar tendon shear wave (SW) elastography and dynamic function at the start of the season (Visit1) and at a late-season time point (Visit2). Players reported their VISA-P scores every two weeks across their 24-week season. Each athlete performed a box-ground-box jump five times while 3D lower extremity kinematic and kinetic variables were collected. Functional measures included for landing (LAND) and take-off (TOFF) phases: knee valgus angle, valgus torque, and peak limb force. Knee valgus angular impulse and ground contact time were also measured. Paired t-tests and Pearson correlation coefficients (
Patellar tendinosis (PT) is common and can result in prolonged disability, especially in jumping athletes. Recently developed ultra-short-echo (UTE) MRI sequences allow for quantitative evaluation of tendon biostructure with T2* relaxometry. This study evaluated the relationships between changes over time (COT) in quantitative T2*-metrics, qualitative PT grades, and patient reported symptoms within 10 male basketball players from a single collegiate basketball team. All subjects completed weekly VISA-P symptomology questionnaires over the basketball season. Bilateral 3-Tesla MRIs (GE Healthcare) were obtained at pre- and post-season study visits. High-resolution, PD-weighted, FSE sequences were used to qualitatively grade PT. Quantitative T2*-metrics were evaluated using high-resolution, 3D, multi-echo, UTE-MRI sequences. Bilinear exponential fits of SI to corresponding echo time were used to calculate T2*-metrics. All qualitative and quantitative evaluations were region specific (proximal, middle, distal). Linear mixed effects models assessed associations of side and region with T2*-metrics. Spearman correlations evaluated relationships between outcome measures. Within and between study visits, significant side-to-side differences in T2*-metrics were found and were significantly impacted by leg dominance (p<0.05). Pre-season T2*-metrics correlated with COT in T2*-metrics, COT in T2*-metrics correlated with COT in qualitative PT grades, and post-season T2*-metrics correlated with max changes in VISA-P scores (ρ≥0.64). Quantitative T2*-metrics can detect PT and may be capable of predicting the onset of pathology. T2*-metrics could benefit the clinical management of PT: it is sensitive to changes in pathologic severity over time, and therefore can serve as a quantitative metric to guide treatment and evaluate intervention efficacy.
Introduction. Current treatments of rotational deformities of long bones in children are osteotomies and fixations. In recent years, the use of guided growth for correction of rotational deformities has been reported in several pre-clinical and clinical studies. Various techniques have been used, and different adverse effects, like growth retardation and articular deformities, have been reported. We tested a novel plate concept intended for correction of rotational deformities of long bones by guided growth, with sliding screw holes to allow for
Abstract. INTRODUCTION. In the NHS the structure of a “regular healthcare team” is no longer the case. The NHS is facing a workforce crisis where cross-covering of ward-based health professionals is at an all-time high, this includes nurses, doctors, therapists, pharmacists and clerks. Comprehensive post-operative care documentation is essential to maintain patient safety, reduce information clarification requests, delays in rehabilitation, treatment, and investigations. The value of complete surgical registry data is emerging, and in the UK this has recently become mandated, but the completeness of post-operative care documentation is not held to the same importance, and at present there is no published standard. This project summarises a 4-stage approach, including 6 audit cycles, >400 reviewed operation notes, over a 5 year period. OBJECTIVE. To deliver a sustainable change in post operative care documentation practices through quality improvement frameworks. METHODS. Stage 1: Characterise the problem and increase engagement through: SMART aims, process mapping, hybrid action-effect and driver diagram and stakeholder analysis. Multi disciplinary stakeholders were involved in achieving a consensus of evidence-based auditable criteria. Stage 2: Baseline audit to assess current practice. Stage 3: Intervention planning by stakeholders. Stage 4:
The concept of guided growth was proposed by Andry in 1741. In the last decades the concept has been widely used as implants has been introduced that can modulate the growth of the bone and pediatric
We sought to determine the relationship between patient preoperative psychological factors and postoperative THA outcomes. We performed an electronic search up to December 2021 using the following terms: “(mental OR psychological OR psychiatric) AND (function OR trait OR state OR predictor OR health) AND (outcome OR success OR recovery OR response) AND total joint arthroplasty)”. Peer-reviewed, English language studies regarding THA outcomes were analyzed for preoperative patient mental health metrics and objective postoperative results regarding pain, functionality and surgical complications. We extracted study data, assessed the risk of bias of included studies, grouped them by outcome measure and performed a GRADE assessment. Seventeen of 702 studies fulfilled inclusion criteria and were included in the review. Overall, compared to cohorts with a normal psychological status, patients with higher objective measures of preoperative depression and anxiety reported increased postoperative pain, decreased functionality and greater complications following THA. Additionally, participants with lower self-efficacy or somatization were found to have worse functional outcomes. Following surgery, both early and late pain scores remained higher in patients with preoperative depression and anxiety. Preoperative depression and anxiety may negatively impact patient reported postoperative pain, physical function and complications following THA. A meta-analysis was not performed because of the heterogeneity of studies, specifically the use of differing pain scales and measures of physical and psychological function as well as varied follow-up times. Future research could test interventions to treat pre-operative depression or anxiety and explore
Unicompartmental knee arthroplasty (UKA) and high tibial osteotomy (HTO) are well-established operative interventions in the treatment of knee osteoarthritis (KOA). However, which of these interventions is more beneficial, to patients with KOA, is not known and remains a topic of much debate. Aims: (i) To determine whether UKA or HTO is more beneficial in the treatment of isolated medial compartment KOA, via an assessment of patient-reported outcome measures (PROMs). (ii) To investigate the relationship between PROMs and radiographic parameters of knee joint orientation/alignment. This
There is an evolving body of evidence that demonstrates the role of epigenetic mechanisms, such as DNA-methylation in the pathogenesis of OA. This systematic review aims to summarize the current evidence of DNA methylation and its influence on the pathogenesis of OA. A pre-defined protocol in alignment with the PRISMA guidelines was employed to systematically review eight bibliographic databases, to identify associations between DNA-methylation of articular chondrocytes and osteoarthritis. A search of Medline (Ovid), Embase, Web-of-Science, Scopus, PubMed, Cinahl (EBSCOhost), Cochrane Central and Google Scholar was performed between 1st January 2015 to 31st January 2021. Data extraction was performed by two independent reviewers. During the observation period, we identified 15 gene specific studies and 24 genome wide methylation analyses. The gene specific studies mostly focused on the expression of pro-inflammatory markers, such as IL8 and MMP13 which are overexpressed in OA chondrocytes. DNA hypomethylation in the promoter region resulted in overexpression, whereas hypermethylation was seen in non-OA chondrocytes. Others reported on the association between OA risk genes and the DNA methylation pattern close to RUNX2, which is an important OA signal. The genome wide methylation studies reported mostly on differentially methylated regions comparing OA chondrocytes and non-OA chondrocytes. Clustering of the regions identified genes that are involved in skeletal morphogenesis and development. Differentially methylated regions were seen in hip OA and knee OA chondrocytes, and even within different regions of an OA affected knee joint, differentially methylated regions were identified depending on the disease stage. This systematic review demonstrates the growing evidence of epigenetic mechanisms, such as DNA methylation, in the pathogenesis of OA. In recent years, there has been a focus on the interplay between OA risk genes and DNA methylation changes which revealed a reactivation of genes responsible for endochondral ossification during development. These are important findings and may help to identify eventual future therapeutic targets. However, the current body of literature is mostly showing the differences in DNA methylation of OA chondrocytes and non-OA chondrocytes, but a true
Knee osteoarthritis (KOA) diagnosis is based on symptoms, assessed through questionnaires such as the WOMAC. However, the inconsistency of pain recording and the discrepancy between joint phenotype and symptoms highlight the need for objective biomarkers in KOA diagnosis. To this end, we study relationships among clinical and molecular data in a cohort of women (n=51) with Kellgren-Lawrence grade 2–3 KOA through Support Vector Machine (SVM) and a regulation network model (RNM). Clinical descriptors (i.e., pain catastrophism (CA); depression (DE); functionality (FU); joint pain (JP); rigidity (RI); sensitization (SE); synovitis (SY)) are used to classify patients. A Youden's test is performed for each classifier to determine optimal binarization thresholds for the descriptors. Thresholds are tested against patient stratification according to baseline WOMAC data from the Osteoarthritis Initiative, and the mean accuracy is 0.97. For our cohort, the data used as SVM inputs are KOA descriptors, synovial fluid (SL) proteomic measurements (n=25), and transcription factors (TF) activation obtained from RNM [2] stimulated with the SL measurements. The relative weights after classification reflect input importance. The performance of each classifier is evaluated through AUC-ROC analysis. The best classifier with clinical data is CA (AUC = 0.9), highly influenced by FU and SE, suggesting that kinesophobia is involved in pain perception. With SL input, leptin strongly influences every classifier, suggesting the importance of low-grade inflammation. When TF are used, the mean AUC is limited to 0.608, which can be related to the pleomorphic behaviour of osteoarthritic chondrocytes. Nevertheless, FU has an AUC of 0.7 with strong importance of FOXO downregulation. Though larger and
X-Linked Hypophosphataemia (XLH) is a rare, progressive, hereditary phosphate-wasting disorder characterised by excessive activity of fibroblast growth factor 23. The International XLH Registry was established to provide information on the natural history of XLH and impact of treatment on patient outcomes. The cross-sectional orthopaedic data presented are from the first interim analysis. The XLH Registry (NCT03193476) was initiated in August 2017, aims to recruit 1,200 children and adults with XLH, and will run for 10 years. At the time of analysis (Last Patient In: 30/11/2020; Database Lock: 29/03/2021) 579 subjects diagnosed with XLH were enrolled from 81 hospital sites in 16 countries (360 (62.2%) children, 217 (37.5%) adults, and 2 subjects of unknown age). Of subjects with retrospective clinical data available, skeletal deficits were the most frequently self-reported clinical problems for children (223/239, 93.3%) and adults (79/110, 71.8%). Retrospective fracture data were available for 183 subjects (72 children, 111 adults); 50 had a fracture (9 children, 41 adults). In children, fractures tended to occur in tibia/fibula and/or wrist; only adults reported large bone fractures. Joint conditions were noted for 46 subjects (6 children, 40 adults). For adults reporting osteoarthritis, knees (60%), hips (42.5%), and shoulders (22.5%) were the most frequently affected joints. Retrospective orthopaedic surgery data were collected for 151 subjects (52 children, 99 adults). Osteotomy was the most frequent surgery reported (n=108); joint replacements were recorded for adults only. This is the largest set of orthopaedic data from XLH subjects collected to date.
The aim of this research was to determine biomechanical markers which differentiate medial knee osteoarthritis (OA) patients who do and do not show structural progression over a 2-year period. A cohort of 36 subjects was selected from a
Treatment of both simple and complex patella fractures is a challenging clinical problem. The aim of this study was to investigate the biomechanical performance of recently developed lateral rim variable angle locking plates versus tension band wiring used for fixation of simple and complex patella fractures. Twelve pairs of human anatomical knees were used to simulate either two-part transverse simple AO/OTA 34C1 or five-part complex AO/OTA 34C3 patella fractures by means of osteotomies, with each fracture model created in six pairs. The complex fracture pattern was characterized by a medial and a lateral proximal fragment, together with an inferomedial, an inferolateral, and an inferior fragment mimicking comminution around the distal patellar pole. The specimens with simple fractures were pairwise assigned for fixation with either tension band wiring through two parallel cannulated screws, or a lateral rim variable angle locking plate. The knees with complex fractures were pairwise treated with either tension band wiring through two parallel cannulated screws plus circumferential cerclage wiring, or a lateral rim variable angle locking plate. Each specimen was tested over 5000 cycles by pulling on the quadriceps tendon, simulating active knee extension and passive knee flexion within the range of 90° flexion to full knee extension. Interfragmentary movements were captured via motion tracking. For both fracture types, the
Introduction. Understanding knee joint biomechanics is crucial, but studying Anterior cruciate ligament (ACL) biomechanics in human adolescents is challenging due to limited availability cadaveric specimens. This study aims to validate the adolescent porcine stifle joint as a model for ACL studies by examining the ACL's behavior under axial and torsion loads and assessing its deformation rate, stiffness, and load-to-failure. Methods. Human knee load during high-intensity sports can reach 5-6 times body weight. Based on these benchmarks, the study applied a force equivalent to 5-times body weight of juvenile porcine samples (90 pounds), estimating a force of 520N. Experiments involved 30 fresh porcine stifle joints (Yorkshire breed, Avg 90 lbs, 2-4 months old) stored at -22°C, then thawed and prepared. Joints were divided into three groups: control (load-to-failure test), axially loaded, and 30-degree torsion loaded. Using a servo-hydraulic material testing machine, the tibia's
This study aimed to quantify self-reported outcomes and walking gait biomechanics in patients following primary and revision THA. The specific goals of this study were to investigate: (i) if primary and revision THA patients have comparable preoperative outcomes; and (2) if revision THA patients have worse postoperative outcomes than primary THA patients. Forty-three patients undergoing primary THA for osteoarthritis and 23 patients undergoing revision THA were recruited and followed
To evaluate the therapeutic effect of Pulsed Electromagnetic Field (PEMF) in the treatment of meniscal tears in the avascular region. Seventy-two twelve-week-old male Sprague-Dawley rats with full-thickness