With the increase in the elderly population, there is a dramatic increase in the number of spinal fusions. Spinal fusion is usually performed in cases of primary instability. However it is also performed to prevent iatrogenic instability created during surgical treatment of spinal stenosis in most cases. In literature, up to 75% of adjacent segment disease (ASD) can be seen according to the follow-up time.1 Although ASD manifests itself with pathologies such as instability, foraminal stenosis, disc herniation or central stenosis.1,2 There are several reports in the literature regarding lumbar percutaneous transforaminal endoscopic interventions for lumbar foraminal stenosis or disc herniations. However, to the best our knowledge, there is no report about the treatment of central stenosis in ASD. In this study, we aimed to investigate the short-term results of unilateral biportal endoscopic decompressive laminotomy (UBEDL) technique in ASD cases with symptomatic central or lateral recess stenosis. The number of patients participating in the prospective study was 8. The mean follow-up was 6.9 (ranged 6 to 11) months. The mean age of the patients was 68 (5m, 3F). The development of ASD time after fusion was 30.6 months(ranged 19 to 42). Mean fused segments were 3 (ranged 2 to 8). Preoperative instability was present in 2 of the patients which was proven by dynamic lumbar x-rays. Preoperative mean VAS-back score was 7.8, VAS Leg score was 5.6. The preoperative mean JOA (Japanese Orthopaedic Association) score was 11.25. At 6th month follow-up, the mean VAS back score of the patients was 1, and the VAS leg score was 0.5. This improvement was statistically significant (p = 0.11 and 0.016, respectively). The mean JOA score at the 6th month was 22.6 and it was also statistically significant comparing preoperative JOA score(p = 0.011). The preoperative mean dural sac area measured in MR was 0.50 cm2, and it was measured as 2.1 cm2 at po 6 months.(p = 0.012). There was no progress in any patient's instability during follow-up. In orthopedic surgery, when implant related problems develop in any region of body (pseudoarthrosis, infection, adjacent fracture, etc.), it is generally treated by using more implants in its final operation. This approach is also widely used in spinal surgery.3 However, it carries more risk in terms of devoloping ASD, infection or another complications. In the literature, endoscopic procedures have almost always been used in the treatment of ventral pathologies which constitute only 10%. In ASD, disease devolops as characterized by wide facet joint arthrosis and hypertrophied ligamentum flavum in the cranial segment and it is mostly presented both lateral recess and santal stenosis symptoms (39%). In this study, we found that UBEDL provides successful results in the treatment of patients without no more muscle and ligament damage in ASD cases with spinal stenosis. One of the most important advantages of UBE is its ability to access both ventral and dorsal pathologies by minimally invasive endoscopic aproach. I think endoscopic decompression also plays an important role in the absence of additional instability at postoperatively in patients. UBE which has already been described in the literature given successful results in most of the spinal degenerative diseases besides it can also be used in the treatment of ASD. Studies with longer follow-up and higher patient numbers will provide more accurate results.
Epidural steroid injections can provide temporary relief of symptoms in the treatment of lumbar spinal stenosis. Surgery is indicated when conservative measures fail. We hypothesise that patients who gain temporary relief of symptoms from the administration of epidural steroid injections are more likely to result in an improvement in symptoms following surgical intervention compared to patients who do not respond to injection therapy. The records of patients who had received both an epidural injection and surgical intervention for lumbar spinal stenosis between July 2008 and July 2010 were identified and retrospectively reviewed. Relief of symptoms following epidural injection was noted at 6 weeks post procedure and the patients symptoms following surgical intervention was noted and classified according to MacNab's criteria at 3 months post-surgery.Background
Method
Despite the clinical relevance of back pain and intervertebral disc herniation, the lack of reliable models has strained their molecular understanding. We characterized the
Lower back pain (LBP) is a global problem. Countless in vitro studies have attempted to understand LBP and inform treatment protocols such as disc replacement devices (DRDs). A common method of reporting results is applying a linear fit to load-displacement behaviour, reporting the gradient as the specimen stiffness in that axis. This is favoured for speed, simplicity and repeatability but neglects key aspects including stiffening and hysteresis. Other fits such as polynomials and double sigmoids better address these characteristics, but solution parameters lack physical representation. The aim of this study was to implement an automated method to fit spinal load-displacement behaviour using viscoelastic models. Six porcine
Lower back pain (LBP) is a worldwide clinical problem and a prominent area for research. Numerous in vitro biomechanical studies on spine specimens have been undertaken, attempting to understand spinal response to loading and possible factors contributing to LBP. However, despite employing similar testing protocols, there are challenges in replicating in vivo conditions and significant variations in published results. The aim of this study was to use the University of Bath (UoB) spine simulator to perform tests to highlight the major limitations associated with six degree of freedom (DOF) dynamic spine testing. A steel helical spring was used as a validation model and was potted in Wood's metal. Six porcine
Injury of the intervertebral disc (IVD) can occur for many reasons including structural weakness due to disc degeneration. A common disc injury is herniation. A herniated nucleus can compress spinal nerves, causing pain, and nucleus depressurisation changes mechanical behaviour. Many studies have investigated in vitro IVD injuries including endplate fracture, incisions, and nucleotomy. There is, however, a lack of consensus on how the biomechanical behaviour of spinal motion segments is affected. The aim of this study was to induce defined changes to IVDs of spine specimens in vitro and apply 6 degree of freedom testing to evaluate the effect of these changes. Six porcine
Summary.
Background. The majority of studies assessing minimal clinical important difference in outcome do so for management of chronic low back pain. Those that identify MCID following spinal surgical intervention fail to differentiate between the different pathologies and treatments or use variable methods and anchors in the calculation. Aim. To identify the MCID in scores across the most common spinal surgical procedures using standardised methods of calculation. Method. Prospective longitudinal study following elective
Spinal total disc replacement (TDR) designs rely heavily on total hip replacement (THR) technology and it is therefore prudent to check that typical TDR devices have acceptable friction and torque behaviour. For spherical devices friction factor (f) is used in place of friction coefficient (mju). The range of loading for the
Immobilisation causes denervation-like changes in the motor endplates, decreases the content of IGF-I, and increases the number of IGF-I receptors in the spinal cord. In the rat we investigated whether similar changes occur after a fracture of the midshaft of the femur which had been treated by intramedullary fixation with adequate or undersized pins. A more pronounced reduction in muscle wet weight was seen after fixation by undersized pins as well as decreased ash density of the ipsilateral tibia which did not completely return to normal within the 12-week experimental period. The nicotinic cholinergic receptors in the motor endplates of tibialis anterior were increased (p <
0.01) and there was a significant increase (p <
0.02) in IGF-I receptors in the
Summary Statement. To test regenerative therapies for the intervertebral disc it is necessary to create a cavity in the nucleus polposus mantaining the annulus fibrosus intact. The transpedicular mechanical nucleotomy represents the best method for this purpose. Introduction. New cells/hydrogel based treatments for intervertebral disc (IVD) regeneration need to be tested on animal models before clinical translation. Ovine IVD represents a good model but doesn't allow the injection of a significant volume into intact IVD. The objective of the study was to compare different methods to create a cavity into ovine nucleus pulposus (NP) by enzymatic digestion (E), mechanical discectomy (M) and a combination of both (E+M), as a model to study IVD regeneration strategies with intact anulus fibrosus (AF). Methods. Ovine
Summary Statement. Tandem stenosis is a prevalent condition in an Asian population with the narrowest cervical canal diameters and risk factors include advanced age and increased levels of lumbar canal stenosis. Introduction. Tandem spinal stenosis (TSS) is defined as patient with concomitant spinal canal stenosis found in both cervical (C) and
Summary Statement. Repetitive loading of degenerated human intervertebral discs in combined axial compression, flexion and axial rotation, typical of manual handling lifing activities, causes: an increase in intradiscal maximum shear strains, circumferential annular tears and nuclear seperation from the endplate. Introduction. Chronic low back pain (LBP) is a crippling condition that affects quality of life and is a significant burden to the health care system and the workforce. The mechanisms of LBP are poorly understood, however it is well known that loss of intervertebral disc (disc) height due to degeneration is a common cause of chronic low back and referred pain. Gross disc injury such as herniation can be caused by sudden overload or by damage accumulation via repetitive loading, which is a cause of acute LBP and an accelerant of disc degeneration. The aim of this study was to determine for the first time the relationship between combined repetitive compression, flexion and axial rotation motion of degenerated cadaver lumbar spine segments, and the progression of three-dimensional (3D) internal disc strains that may lead to disc herniation and macroscopic tissue damage. Patients & Methods. Seven degenerated human
We performed a biomechanical study on human cadaver spines to determine the effect of three different interbody cage designs, with and without posterior instrumentation, on the three-dimensional flexibility of the spine. Six
In a study on ten fresh human cadavers we examined the change in the height of the intervertebral disc space, the angle of lordosis and the geometry of the facet joints after insertion of intervertebral total disc replacements. SB III Charité prostheses were inserted at L3-4, L4-5, and L5-S1. The changes studied were measured using computer navigation sofware applied to CT scans before and after instrumentation. After disc replacement the mean lumbar disc height was doubled (p <
0.001). The mean angle of lordosis and the facet joint space increased by a statistically significant extent (p <
0.005 and p = 0.006, respectively). By contrast, the mean facet joint overlap was significantly reduced (p <
0.001). Our study indicates that the increase in the intervertebral disc height after disc replacement changes the geometry at the facet joints. This may have clinical relevance.
Using a rat model the characteristics of the sensory neurones of the dorsal-root ganglia (DRG) innervating the hip were investigated by retrograde neurotransport and immunohistochemistry. Fluoro-Gold solution (FG) was injected into the left hip of ten rats. Seven days later the DRG from both sides between T12 and L6 were harvested. The number of FG-labelled calcitonin gene-related peptide-immunoreactive or isolectin B4-binding neurones were counted. The FG-labelled neurones were distributed throughout the left DRGs between T13 and L5, primarily at L2, L3, and L4. Few FG-labelled isolectin B4-binding neurones were present in the DRGs of either side between T13 and L5, but calcitonin gene-related peptide-immunoreactive neurones made up 30% of all FG-labelled neurones. Our findings may explain the referral of pain from the hip to the thigh or lower leg corresponding to the L2, L3 and L4 levels. Since most neurones are calcitonin gene-related peptide-immunoreactive peptide-containing neurones, they may have a more significant role in the perception of pain in the hip as peptidergic DRG neurones.