Advertisement for orthosearch.org.uk
Results 1 - 20 of 78
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1370 - 1378
1 Oct 2019
Cheung JPY Chong CHW Cheung PWH

Aims. The aim of this study was to determine the influence of pelvic parameters on the tendency of patients with adolescent idiopathic scoliosis (AIS) to develop flatback deformity (thoracic hypokyphosis and lumbar hypolordosis) and its effect on quality-of-life outcomes. Patients and Methods. This was a radiological study of 265 patients recruited for Boston bracing between December 2008 and December 2013. Posteroanterior and lateral radiographs were obtained before, immediately after, and two-years after completion of bracing. Measurements of coronal and sagittal Cobb angles, coronal balance, sagittal vertical axis, and pelvic parameters were made. The refined 22-item Scoliosis Research Society (SRS-22r) questionnaire was recorded. Association between independent factors and outcomes of postbracing ≥ 6° kyphotic changes in the thoracic spine and ≥ 6° lordotic changes in the lumbar spine were tested using likelihood ratio chi-squared test and univariable logistic regression. Multivariable logistic regression models were then generated for both outcomes with odds ratios (ORs), and with SRS-22r scores. Results. Reduced T5-12 kyphosis (mean -4.3° (. sd. 8.2); p < 0.001), maximum thoracic kyphosis (mean -4.3° (. sd. 9.3); p < 0.001), and lumbar lordosis (mean -5.6° (. sd. 12.0); p < 0.001) were observed after bracing treatment. Increasing prebrace maximum kyphosis (OR 1.133) and lumbar lordosis (OR 0.92) was associated with postbracing hypokyphotic change. Prebrace sagittal vertical axis (OR 0.975), prebrace sacral slope (OR 1.127), prebrace pelvic tilt (OR 0.940), and change in maximum thoracic kyphosis (OR 0.878) were predictors for lumbar hypolordotic changes. There were no relationships between coronal deformity, thoracic kyphosis, or lumbar lordosis with SRS-22r scores. Conclusion. Brace treatment leads to flatback deformity with thoracic hypokyphosis and lumbar hypolordosis. Changes in the thoracic spine are associated with similar changes in the lumbar spine. Increased sacral slope, reduced pelvic tilt, and pelvic incidence are associated with reduced lordosis in the lumbar spine after bracing. Nevertheless, these sagittal parameter changes do not appear to be associated with worse quality of life. Cite this article: Bone Joint J 2019;101-B:1370–1378


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1309 - 1316
1 Jul 2021
Garg B Bansal T Mehta N

Aims. To describe the clinical, radiological, and functional outcomes in patients with isolated congenital thoracolumbar kyphosis who were treated with three-column osteotomy by posterior-only approach. Methods. Hospital records of 27 patients with isolated congenital thoracolumbar kyphosis undergoing surgery at a single centre were retrospectively analyzed. All patients underwent deformity correction which involved a three-column osteotomy by single-stage posterior-only approach. Radiological parameters (local kyphosis angle (KA), thoracic kyphosis (TK), lumbar lordosis (LL), pelvic tilt (PT), sacral slope (SS), C7 sagittal vertical axis (C7 SVA), T1 slope, and pelvic incidence minus lumbar lordosis (PI-LL)), functional scores, and clinical details of complications were recorded. Results. The mean age of the study population was 13.9 years (SD 6.4). The apex of deformity was in thoracic, thoracolumbar, and lumbar spine in five, 14, and eight patients, respectively. The mean operating time was 178.4 minutes (SD 38.5) and the mean operative blood loss was 701.8 ml (SD 194.4). KA (preoperative mean 70.8° (SD 21.6°) vs final follow-up mean 24.7° (SD 18.9°); p < 0.001) and TK (preoperative mean -1.48° (SD 41.23°) vs final follow-up mean 24.28° (SD 17.29°); p = 0.005) underwent a significant change with surgery. Mean Scoliosis Research Society (SRS-22r) score improved after surgical correction (preoperative mean 3.24 (SD 0.37) vs final follow-up mean 4.28 (SD 0.47); p < 0.001) with maximum improvement in self-image and mental health domains. The overall complication rate was 26%, including two neurological and five non-neurological complications. Permanent neurological deficit was noted in one patient. Conclusion. Deformity correction employing three-column osteotomies by a single-stage posterior-only approach is safe and effective in treating isolated congenital thoracolumbar kyphosis. Cite this article: Bone Joint J 2021;103-B(7):1309–1316


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 800 - 806
1 Jun 2014
Karampalis C Tsirikos AI

We describe 13 patients with cerebral palsy and lordoscoliosis/hyperlordosis of the lumbar spine who underwent a posterior spinal fusion at a mean age of 14.5 years (10.8 to 17.4) to improve sitting posture and relieve pain. The mean follow-up was 3.3 years (2.2 to 6.2). The mean pre-operative lumbar lordosis was 108. °. (80 to 150. °. ) and was corrected to 62. °. (43. °.  to 85. °. ); the mean thoracic kyphosis from 17. °. (-23. °. to 35. °. ) to 47. °. (25. °. to 65. °. ); the mean scoliosis from 82. °. (0. °. to 125. °. ) to 22. °. (0. °. to 40. °. ); the mean pelvic obliquity from 21. °. (0. °. to 38. °. ) to 3. °. (0. °. to 15. °. ); the mean sacral slope from 79. °. (54. °. to 90. °. ) to 50. °. (31. °. to 66. °. ). The mean pre-operative coronal imbalance was 5 cm (0 cm to 8.9 cm) and was corrected to 0.6 cm (0 to 3.2). The mean sagittal imbalance of -8 cm (-16 cm to 7.8 cm) was corrected to -1.6 cm (-4 cm to 2.5 cm). The mean operating time was 250 minutes (180 to 360 minutes) and intra-operative blood loss 0.8 of estimated blood volume (0.3 to 2 estimated blood volume). The mean intensive care and hospital stay were 3.5 days (2 to 8) and 14.5 days (10 to 27), respectively. Three patients lost a significant amount of blood intra-operatively and subsequently developed chest or urinary infections and superior mesenteric artery syndrome. An increased pre-operative lumbar lordosis and sacral slope were associated with increased peri-operative morbidity: scoliosis and pelvic obliquity were not. A reduced lumbar lordosis and increased thoracic kyphosis correlated with better global sagittal balance at follow-up. All patients and their parents reported excellent surgical outcomes. Lordoscoliosis and hyperlordosis are associated with significant morbidity in quadriplegic patients. They are rare deformities and their treatment is challenging. Sagittal imbalance is the major component: it can be corrected by posterior fusion of the spine with excellent functional results. Cite this article: Bone Joint J 2014;96-B:800–6


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 3 - 3
1 Aug 2022
Tailor P Sewell M Jones M Spilsbury J Marks D Gardner A Mehta J
Full Access

The lordosis distribution index (LDI) describes distribution of lumbar lordosis, measured as the % of lower lumbar lordosis (L4-S1) compared to global lordosis (L1-S1) with normal value 50–50%. Maldistributed LDI is associated with higher revision in short lumbar fusions, 4 vertebrae1. We hypothesise maldistributed LDI is also associated with mechanical failure in longer fusions. Retrospective review of 29 consecutive ASD patients, aged 55+, undergoing long lumbar fusion, 4 levels, with >3-years follow-up. LDI, pelvic incidence (PI) and sagittal vertical axis (SVA) were measured on pre- and post-op whole spine standing X-rays (Fig A and B). Patients were categorized according to their pelvic incidence (PI) and postoperative LDI: Normal (LDI 50 80), Hypolordotic (LDI < 50), or Hyperlordotic (LDI > 80) and assessed for failure rate compared to normal LDI and PI <60. Mean follow-up 4.5 years. 19 patients had mechanical failures including junctional failure and metalware fracture. PI >60o was associated with higher mechanical failure rates (Chi^2 p<0.05). Hypolordotic LDI was associated with 82% mechanical failure (Chi^2 p<0.001), Hyperlordotic 88% mechanical failure (Chi^2 p<0.001) and Normal 8% mechanical failure (Table 1). Maldistributed LDI, whether Hyperlordotic or Hypolordotic, correlated with 10× greater mechanical failure rate compared to Normal LDI in long fusions. LDI is a useful measurement that should be considered, especially in high PI patients


We investigated the relationship between spinopelvic parameters and disc degeneration in young adult patients with spondylolytic spondylolisthesis. A total of 229 men with a mean age of 21 years (18 to 26) with spondylolytic spondylolisthesis were identified. All radiological measurements, including pelvic incidence, sacral slope, pelvic tilt, lumbar lordosis, sacral inclination, lumbosacral angle (LSA), and sacrofemoral distance, were calculated from standing lateral lumbosacral radiographs. The degree of intervertebral disc degeneration was classified using a modified Pfirrmann scale. We analysed the spinopelvic parameters according to disc level, degree of slip and disc degeneration. There were significant positive correlations between the degree of slip and pelvic incidence (p = 0.009), sacral slope (p = 0.003) and lumbar lordosis (p = 0.010). The degree of slip and the LSA were correlated with disc degeneration (p < 0.001 and p = 0.003, respectively). There was also a significant difference between the degree of slip (p < 0.001) and LSA (p = 0.006) according to the segmental level of disc degeneration. Cite this article: Bone Joint J 2013;95-B:1239–43


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 148 - 156
1 Jan 2021
Tsirikos AI Carter TH

Aims. To report the surgical outcome of patients with severe Scheuermann’s kyphosis treated using a consistent technique and perioperative management. Methods. We reviewed 88 consecutive patients with a severe Scheuermann's kyphosis who had undergone posterior spinal fusion with closing wedge osteotomies and hybrid instrumentation. There were 55 males and 33 females with a mean age of 15.9 years (12.0 to 24.7) at the time of surgery. We recorded their demographics, spinopelvic parameters, surgical correction, and perioperative data, and assessed the impact of surgical complications on outcome using the Scoliosis Research Society (SRS)-22 questionnaire. Results. The mean follow-up was 8.4 years (2 to 14.9). There were 85 patients (96.6%) with a thoracic deformity. Posterior spinal fusion with closing-wedge osteotomies and hybrid instrumentation was used in 86 patients; two patients underwent combined anterior and posterior spinal fusion. The mean kyphosis was corrected from 94.5° to 47.5° (p < 0.001). Coronal and sagittal balance returned to normal. The rate of complications was 12.5%: there were no neurological deficits, implant failure, or revision surgery. SRS-22 scores improved from a mean 3.6 (1.3 to 4.1) to 4.6 (4.2 to 5.0) at two years (p < 0.001) with a high rate of patient satisfaction. Non-smokers and patients with lower preoperative SRS-22 scores showed greater improvement in their quality of life. Sagittal pelvic balance did not change after correction of the kyphosis and correlated with lumbar lordosis but not with thoracic or thoracolumbar kyphosis. Conclusion. Posterior spinal fusion using hybrid instrumentation, closing-wedge osteotomies, and iliac bone grafting achieves satisfactory correction of a severe kyphosis resulting in improvements in physical and mental health and a high degree of patient-reported satisfaction. Cite this article: Bone Joint J 2021;103-B(1):148–156


Bone & Joint Open
Vol. 2, Issue 3 | Pages 163 - 173
1 Mar 2021
Schlösser TPC Garrido E Tsirikos AI McMaster MJ

Aims. High-grade dysplastic spondylolisthesis is a disabling disorder for which many different operative techniques have been described. The aim of this study is to evaluate Scoliosis Research Society 22-item (SRS-22r) scores, global balance, and regional spino-pelvic alignment from two to 25 years after surgery for high-grade dysplastic spondylolisthesis using an all-posterior partial reduction, transfixation technique. Methods. SRS-22r and full-spine lateral radiographs were collected for the 28 young patients (age 13.4 years (SD 2.6) who underwent surgery for high-grade dysplastic spondylolisthesis in our centre (Scottish National Spinal Deformity Service) between 1995 and 2018. The mean follow-up was nine years (2 to 25), and one patient was lost to follow-up. The standard surgical technique was an all-posterior, partial reduction, and S1 to L5 transfixation screw technique without direct decompression. Parameters for segmental (slip percentage, Dubousset’s lumbosacral angle) and regional alignment (pelvic tilt, sacral slope, L5 incidence, lumbar lordosis, and thoracic kyphosis) and global balance (T1 spino-pelvic inclination) were measured. SRS-22r scores were compared between patients with a balanced and unbalanced pelvis at final follow-up. Results. SRS-22r domain and total scores improved significantly from preoperative to final follow-up, except for the mental health domain that remained the same. Slip percentage improved from 75% (SD 15) to 48% (SD 19) and lumbosacral angle from 70° (SD 11) to 101° (SD 11). Preoperatively, 35% had global imbalance, and at follow-up all were balanced. Preoperatively, 63% had an unbalanced pelvis, and at final follow-up this was 32%. SRS-22r scores were not different in patients with a balanced or unbalanced pelvis. However, postoperative pelvic imbalance as measured by L5 incidence was associated with lower SRS-22r self-image and total scores (p = 0.029). Conclusion. In young patients with HGDS, partial reduction and transfixation improves local lumbosacral alignment, restores pelvic, and global balance and provides satisfactory long-term clinical outcomes. Higher SRS-22r self-image and total scores were observed in the patients that had a balanced pelvis (L5I < 60°) at two to 25 years follow-up. Cite this article: Bone Jt Open 2021;2(3):163–173


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_2 | Pages 30 - 30
1 Feb 2015
Stone M Osei-Boredom D MacGregor A Williams F
Full Access

Background. The factors influencing normal spine curvature in midlife are unknown. We performed an MR and plain radiograph study on well characterised, unselected twin volunteers from the TwinsUK register (. www.twinsuk.ac.uk. ) to determine the relative contributions of genetic and environmental factors to spine curve. Methods. T2 weighted MR scans and long spine standing radiographs were obtained at the same morning visit on twin pairs. Midline sagittal MR images were coded for 4 degenerative features. SpineviewTM software was applied plain films and calculated the angles of curvature. A classical twin study was performed. Multivariate regression analysis was used to determine the association between spine curves, LDD and confounders (age, body mass index). Results. Data were available on 110 monozygotic (MZ) and 136 dizygotic (DZ) female twins. Mean age was 64.3 years (range 40.1–79.3); age was associated with increasing lumbar lordosis (p=0.02). The AE model (comprising additive genetic and unique environmental factors) was the most suitable model for both lumbar lordosis and thoracic kyphosis (as determined by Akaike information criterion). Heritability estimates = 59% (42–71%) for lumbar lordosis; and 61% (46–74%) for thoracic kyphosis. After adjusting for age and BMI, lumbar lordosis was significantly associated with a number of features of LDD (p<0.001) including disc signal intensity and osteophytes. Conclusion. The twins are known to be representative of women in the general population. Lumbar lordosis and thoracic kyphosis of the spine have considerable heritable component in females suggesting that a search for individual gene variants would be a reasonable next step. This abstract was presented at 14th Congress of the International Society for Twin Studies. Conflicts of interest: No conflicts of interest. Sources of funding: No funding obtained


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1062 - 1071
1 Aug 2020
Cheung JPY Fong HK Cheung PWH

Aims. To determine the effectiveness of prone traction radiographs in predicting postoperative slip distance, slip angle, changes in disc height, and lordosis after surgery for degenerative spondylolisthesis of the lumbar spine. Methods. A total of 63 consecutive patients with a degenerative spondylolisthesis and preoperative prone traction radiographs obtained since 2010 were studied. Slip distance, slip angle, disc height, segmental lordosis, and global lordosis (L1 to S1) were measured on preoperative lateral standing radiographs, flexion-extension lateral radiographs, prone traction lateral radiographs, and postoperative lateral standing radiographs. Patients were divided into two groups: posterolateral fusion or posterolateral fusion with interbody fusion. Results. The mean changes in segmental lordosis and global lordosis were 7.1° (SD 6.7°) and 2.9° (SD 9.9°) respectively for the interbody fusion group, and 0.8° (SD 5.1°) and -0.4° (SD 10.1°) respectively for the posterolateral fusion-only group. Segmental lordosis (ρ = 0.794, p < 0.001) corrected by interbody fusion correlated best with prone traction radiographs. Global lumbar lordosis (ρ = 0.788, p < 0.001) correlated best with the interbody fusion group and preoperative lateral standing radiographs. The least difference in slip distance (-0.3 mm (SD 1.7 mm), p < 0.001), slip angle (0.9° (SD 5.2°), p < 0.001), and disc height (0.02 mm (SD 2.4 mm), p < 0.001) was seen between prone traction and postoperative radiographs. Regression analyses suggested that prone traction parameters best predicted correction of slip distance (Corrected Akaike’s Information Criterion (AICc) = 37.336) and disc height (AICc = 58.096), while correction of slip angle (AICc = 26.453) was best predicted by extension radiographs. Receiver operating characteristic (ROC) cut-off showed, with 68.3% sensitivity and 64.5% specificity, that to achieve a 3.0° increase in segmental lordotic angle, patients with a prone traction disc height of 8.5 mm needed an interbody fusion. Conclusion. Prone traction radiographs best predict the slip distance and disc height correction achieved by interbody fusion for lumbar degenerative spondylolisthesis. To achieve this maximum correction, interbody fusion should be undertaken if a disc height of more than 8.5 mm is attained on preoperative prone traction radiographs. Level of Evidence: Level II Prognostic Study. Cite this article: Bone Joint J 2020;102-B(8):1062–1071


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1359 - 1367
3 Oct 2020
Hasegawa K Okamoto M Hatsushikano S Watanabe K Ohashi M Vital J Dubousset J

Aims. The aim of this study is to test the hypothesis that three grades of sagittal compensation for standing posture (normal, compensated, and decompensated) correlate with health-related quality of life measurements (HRQOL). Methods. A total of 50 healthy volunteers (normal), 100 patients with single-level lumbar degenerative spondylolisthesis (LDS), and 70 patients with adult to elderly spinal deformity (deformity) were enrolled. Following collection of demographic data and HRQOL measured by the Scoliosis Research Society-22r (SRS-22r), radiological measurement by the biplanar slot-scanning full body stereoradiography (EOS) system was performed simultaneously with force-plate measurements to obtain whole body sagittal alignment parameters. These parameters included the offset between the centre of the acoustic meatus and the gravity line (CAM-GL), saggital vertical axis (SVA), T1 pelvic angle (TPA), McGregor slope, C2-7 lordosis, thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), PI-LL, sacral slope (SS), pelvic tilt (PT), and knee flexion. Whole spine MRI examination was also performed. Cluster analysis of the SRS-22r scores in the pooled data was performed to classify the subjects into three groups according to the HRQOL, and alignment parameters were then compared among the three cluster groups. Results. On the basis of cluster analysis of the SRS-22r subscores, the pooled subjects were divided into three HRQOL groups as follows: almost normal (mean 4.24 (SD 0.32)), mildly disabled (mean 3.32 (SD 0.24)), and severely disabled (mean 2.31 (SD 0.35)). Except for CAM-GL, all the alignment parameters differed significantly among the cluster groups. The threshold values of key alignment parameters for severe disability were TPA > 30°, C2-7 lordosis > 13°, PI-LL > 30°, PT > 28°, and knee flexion > 8°. Lumbar spinal stenosis was found to be associated with the symptom severity. Conclusion. This study provides evidence that the three grades of sagittal compensation in whole body alignment correlate with HRQOL scores. The compensation grades depend on the clinical diagnosis, whole body sagittal alignment, and lumbar spinal stenosis. The threshold values of key alignment parameters may be an indication for treatment. Cite this article: Bone Joint J 2020;102-B(10):1359–1367


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 376 - 382
1 Mar 2020
Pesenti S Lafage R Henry B Kim HJ Bolzinger M Elysée J Cunningham M Choufani E Lafage V Blanco J Jouve J Widmann R

Aims. To compare the rates of sagittal and coronal correction for all-pedicle screw instrumentation and hybrid instrumentation using sublaminar bands in the treatment of thoracic adolescent idiopathic scoliosis (AIS). Methods. We retrospectively reviewed the medical records of 124 patients who had undergone surgery in two centres for the correction of Lenke 1 or 2 AIS. Radiological evaluation was carried out preoperatively, in the early postoperative phase, and at two-year follow-up. Parameters measured included coronal Cobb angles and thoracic kyphosis. Postoperative alignment was compared after matching the cohorts by preoperative coronal Cobb angle, thoracic kyphosis, lumbar lordosis, and pelvic incidence. Results. A total of 179 patients were available for analysis. After matching, 124 patients remained (62 in each cohort). Restoration of thoracic kyphosis was significantly better in the sublaminar band group than in the pedicle screw group (from 23.7° to 27.5° to 34.0° versus 23.9° to 18.7° to 21.5°; all p < 0.001). When the preoperative thoracic kyphosis was less than 20°, sublaminar bands achieved a normal postoperative thoracic kyphosis, whereas pedicle screws did not. In the coronal plane, pedicle screws resulted in a significantly better correction than sublaminar bands at final follow-up (73.0% versus 59.7%; p < 0.001). Conclusion. This is the first study to compare sublaminar bands and pedicle screws for the correction of a thoracic AIS. We have shown that pedicle screws give a good coronal correction which is maintained at two-year follow-up. Conversely, sublaminar bands restore the thoracic kyphosis better while pedicle screws are associated with a flattening of the thoracic spine. In patients with preoperative hypokyphosis, sublaminar bands should be used to restore a proper sagittal profile. Cite this article: Bone Joint J 2020;102-B(3):376–382


To present the results of surgical correction in patients with double or triple thoracic/lumbar AIS (Lenke types 2,3,4) with the use of a novel convex/convex unilateral segmental screw correction technique in a single surgeon's prospective series. We reviewed the medical records and spinal radiographs of 92 consecutive patients (72 female-20 male). We measured scoliosis, thoracic kyphosis, lumbar lordosis, scoliosis flexibility and correction index, coronal and sagittal balance before and after surgery, as well as at minimum 2-year follow-up. SRS-22 data was available preoperatively, 6-month, 12-month and 2-year postoperatively for all patients. Surgical technique. All patients underwent posterior spinal fusion using pedicle screw constructs. Unilateral screws were placed across the convexity of each individual thoracic or lumbar curve to allow for segmental correction. ‘Corrective rod’ was the one attached to the convexity of each curve with the correction performed across the main thoracic scoliosis always before the lumbar. Maximum correction of main thoracic curves was always performed, whereas the lumbar scoliosis was corrected to the degree required to achieve a balanced effect across the thoracic and lumbar segments and adequate global coronal spinal balance. Concave screws were not placed across any deformity levels. Bilateral screws across 2 levels caudally and 1–2 levels cephalad provided proximal/distal stability of the construct. Mean age at surgery was 14.9 years with mean Risser grade 2.8. The distribution of scoliosis was: Lenke type 2–26 patients; type 3–43 patients; type 4–23 patients. Mean preoperative Cobb angle for upper thoracic curves was 45°. This was corrected by 62% to mean 17° (p<0.001). Mean preoperative Cobb angle for main thoracic curves was 70°. This was corrected by 69% to mean 22° (p<0.001). Mean preoperative Cobb angle for lumbar curves was 56°. This was corrected by 68% to mean 18° (p<0.001). No patient lost >2° correction at follow-up. Mean preoperative thoracic kyphosis was 34° and lumbar lordosis 46°. Mean postoperative thoracic kyphosis was 45° (p<0.001) and lumbar lordosis 46.5° (p=0.69). Mean preoperative coronal imbalance was 1.2 cm. This corrected to mean 0.02 cm at follow-up (p<0.001). Mean preoperative sagittal imbalance was −2 cm. This corrected to mean −0.1 cm at follow-up (p<0.001). Mean theatre time was 187 minutes, hospital stay 6.8 days and intraoperative blood loss 0.29 blood volumes (1100 ml). Intraoperative spinal cord monitoring was performed recording cortical and cervical SSEPs and transcranial upper/lower limb MEPs and there were no problems. None of the patients developed neurological complications, infection or detected non-union and none required revision surgery to address residual or recurrent deformity. Mean preoperative SRS-22 score was 3.6; this improved to 4.6 at follow-up (p<0.001). All individual parameters also demonstrated significant improvement (p<0.001) with mean satisfaction rate at 2-year follow-up 4.9. The convex-convex unilateral pedicle screw technique can reduce the risk of neurological injury during major deformity surgery as it does not require placement of screws across the deformed apical concave pedicles which are in close proximity to the spinal cord. Despite the use of a lesser number of pedicle fixation points compared to the bilateral segmental screw techniques, in our series it has achieved satisfactory scoliosis correction and restoration of global coronal and sagittal balance with improved thoracic kyphosis and preserved lumbar lordosis. These results have been associated with excellent patient satisfaction and functional outcomes as demonstrated through the SRS-22 scores


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXI | Pages 10 - 10
1 Jul 2012
Subramanian AS Tsirikos AI
Full Access

Purpose of the study. To compare the effectiveness of unilateral and bilateral pedicle screw techniques in correcting adolescent idiopathic scoliosis. Summary of Background Data. Pedicle screw constructs have been extensively used in the treatment of adolescent patients with idiopathic scoliosis. It has been suggested that greater implant density may achieve better deformity correction. However, this can increase the neurological risk related to pedicle screw placement, prolong surgical time and blood loss and result in higher instrumentation cost. Methods. We reviewed the medical notes and radiographs of 139 consecutive adolescent patients with idiopathic scoliosis (128 female-11 male, prospectively collected single surgeon's series). We measured the scoliosis, thoracic kyphosis (T5-T12), and lumbar lordosis (L1-L5) before and after surgery, as well as at minimum 2-year follow-up. SRS 22 data was available for all patients. Results. All patients underwent posterior spinal arthrodesis using pedicle screw constructs. Mean age at surgery was 14.5 years. We had 2 separate groups: in Group 1 (43 patients) correction was performed over 2 rods using bilateral segmental pedicle screws; in Group 2 (96 patients) correction was performed over 1 rod using unilateral segmental pedicle screws with the 2. nd. rod providing stability of the construct through 2-level screw fixation both proximal and distal. Group 1. Mean Cobb angle before surgery for upper thoracic curves was 37°. This was corrected by 71% to mean 11° (p<0.001). Mean Cobb angle before surgery for main thoracic curves was 65°. This was corrected by 71% to mean 20° (p<0.001). Mean Cobb angle before surgery for thoracolumbar/lumbar curves was 60°. This was corrected by 74% to mean 16° (p<0.001). No patient lost >2° correction at follow-up. Mean preoperative thoracic kyphosis was 24° and lumbar lordosis 52°. Mean postoperative thoracic kyphosis was 21° and lumbar lordosis 50° (p>0.05). Mean theatre time was 5.5 hours, hospital stay 8.2 days and intraoperative blood loss 0.6 blood volumes. Complications: 1 transient IOM loss/no neurological deficit; 1 deep wound infection leading to non-union and requiring revision surgery; 1 rod trimming due to prominent upper end. Mean preoperative SRS 22 score was 3.9; this improved to 4.5 at follow-up (p<0.001). Pain and self-image demonstrated significant improvement (p=0.001, p<0.001 respectively) with mean satisfaction rate 4.9. Group 2. Mean Cobb angle before surgery for upper thoracic curves was 42°. This was corrected by 52% to mean 20° (p<0.001). Mean Cobb angle before surgery for main thoracic curves was 62°. This was corrected by 70% to mean 19° (p<0.001). Mean Cobb angle before surgery for thoracolumbar/lumbar curves was 57°. This was corrected by 72% to mean 16° (p<0.001). No patient lost >2° correction at follow-up. Preoperative scoliosis size for all types of curves correlated with increased surgical time (r=0.6, 0.4). Mean preoperative thoracic kyphosis was 28° and lumbar lordosis 46°. Mean postoperative thoracic kyphosis was 25° and lumbar lordosis 45° (p>0.05). Mean theatre time was 4.2 hours, hospital stay 8.4 days and intraoperative blood loss 0.4 blood volumes. Complications: 1 deep and 1 superficial wound infections treated with debridement; 1 transient brachial plexus neurapraxia; 1 SMA syndrome. Mean preoperative SRS 22 score was 3.7; this improved to 4.5 at follow-up (p<0.001). Pain, function, self-image and mental health demonstrated significant improvement (p<0.001 for all parameters) with mean satisfaction rate 4.8. Comparison between groups showed no significant difference in regard to age at surgery, preoperative and postoperative scoliosis angle for main thoracic and thoracolumbar/lumbar curves, as well as SRS scores and length of hospital stay. Better correction of upper thoracic curves was achieved in Group 1 (p<0.05), but upper thoracic curves in Group 2 were statistically more severe before surgery (p<0.05). Increased surgical time and blood loss was recorded in Group 1 (p<0.05, p=0.05 respectively). The implant cost was reduced by mean 35% in Group 2 due to lesser number of pedicle screws. Conclusion. Unilateral and bilateral pedicle screw instrumentation has achieved excellent deformity correction in adolescent patients with idiopathic scoliosis, which was maintained at follow-up. This has been associated with high patient satisfaction and low complication rates. The unilateral technique using segmental pedicle screw correction has reduced surgical time, intraoperative blood loss and implant cost without compromising surgical outcome for the most common thoracic and thoracolumbar/lumbar curves. The bilateral technique achieved better correction of upper thoracic scoliosis


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_6 | Pages 13 - 13
1 Apr 2014
Anwar H Yarashi T Rajakulendrun K Molloy S
Full Access

Aim:. To establish whether there is a direct relationship between pelvic morphology and lumbar segmental angulation in the sagittal plane. Methods:. 40 lateral whole spine radiographs with normal sagittal profiles were reviewed. Pelvic incidence (PI), Lumbar Lordosis (LL), Thoracic Kyphosis (TK) and segmental angulation at each level from L1 to the sacrum were measured (from endplate to endplate) distinguishing the vertebral body and intervertebral disc contribution. Pearson correlation coefficients were used to analyse any relationship between pelvic parameters and segmental angulation. Results:. A strong correlation was found between pelvic incidence and total lumbar lordosis and angulation at cephalad lumbar segments (L12, L23 and L34) P<0.0001 with the increased lordosis primarily (four fifths on average) found at the intervertebral disc. The proportion of total lumbar lordosis contributed at L45 and L5S1 reduced as pelvic incidence increased (P<0.0001). Discussion:. PI can predict segmental angulation. Although the majority of lumbar lordosis is produced at L45 and L5S1, cephalad-lumbar segments sequentially become increasingly important as PI increases. This describes a continuum that allows segmental abnormalities to be identified when compensation in adjacent segments maintains normal total LL. It also paves the way for anatomical reconstruction in degenerative adult deformity based on pelvic morphology. Conflict Of Interest Statement: No conflict of interest


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XX | Pages 9 - 9
1 May 2012
Mehdian H Arun R Copas D
Full Access

Objective. To compare the radiological and clinical outcomes following three different techniques used in the correction of Scheuermann's kyphosis. Materials and Methods. Twenty three patients with comparable preoperative radiographic and physical variables (age, gender, height, weight, body mass index) underwent correction of thoracic kyphotic deformity using three different surgical methods. Group A (n=8) had combined anterior and posterior fusion with instrumentation using morselised rib graft. Group B (n=7) had combined anterior and posterior fusion with instrumentation using titanium interbody cages. Group C (n=8) had posterior segmental pedicle screw fixation only. All groups had posterior apical multi-level chevron osteotomy and posterior instrumentation extending from T2 to L2/3. Preoperative and postoperative curve morphometry studied on plain radiographs included Cobb angle, sagittal vertical axis (SVA), sacral inclination (SI) and lumbar lordosis (LL). Preoperative and postoperative questionnaires including ODI, VAS and SRS-22 were also analysed. Results. The average follow-up was 70 months for group A, 66 months for group B and 35 months for group C. For the whole cohort, the preoperative median cobb angle for thoracic Kyphosis was 88.4°, SVA +3.5 centimeters (cms), lumbar lordosis was 66 °, and the median sacral inclination angle was 40°. The average immediate postoperative cobb angle for thoracic kyphosis was 42°, SVA -1.5 cms, lumbar lordosis 45 ° and sacral inclination angle was 30°. At follow-up, the average cobb angle for thoracic kyphosis was 42.0°, SVA +1 cm, lumbar lordosis 42.0 ° and sacral inclination angle was 22.0 °. There was a significant difference between preoperative and postoperative measurements in all three groups, indicating that good correction and satisfaction was achieved. Three patients had distal junctional Kyphosis in early cases. There was no significant difference obtained in the final cobb angle between group A, group B and group C. All three groups retained the postoperative correction with respect to thoracic kyphosis, and changes in ODI and SRS-22 scores were similar in three groups. Conclusion. In all groups the SVA became negative following correction and at long-term follow-up it was observed to return towards normal physiological limits. The compensatory lumbar curve reduces and this was associated with a decrease in sacral inclination. This method of compensation, without causing junctional kyphosis, has not previously been reported. We were unable to demonstrate a significant difference between the three groups with regards to the clinical outcome, the degree of initial correction, loss of correction and complications. Therefore, in conclusion, we believe a single stage posterior correction and segmental instrumentation not only provides the same clinical and radiological outcomes, but also reduces blood loss, operative time and hospital stay. Ethics approval: None. Interest Statement: None


Bone & Joint Research
Vol. 6, Issue 5 | Pages 337 - 344
1 May 2017
Kim J Hwang JY Oh JK Park MS Kim SW Chang H Kim T

Objectives. The objective of this study was to assess the association between whole body sagittal balance and risk of falls in elderly patients who have sought treatment for back pain. Balanced spinal sagittal alignment is known to be important for the prevention of falls. However, spinal sagittal imbalance can be markedly compensated by the lower extremities, and whole body sagittal balance including the lower extremities should be assessed to evaluate actual imbalances related to falls. Methods. Patients over 70 years old who visited an outpatient clinic for back pain treatment and underwent a standing whole-body radiograph were enrolled. Falls were prospectively assessed for 12 months using a monthly fall diary, and patients were divided into fallers and non-fallers according to the history of falls. Radiological parameters from whole-body radiographs and clinical data were compared between the two groups. Results. A total of 144 patients (120 female patients and 24 male patients) completed a 12-month follow-up for assessing falls. A total of 31 patients (21.5%) reported at least one fall within the 12-month follow-up. In univariate logistic regression analysis, the risk of falls was significantly increased in older patients and those with more medical comorbidities, decreased lumbar lordosis, increased sagittal vertical axis, and increased horizontal distance between the C7 plumb line and the centre of the ankle (C7A). Increased C7A was significantly associated with increased risk of falls even after multivariate adjustment. Conclusion. Whole body sagittal balance, measured by the horizontal distance between the C7 plumb line and the centre of the ankle, was significantly associated with risk of falls among elderly patients with back pain. Cite this article: J. Kim, J. Y. Hwang, J. K. Oh, M. S. Park, S. W. Kim, H. Chang, T-H. Kim. The association between whole body sagittal balance and risk of falls among elderly patients seeking treatment for back pain. Bone Joint Res 2017;6:–344. DOI: 10.1302/2046-3758.65.BJR-2016-0271.R2


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_X | Pages 19 - 19
1 Apr 2012
Aylott C Puna R Walker C Robertson P
Full Access

There is evidence that various anatomical structures have altered morphology with ageing, and anecdotal evidence of changing lumbar spinous process (LSP) morphology with age. This study aims to clarify the influence of age on LSP morphology, and on lumbar spine alignment. 200 CT scans of the abdomen were reformatted with bone windows allowing precise measurement of LSP dimensions and lumbar lordosis. Observers were blinded to patient demographics. Inter-observer reliability was confirmed. The smallest LSP is at L5. The male LSP is on average 2-3mm higher and 1mm wider than the female LSP. LSP height increases significantly with age at every level in the lumbar spine (P<10. -5. at L2). The LSPs increase in height by 2-5mm between 20-85 years of age (P<10. -6. ), which was as much as 31% at L5 (P<10. -8. ). Width increases proportionally more, by 3-4mm or greater than 50% at each lumbar level (P<10. -11. ). Lumbar lordosis decreases in relation to increasing LSP height (P<10. -4. ) but is independent of increasing LSP width (P=0.2). The height and width of the spinous processes increases with age. Increases in spinous process height are related to a loss of lumbar lordosis and may contribute to sagittal plane imbalance


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 1080 - 1087
1 Aug 2017
Tsirikos AI Mataliotakis G Bounakis N

Aims. We present the results of correcting a double or triple curve adolescent idiopathic scoliosis using a convex segmental pedicle screw technique. Patients and Methods. We reviewed 191 patients with a mean age at surgery of 15 years (11 to 23.3). Pedicle screws were placed at the convexity of each curve. Concave screws were inserted at one or two cephalad levels and two caudal levels. The mean operating time was 183 minutes (132 to 276) and the mean blood loss 0.22% of the total blood volume (0.08% to 0.4%). Multimodal monitoring remained stable throughout the operation. The mean hospital stay was 6.8 days (5 to 15). Results. The mean post-operative follow-up was 5.8 years (2.5 to 9.5). There were no neurological complications, deep wound infection, obvious nonunion or need for revision surgery. Upper thoracic scoliosis was corrected by a mean 68.2% (38% to 48%, p < 0.001). Main thoracic scoliosis was corrected by a mean 71% (43.5% to 8.9%, p < 0.001). Lumbar scoliosis was corrected by a mean 72.3% (41% to 90%, p < 0.001). No patient lost more than 3° of correction at follow-up. The thoracic kyphosis improved by 13.1° (-21° to 49°, p < 0.001); the lumbar lordosis remained unchanged (p = 0.58). Coronal imbalance was corrected by a mean 98% (0% to 100%, p < 0.001). Sagittal imbalance was corrected by a mean 96% (20% to 100%, p < 0.001). The Scoliosis Research Society Outcomes Questionnaire score improved from a mean 3.6 to 4.6 (2.4 to 4, p < 0.001); patient satisfaction was a mean 4.9 (4.8 to 5). . Conclusions. This technique carries low neurological and vascular risks because the screws are placed in the pedicles of the convex side of the curve, away from the spinal cord, cauda equina and the aorta. A low implant density (pedicle screw density 1.2, when a density of 2 represents placement of pedicle screws bilaterally at every instrumented segment) achieved satisfactory correction of the scoliosis, an improved thoracic kyphosis and normal global sagittal balance. Both patient satisfaction and functional outcomes were excellent. Cite this article: Bone Joint J 2017;99-B:1080–7


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_15 | Pages 6 - 6
1 Oct 2014
Leong J Grech S Borg J Lehovsky J
Full Access

Scoliosis surgery has moved towards all posterior correction, as modern implants are perceived to be powerful enough to overcome stiffer and more severe curves. However, shortening of the anterior spinal column remains most effective in creating thoracic kyphosis, and may still have a role in correcting both coronal and sagittal deformities. Furthermore, anterior correction of lumbar and thoracolumbar curves can theoretically reduce the distal fusion level, and may have significant impact on patients' post-operative function. A single surgeon series of 62 patients with idiopathic scoliosis were examined retrospectively. Radiographs and operation notes were examined by 2 spinal surgeons, sagittal and coronal parameters were measured before and after the operation. The patients were divided into 4 groups: 16 anterior and posterior fusions (AP), 16 anterior thoracolumbar fusions (A), 5 anterior thoracic releases and posterior fusions (AR), and 25 posterior fusions only (P). The mean age was 15.3 (range 10 – 20). The mean main thoracic Cobb angle pre-operatively was: 54° (AP), 43° (A), 63° (AR), and 50° (P). The mean thoracolumbar Cobb angle was: 55° (AP) and 51° (A). There was no significant difference in lumbar lordosis. The mean post-operative main thoracic Cobb angle was: 9° (AP), 13° (A), 9° (AR) and 15° (P). There was significant difference between AR and P groups. The mean post-operative thoracolumbar Cobb angle was: 8° (AP) and 6° for (A). There was a significant difference in the post-operative thoracic kyphosis between AP (mean 14°), A (mean 38°), AR (mean 19°) and P (mean 14°). Overall, the lumbar lordosis for all 4 groups reduced from a mean of 67° to 50°, with no significant difference between the groups. The distal level of fusion for A and AP groups were L3 for all cases, whereas 2 cases had to extend to L4 in the P group. Anterior release improved both coronal and sagittal correction when compared to posterior only surgery, however it is of unknown clinical significance. Anterior thoracolumbar fusion with or without posterior spinal fusion appeared to produce adequate coronal correction if fused to L3. No difference was found between all groups in post-operative lumbar lordosis


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 95 - 99
1 Jan 2003
Murata Y Takahashi K Yamagata M Hanaoka E Moriya H

Degenerative changes of the knee often cause loss of extension. This may affect aspects of posture such as lumbar lordosis. A total of 366 patients underwent radiological examination of the lumbar spine in a standing position. The knee and body angles were measured by physical examination using a goniometer. Limitation of extension of the knee was significantly greater in patients whose lumbar lordosis was 30° or less. Lumbar lordosis was significantly reduced in patients whose limitation of extension of the knee was more than 5°. It decreased over the age of 70 years, and the limitation of extension of the knee increased over the age of 60 years. Our study indicates that symptoms from the lumbar spine may be caused by degenerative changes in the knee. This may be called the ‘knee-spine syndrome’