Advertisement for orthosearch.org.uk
Results 1 - 20 of 147
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 111 - 111
11 Apr 2023
Kapetanos K Asimakopoulos D Christodoulou N Vogt A Khan W
Full Access

The use of mesenchymal stromal cells (MSCs) in regenerative medicine and tissue engineering is well established, given their properties of self-renewal and differentiation. However, several studies have shown that these properties diminish with age, and understanding the pathways involved are important to provide regenerative therapies in an ageing population. In this PRISMA systematic review, we investigated the effects of chronological donor ageing on the senescence of MSCs. We identified 3023 studies after searching four databases including PubMed, Web of Science, Cochrane, and Medline. Nine studies met the inclusion and exclusion criteria and were included in the final analyses. These studies showed an increase in the expression of p21, p53, p16, ROS, and NF- B with chronological age. This implies an activated DNA damage response (DDR), as well as increased levels of stress and inflammation in the MSCs of older donors. Additionally, highlighting the effects of an activated DDR in cells from older donors, a decrease in the expression of proliferative markers including Ki67, MAPK pathway elements, and Wnt/ -catenin pathway elements was observed. Furthermore, we found an increase in the levels of SA- -galactosidase, a specific marker of cellular senescence. Together, these findings support an association between chronological age and MSC senescence. The precise threshold for chronological age where the reported changes become significant is yet to be defined and should form the basis for further scientific investigations. The outcomes of this review should direct further investigations into reversing the biological effects of chronological age on the MSC senescence phenotype


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 17 - 17
1 Dec 2022
Ciapetti G Granchi D Perut F Spinnato P Spazzoli B Cevolani L Donati DM Baldini N
Full Access

Fracture nonunion is a severe clinical problem for the patient, as well as for the clinician. About 5-20% of fractures does not heal properly after more than six months, with a 19% nonunion rate for tibia, 12% for femur and 13% for humerus, leading to patient morbidity, prolonged hospitalization, and high costs. The standard treatment with iliac crest-derived autologous bone filling the nonunion site may cause pain or hematoma to the patient, as well as major complications such as infection. The application of mesenchymal autologous cells (MSC) to improve bone formation calls for randomized, open, two-arm clinical studies to verify safety and efficacy. The ORTHOUNION * project (ORTHOpedic randomized clinical trial with expanded bone marrow MSC and bioceramics versus autograft in long bone nonUNIONs) is a multicentric, open, randomized, comparative phase II clinical trial, approved in the framework of the H2020 funding programme, under the coordination of Enrique Gòmez Barrena of the Hospital La Paz (Madrid, Spain). Starting from January 2017, patients with nonunion of femur, tibia or humerus have been actively enrolled in Spain, France, Germany, and Italy. The study protocol encompasses two experimental arms, i.e., autologous bone marrow-derived mesenchymal cells after expansion (‘high dose’ or ‘low dose’ MSC) combined to ceramic granules (MBCP™, Biomatlante), and iliac crest-derived autologous trabecular bone (ICAG) as active comparator arm, with a 2-year follow-up after surgery. Despite the COVID 19 pandemic with several lockdown periods in the four countries, the trial was continued, leading to 42 patients treated out of 51 included, with 11 receiving the bone graft (G1 arm), 15 the ‘high dose’ MSC (200x10. 6. , G2a arm) and 16 the ‘low dose’ MSC (100x10. 6. , G2b arm). The Rizzoli Orthopaedic Institute has functioned as coordinator of the Italian clinical centres (Bologna, Milano, Brescia) and the Biomedical Science and Technologies and Nanobiotechnology Lab of the RIT Dept. has enrolled six patients with the collaboration of the Rizzoli’ 3rd Orthopaedic and Traumatological Clinic prevalently Oncologic. Moreover, the IOR Lab has collected and analysed the blood samples from all the patients treated to monitor the changes of the bone turnover markers following the surgical treatment with G1, G2a or G2b protocols. The clinical and biochemical results of the study, still under evaluation, are presented. * ORTHOUNION Horizon 2020 GA 733288


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 135 - 135
2 Jan 2024
Füllemann P Jörimann T Bella E Stoddart M Matthys R Verrier S
Full Access

Bone healing outcome is highly dependent on the initial mechanical fracture environment [1]. In vivo, direct bone healing requires absolute stability and an interfragmentary strain (IFS) below 2% [2]. In the majority of cases, however, endochondral ossification is engaged where frequency and amplitude of IFS are key factors. Still, at the cellular level, the influence of those parameters remains unknown. Understanding the regulation of naïve hMSC differentiation is essential for developing effective bone healing strategies. Human bone-marrow-derived MSC (KEK-ZH-NR: 2010–0444/0) were embedded in 8% gelatin methacryol. Samples (5mm Ø x 4mm) were subjected to 0, 10 and 30% compressive strain (5sec compression, 2hrs pause sequence for 14 days) using a multi-well uniaxial bioreactor (RISystem) and in presence of chondro-permissive medium (CP, DMEM HG, 1% NEAA, 10 µM ITS, 50 µg/mL ascorbic acid, and 100 mM Dex). Cell differentiation was assessed by qRT-PCR and histo-/immunohistology staining. Experiments were repeated 5 times with cells from 5 donors in duplicate. ANOVA with Tukey post-hoc correction or Kurskal-Wallis test with Dunn's correction was used. Data showed a strong upregulation of hypertrophic related genes COMP, MMP13 and Type 10 collagen upon stimulation when compared to chondrogenic SOX9, ACAN, Type 2 collagen or to osteoblastic related genes Type 1 Collagen, Runx2. When compared to chondrogenic control medium, cells in CP with or without stimulation showed low proteoglycan synthesis as shown by Safranine-O-green staining. In addition, the cells were significantly larger in 10% and 30% strain compared to control medium with 0% strain. Type 1 and 10 collagens immunostaining showed stronger Coll 10 expression in the samples subjected to strain compared to control. Uniaxial deformation seems to mainly promote hypertrophic-like chondrocyte differentiation of MSC. Osteogenic or potentially late hypertrophic related genes are also induced by strain. Acknowledgments: Funded by the AO Foundation, StrainBot sponsored by RISystemAG & PERRENS 101 GmbH


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 18 - 18
1 Apr 2017
Russo F Musumeci M De Strobel F Bernardini M De Benedictis G Denaro L D'Avella D Giordano R Denaro V
Full Access

Background. Stem cell based intervertebral disc (IVD) regeneration is quickly moving towards clinical applications. However, many aspects need to be investigated to routinely translate this therapy to clinical applications, in particular, the most efficient way to deliver cell to the IVD. Cells are commonly delivered to the IVD through the annulus fibrosus (AF) injection. However, recent studies have shown serious drawbacks of this approach. As an alternative we have described and tested a new surgical approach to the IVD via the endplate-pedicles (transpedicular approach). The Purpose of the study was to test MSCs/hydrogel transplantation for IVD regeneration in a grade IV preclinical model of IDD on large size animals via the transpeducular approach with cell dose escalation. Methods. Adult sheep (n=18) underwent bone marrow aspiration for autologous MSC isolation and expansion. MSC were suspended in autologous PRP and conjugated with Hyaluronic Acid and Batroxobin at the time of transplant (MSCs/hydrogel). Nucleotomy was performed via the transpedicular approach in four lumbar IVDs and that were injected with 1) hydrogel, 2) Low doses of MSC/hydrogel, 3) High doses of MSC/hydrogel, 4) no injection (CTRL). The endplate tunnel was sealed using a polyurethane scaffold. X-ray and MRI were performed at baseline and 1,3,6,12 months. Disc macro- and micro-morphology were analysed at each time point. Results. The MRI index showed a significant decrease in the untreated group, the disc injected with hydrogel and those injected with low MSC dose compared to healthy discs in all time points. The discs treated with high dose of MSC showed maintenance of the MRI index compared to the healthy disc. Morphologically, the grade of degeneration evaluated using the were in agreement with the grades observed at the MRI. Conclusions. An effective dose of autologous MSC (1−107 cell/ml) delivered via the alternative transpedicular approach regenerates the NP in a preclinical model of grade IV IDD maintaining the AF intact This preclinical study has high translational value as large animal model with the long fallow up were used, MSCs were expanded in GMP facility simulating the clinical scenario, and the hydrogel were composed of clinically available drags and materials


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 83 - 83
1 Jan 2017
Fischer J Ortel M Hagmann S Hoeflich A Richter W
Full Access

While mesenchymal stromal cells (MSCs) are a very attractive cell source for cartilage regeneration, an inherent tendency to undergo hypertrophic maturation and endochondral ossification; as well as insufficient extracellular matrix production still prevent their clinical application in cell –based cartilage repair therapies. We recently demonstrated that intermittent treatment of MSC with parathyroid hormone-related protein (PTHrP) during in vitro chondrogenesis significantly enhanced extracellular matrix deposition and concomitantly reduced hypertrophy (1) opposite to constant PTHrP treatment, which strongly suppressed chondrogenesis via the cAMP/PKA pathway (2). Since signal timing seemed to be decisive for an anabolic versus catabolic outcome of the PTHrP treatment, we here aimed to investigate the role of PTHrP pulse frequency, pulse duration and total weekly exposure time in order to unlock the full potential of PTHrP pulse application to enhance and control MSC chondrogenesis. Human bone marrow-derived MSC were subjected to in vitro chondrogenesis for six weeks. From day 7–42, cells were additionally exposed to 2.5 nM PTHrP(1–34) pulses or left untreated (control). Pulse frequency was increased from three times per week (3×6h/week) to daily, thereby maintaining either pulse duration (6h/d, total 42 h/week) or total weekly exposure time (2.6h/d, total 18 h/week). A high frequency of PTHrP-treatment (daily) was important to significantly increase extracellular matrix deposition and strongly suppress ALP activity by 87 %; independent of the pulse duration. A long pulse duration was, however, critical for the suppression of the hypertrophic marker gene IHH, while MEF2C and IBSP were significantly suppressed by all tested pulse duration and frequency protocols. COL10A1, RUNX2 and MMP13 mRNA levels remained unaffected by intermittent PTHrP. A drop of Sox9 levels and a decreased proliferation rate after 6 hours of PTHrP exposure on day 14 indicated delayed chondroblast formation. Decreased IGFBP-2, -3 and -6 expression as well as decreased IGFBP-2 protein levels in culture supernatants suggested IGF-I-related mechanisms behind anabolic matrix stimulation by intermittent PTHrP. The significant improvement of MSC chondrogenesis by the optimization of intermittent PTHrP application timing revealed the vast potential of PTHrP to suppress hypertrophy and stimulate chondrogenic matrix deposition. A treatment with PTHrP for 6 hours daily emerged as the most effective treatment mode. IGF-I and Sox-9 related mechanisms are suggested behind anabolic effects and delayed chondroblasts formation, respectively. Thus, similar to the established osteoporosis treatment, daily injections of PTHrP may become clinically relevant to support cartilage repair strategies relying on MSCs like subchondral bone microfracturing and autologous MSC implantation


Bone & Joint Research
Vol. 6, Issue 3 | Pages 123 - 131
1 Mar 2017
Sasaki T Akagi R Akatsu Y Fukawa T Hoshi H Yamamoto Y Enomoto T Sato Y Nakagawa R Takahashi K Yamaguchi S Sasho T

Objectives. The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation in vitro and to determine whether pre-microfracture systemic administration of G-CSF (a bone marrow stimulant) could improve the quality of repaired tissue of a full-thickness cartilage defect in a rabbit model. Methods. MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium. A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically. Results. The cell count in the low-dose G-CSF medium was significantly higher than that in the control medium. The differentiation potential of MSCs was preserved after culturing them with G-CSF. Macroscopically, defects were filled and surfaces were smoother in the G-CSF groups than in the control group at four weeks. At 12 weeks, the quality of repaired cartilage improved further, and defects were almost completely filled in all groups. Microscopically, at four weeks, defects were partially filled with hyaline-like cartilage in the G-CSF groups. At 12 weeks, defects were repaired with hyaline-like cartilage in all groups. Conclusions. G-CSF promoted proliferation of MSCs in vitro. The systemic administration of G-CSF promoted the repair of damaged cartilage possibly through increasing the number of MSCs in a rabbit model. Cite this article: T. Sasaki, R. Akagi, Y. Akatsu, T. Fukawa, H. Hoshi, Y. Yamamoto, T. Enomoto, Y. Sato, R. Nakagawa, K. Takahashi, S. Yamaguchi, T. Sasho. The effect of systemic administration of G-CSF on a full-thickness cartilage defect in a rabbit model MSC proliferation as presumed mechanism: G-CSF for cartilage repair. Bone Joint Res 2017;6:123–131. DOI: 10.1302/2046-3758.63.BJR-2016-0083


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 61 - 61
1 Nov 2021
Tilotta V Cicione C Giacomo GD Ambrosio L Russo F Papalia R Vadalà G Denaro V
Full Access

Introduction and Objective

Low back pain (LBP) is a disorder strongly associated with intervertebral disc degeneration (IDD) with an important impact on the quality of life of affected people. To date, LBP treatment is based on conservative methods with the aim to reduce back pain without restoring the degenerative environment of the disc. The main cause of IDD is the drastic reduction of the proteoglycan content within the nucleus pulposus (NP), eventually leading to the loss of disc water content, micro-architecture, biochemical and mechanical properties. A promising approach for disc regeneration is represented by the transplantation of mesenchymal stromal cells (MSCs). The exact mechanism remains unknown. Growing evidence suggests that MSCs can influence cells and modulate cells’ behaviour by secreting a set of bioactive factors. MSCs secretome is composed of several molecules such as soluble protein, lipids, nucleic acids and extracellular vesicles (EVs) involved in inflammation, immunomodulation, cell survival and intercellular communication. The aim of this study was to evaluate the in vitro effects of MSCs secretome on human NP cells (hNPCs) in a 3D culture model with and without inflammatory stimulus.

Materials and Methods

MSCs secretome was collected from bone marrow-MSCs (BM-MSCs) and adipose tissue-MSCs (ASCs) after centrifugation and obtained by culturing cells without fetal bovine serum (FBS) for 48 hours. hNPCs were isolated from surgical specimens through digestion with type II collagenase, culture expanded in vitro, encapsulated in alginate beads (three-dimensional culture system) and treated with growth medium (controls), BM-MSCs or ASCs secretome with or without interleukin-1 beta (IL-1b). After 7 days, total RNA was extracted and reverse-transcribed. Gene expression levels of catabolic and anabolic genes were analyzed through real time-polymerase chain reaction (qPCR). Cell proliferation and glycosaminoglycan (GAG) production was assessed by flow cytometry and 1,9-dimethylmethylene blue (DMMB), respectively. hNPCs in alginate beads were stained with Live/Dead assay and detected using confocal immunofluorescence microscopy. Data were analyzed using Graphpad prism 8 and expressed as mean ± S.D. One-way ANOVA analysis was used to compare differences among the groups under exam.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 16 - 16
1 Dec 2020
Kontakis MG Schou J Hailer N
Full Access

Bone tissue engineering attempts at substituting critical size bone defects with scaffolds that can be primed with osteogenic cells, usually mesenchymal stem cells (MSC) from the bone marrow. Although overlooked, peripheral blood is a valuable source of MSC and circulating osteoprogenitors (COP), bearing a significant regenerative potential, and peripheral blood is easier to access than bone marrow. We thus studied osteodifferentiation of peripheral blood mononuclear cells (pbMNC) under different culture conditions, and how they compared to primary human osteoblasts. pbMNC were isolated from healthy adult volunteers by Ficoll density gradient centrifugation, and they were then cultured using media supplemented with 100nM Dexamethasone, 10mM sodium β-glycero phosphate and ascorbic acid (either 40mM or 0.05mM). For comparison, primary osteoblasts were isolated from the femoral heads of patients undergoing hip arthroplasty. After 4 weeks of culture, osteogenic activation was quantified with spectrometric measurement of alkalic phosphatase (ALP) and lactate dehydrogenase (LDH) levels. The extent of osteoid mineralization was measured with Alizarin red staining. We studied the effects of 1) varying cell concentration at seeding, 2) surface coating of culture wells with collagen and 3) high compared to low ascorbic acid (40mM and 0.05mM) media. Higher numbers of pbMNC (0.5–5.9 versus 0.062–0.25 million cells per well) at seeding resulted in a lower ALP/LDH-ratio (mean ± standard deviation), 0.39 ± 0.33 arbitrary units (AU) versus 1.36 ± 1.06 AU, but led to higher amount of osteoid production, 0.10 ± 0.06 versus 0.065 ± 0.02 AU, p < 0.05. Culture of pbMNC on collagen did not confer any difference in ALP/LDH-ratios, with 0.43 ± 0.3 AU for collagen-coated and 0.43 ± 0.41 AU for uncoated wells (p = 0.95), and we also observed no relevant difference in osteoid production (0.07 ± 0.01 AU for collagen-coated versus 0.1 ± 0.08 AU for uncoated wells, p = 0.28). Cultures of pbMNC on collagen in media supplemented with a higher concentration of ascorbic acid showed a 130% higher ALP/LDH-ratio when compared to cultures exposed to a lower ascorbic acid concentration (p < 0.05). Cultures with a low initial concentration of pbMNC (0.5 − 1 million cells) had no significantly different ALP/LDH-ratio when compared to primary human osteoblasts, but the cultures of pbMNC resulted in a 90% increase in osteoid mineralization when compared to primary human osteoblasts (p < 0.05). These findings indicate that progenitor cells derived from peripheral blood have a significant osteogenic potential, rendering them interesting candidates for seeding of scaffolds intended to fill critical sized bone defects. pbMNC produced almost double the amount of osteoid as primary osteoblasts. The isolation of pbMSC and COP is non-invasive and easy, and they might be seeded directly onto scaffolds without prior ex-vivo expansion, a question that we intend to pursue further


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_13 | Pages 23 - 23
1 Mar 2013
Wright K Morrison R Dalgarno K Birch M McCaskie A
Full Access

hMSC cultures were prepared from osteoarthritic patients. Silicone elastomer (PDMS) culture surfaces of varying degrees of stiffness (1:10, 1:30 and 1:50 PDMS, tissue culture plastic and glass) were investigated in isolation and in combination with differentiation media. CD marker expressions of ‘stemness’ were investigated. RNA expression changes in OA-hMSCs and non-OA-hMSCs were also investigated for a panel of genes (inclusive of ‘stemness-’ and osteogenic-linked genes, FKBP5 and osteomodulin).


Bone & Joint Research
Vol. 3, Issue 2 | Pages 32 - 37
1 Feb 2014
Singh A Goel SC Gupta KK Kumar M Arun GR Patil H Kumaraswamy V Jha S

Introduction

Osteoarthritis (OA) is a progressively debilitating disease that affects mostly cartilage, with associated changes in the bone. The increasing incidence of OA and an ageing population, coupled with insufficient therapeutic choices, has led to focus on the potential of stem cells as a novel strategy for cartilage repair.

Methods

In this study, we used scaffold-free mesenchymal stem cells (MSCs) obtained from bone marrow in an experimental animal model of OA by direct intra-articular injection. MSCs were isolated from 2.8 kg white New Zealand rabbits. There were ten in the study group and ten in the control group. OA was induced by unilateral transection of the anterior cruciate ligament of the knee joint. At 12 weeks post-operatively, a single dose of 1 million cells suspended in 1 ml of medium was delivered to the injured knee by direct intra-articular injection. The control group received 1 ml of medium without cells. The knees were examined at 16 and 20 weeks following surgery. Repair was investigated radiologically, grossly and histologically using haematoxylin and eosin, Safranin-O and toluidine blue staining.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 70 - 70
4 Apr 2023
Maestro-Paramio L García-Rey E Bensiamar F Rodríguez-Lorenzo L Vilaboa N Saldaña L
Full Access

Mesenchymal stem cells (MSC) have potent immunomodulatory and regenerative effects via soluble factors. One approach to improve stem cell-based therapies is encapsulation of MSC in hydrogels based on natural proteins such as collagen and fibrin, which play critical roles in bone healing. In this work, we comparatively studied the influence of collagen and fibrin hydrogels of varying stiffness on the paracrine interactions established by MSC with macrophages and osteoblasts. Type I collagen and fibrin hydrogels in a similar stiffness range loaded with MSC from donants were prepared by modifying the protein concentration. Viability and morphology of MSC in hydrogels as well as cell migration rate from the matrices were determined. Paracrine actions of MSC in hydrogels were evaluated in co-cultures with human macrophages from healthy blood donors or with osteoblasts from bone explants of patients with osteonecrosis of the femoral head. Lower matrix stiffness resulted in higher MSC viability and migration. Cell migration rate from collagen hydrogels was higher than from fibrin matrices. The secretion of the immunomodulatory factors interleukin-6 (IL-6) and prostaglandin E. 2. (PGE. 2. ) by MSC in both collagen and fibrin hydrogels increased with increasing matrix stiffness. Tumor necrosis factor-α (TNF-α) secretion by macrophages cultured on collagen hydrogels was lower than on fibrin matrices. Interestingly, higher collagen matrix stiffness resulted in lower secreted TNF-α while the trend was opposite on fibrin hydrogels. In all cases, TNF-α levels were lower when macrophages were cultured on hydrogels containing MSC than on empty gels, an effect partially mediated by PGE. 2. Finally, mineralization capacity of osteoblasts co-cultured with MSC in hydrogels increased with increasing matrix stiffness, although this effect was more notably for collagen hydrogels. Paracrine interactions established by MSC in hydrogels with macrophages and osteoblasts are regulated by matrix composition and stiffness


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 48 - 48
11 Apr 2023
Richter F Oesterreicher J Goeschl V Hanetseder D Hackl M Pultar M Redl H Grillari J Holnthoner W Marolt Presen D
Full Access

Recent studies suggested that both the soluble protein of the mesenchymal stromal cell (MSC) secretome, as well as the secreted extracellular vesicles (EVs) promote bone regeneration. However, there is limited knowledge of the changes in MSC secretome vesicular fraction during aging. We therefore aimed to characterize the release profiles and cargo of EVs from MSCs of different chronological ages. Conditioned medium (CM) was collected from 13 bone marrow MSC strains (20-89 years) and from one MSC strain derived from human induced pluripotent stem cells (iPSCs). The EV-containing fraction was enriched with ultracentrifugation. The number of particles in the CM was evaluated by nanoparticle tracking analysis (NTA), and the number of EVs was evaluated by flow cytometry (FC) after staining with cell-mask-green and anti-CD81 antibody. EV cargo analysis was conducted using next-generation sequencing (NGS). Our data confirmed the release of EVs from all MSC strains used in the study. There were no correlations between the number of particles and the number of EVs released in the CM, and between the number of EVs released and the strain age. Nevertheless, some of the lowest concentrations of EVs were found in the CM of strains over 70 years of age, which exhibited a low/absent chondrogenic and osteogenic differentiation potential. In contrast, iPSC-MSCs, which exhibited a high growth and three-lineage differentiation potential, released a similar amount of EVs as the best performing bone marrow MSC strain. NGS analysis identified several microRNAs that were significantly enriched in EVs of young MSC strains exhibiting low senescence, and those that were enriched in EVs of strains exhibiting high differentiation potentials. Gender had no influence on microRNA profiles in EVs or releasing MSCs. Taken together, our data provides new insights into the properties of MSC vesicular secretome and its therapeutic potential during aging


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 133 - 133
2 Jan 2024
Carvalho M Cabral J da Silva C
Full Access

Mesenchymal stromal cells (MSC) have been proposed as an emerging cell therapy for bone tissue engineering applications. However, the healing capacity of the bone tissue is often compromised by patient's age and comorbidities, such as osteoporosis. In this context, it is important to understand the impact of donor age on the therapeutic potential of MSC. Importantly, the impact on donor age is not restricted to cells themselves but also to their microenvironment that is known to affect cell function. The extracellular matrix (ECM) has an important role in stem cell microenvironment, being able to modulate cell proliferation, self-renewal and differentiation. Decellularized cell-derived ECM (dECM) has been explored for regenerative medicine applications due to its bioactivity and its resemblance to the in vivo microenvironment. Thus, dECM offers the opportunity not only to develop microenvironments with customizable properties for improvement of cellular functions but also as a platform to study cellular niches in health and disease. In this study, we investigated the capacity of the microenvironment to rescue the impaired proliferative and osteogenic potential of aged MSC. The goal of this work was to understand if the osteogenic capacity of MSC could be modulated by exposure to a dECM derived from cells obtained from young donors. When aged MSC were cultured on dECM derived from young MSC, their in vitro proliferative and osteogenic capacities were enhanced. Our results suggest that the microenvironment, specifically the ECM, plays a crucial role in the osteogenic differentiation capacity of MSC. dECM might be a valuable clinical strategy to overcome the age-related decline in the osteogenic potential of MSC by recapitulating a younger microenvironment, attenuating the effects of aging on the stem cell niche. Overall, this study opens new possibilities for developing clinical strategies for elderly patients with limited bone formation capacity who currently lack effective treatments. Acknowledgements: The authors thank FCT for funding through the project DentalBioMatrix (PTDC/BTM-MAT/3538/2020) and to the research institutions iBB (UIDB/04565/2020 and UIDP/04565/2020) and Associate Laboratory i4HB (LA/P/0140/2020)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 31 - 31
4 Apr 2023
Seah M Birch M
Full Access

Osteochondral injuries are a recognised factor in the development of osteoarthritis (OA). Mesenchymal stromal cells (MSCs) represent a promising biological therapeutic option as an OA-modifying treatment, and they also secrete factors that may have an anti-catabolic effect and/or encourage endogenous repair. We aim to study the effects of (i) intra-articular injection of human bone-marrow-derived MSCs and (ii) their secretome on recovery in a murine knee osteochondral injury model. The MSC secretome was generated by stimulating human bone-marrow-derived MSCs with tumour necrosis factor alpha (TNFα). Mice (n=48) were injected with i) MSC secretome, ii) MSCs or iii) cell culture medium (control). Pain was assessed by activity monitoring, and cartilage repair, subchondral bone volume and synovial inflammation were evaluated using histology and microCT. Both MSC- and MSC-secretome-injected mice showed significant pain reduction at day 7 when compared to control mice, but only the MSC-injected mice maintained a significant improvement over the controls at day 28. Cartilage repair was significantly improved in MSC-injected mice. No significant effects were observed with regards to synovial inflammation or subchondral bone volume. The MSC secretome demonstrates regenerative effects but this does not appear to be as sustained as a MSC cell therapy. Further studies are required to investigate if this can be overcome using different dosing regiments for injection of the MSC secretome. As we further understand the regenerative properties of the MSC secretome, we may be able to enhance the clinical translatability of these therapies. Direct intra-articular injection of MSCs for the treatment of OA also appears promising as a potential future strategy for OA management. Acknowledgements: MS is supported by a grant from the Wellcome Trust (PhD Programme for Clinicians)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 103 - 103
2 Jan 2024
Cardona-Timoner M Bessa-Gonçalves M Nogueira F Barbosa M Santos S
Full Access

Bone defects and fractures, caused by injury, trauma or tumour resection require hospital treatment and temporary loss of mobility, representing an important burden for societies and health systems worldwide. Autografts are the gold standard for promoting new bone formation, but these may provide insufficient material and lead to donor site morbidity and pain. We previously showed that Fibrinogen (Fg) scaffolds promote bone regeneration in vivo (1), and that modifying them with 10mM of Magnesium (Mg) ions modulates macrophage response in vitro and in vivo (2). Also, we showed that Extracellular Vesicles (EV) secreted by Dendritic Cells (DC) recruit Mesenchymal Stem/Stromal Cells (MSC)(3). Herein, we aim to functionalize FgMg scaffolds with DC-EV, to promote recruitment and osteogenic differentiation of MSC. Scaffolds were produced by freeze-drying (2). Ethical permission was sought for all studies. Primary human peripheral blood monocyte-derived DC were cultured, their secreted EV were isolated by differential (ultra)-centrifugation and characterised by transmission electron microscopy and nanoparticle tracking analysis (3). Bone marrow MSC were used to determine the impact of EV-functionalized scaffolds through migration assays and their osteogenic differentiation was assessed by Alizarin Red staining. Fg and FgMg scaffolds functionalized with EV were characterized. Fg and FgMg scaffolds functionalized with DC-secreted EV were more efficient at recruiting MSC than scaffolds alone. MSC cultured on FgMg scaffolds showed significantly increased calcium deposits, in comparison with those cultured on Fg scaffolds. Fg scaffold modification by Mg promotes MSC osteogenic differentiation, while their functionalization with DC-secreted EV acts to promote MSC recruitment. This renders the FgMg-EV functionalized scaffolds an attractive material to promote new bone formation. Acknowledgments: Work funded by Orthoregeneration Network (ON Pilot Grant Spine 2021, EVS4Fusion). MCT supported by ERASMUS+ program


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 115 - 115
1 Nov 2021
Maestro L García-Rey E Bensiamar F Rodriguez-Lorenzo L Vilaboa N Saldaña L
Full Access

Introduction and Objective. Mesenchymal stem cells (MSC) are attractive candidates for bone regeneration approaches. Benefits of MSC therapy are mainly attributed to paracrine effects via soluble factors, exerting both immunoregulatory and regenerative actions. Encapsulation of MSC in hydrogels prepared with extracellular matrix (ECM) proteins has been proposed as a strategy to enhance their survival and potentiate their function after implantation. Functional activity of MSC can be regulated by the physical and mechanical properties of their microenvironment. In this work, we investigated whether matrix stiffness can modulate the crosstalk between MSC encapsulated in collagen hydrogels with macrophages and osteoblasts. Materials and Method. Collagen hydrogels with a final collagen concentration of 1.5, 3 and 6 mg/mL loaded with human MSC were prepared. Viscoelastic properties of hydrogels were measured in a controlled stress rheometer. Cell distribution into the hydrogels was examined using confocal microscopy and the levels of the immunomodulatory factors interleukin-6 (IL-6) and prostaglandin E. 2. (PGE. 2. ) released by MSC were quantified by immunoassays. To determine the effect of matrix stiffness on the immunomodulatory potential of MSC, human macrophages obtained from healthy blood were cultured in media conditioned by MSC in hydrogels. The involvement of IL-6 and PGE. 2. in MSC-mediated immunomodulation was investigated employing neutralizing antibodies. Finally, the influence of soluble factors released by MSC in hydrogels on bone-forming cells was studied using osteoblasts obtained from trabecular bone explants from patients with osteonecrosis of the femoral head during total hip arthroplasty. Results. MSC loaded in hydrogels containing varying concentrations (1.5, 3 and 6 mg/mL) of collagen were viable. Rheology measurements determined that the hydrogel stiffness increased with increasing collagen concentration. Encapsulation of MSC into hydrogels barely affected their storage modulus values. MSC acquired a three-dimensional (3D) arrangement in all hydrogels and showed a more elongated shape in hydrogels with higher stiffness. The secretion of IL-6 and PGE. 2. by MSC in hydrogels increased with increasing matrix stiffness. Media conditioned by MSC encapsulated in stiffer hydrogels decreased TNF-α levels secreted by macrophages to a higher extent than media conditioned by MSC in softer hydrogels. This effect was partially mediated by PGE. 2. Finally, our preliminary results indicated that factors released by MSC in hydrogels regulated osteoblast-mediated mineralisation and this effect was dependent on hydrogel stiffness. Conclusions. Our data indicate that matrix stiffness of collagen hydrogels regulates the production of soluble factors by MSC and their paracrine actions on macrophages and osteoblasts


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 97 - 97
2 Jan 2024
Mohamed-Ahmed S Yassin M Rashad A Lie S Suliman S Espedal H Idris S Finne-Wistrand A Mustafa K Vindenes H Fristad I
Full Access

Mesenchymal stem cells (MSC) have been used for bone regenerative applications as an alternative approach to bone grafting. Selecting the appropriate source of MSC is vital for the success of this therapeutic approach. MSC can be obtained from various tissues, but the most used sources of MSC are Bone marrow (BMSC), followed by adipose tissue (ASC). A donor-matched comparison of these two sources of MSC ensures robust and reliable results. Despite the similarities in morphology and immunophenotype of donor-matched ASC and BMSC, differences existed in their proliferation and in vitro differentiation potential, particularly osteogenic differentiation that was superior for BMSC, compared to ASC. However, these differences were substantially influenced by donor variations. In vivo, although the upregulated expression of osteogenesis-related genes in both ASC and BMSC, more bone was regenerated in the calvarial defects treated with BMSC compared to ASC, especially during the initial period of healing. According to these findings, compared to ASC, BMSC may result in faster regeneration and healing, when used for bone regenerative applications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 143 - 143
2 Jan 2024
Alkhrayef M Muhammad H Hosni RA McCaskie A Birch M
Full Access

Tissue repair is believed to rely on tissue-resident progenitor cell populations proliferating, migrating, and undergoing differentiation at the site of injury. During these processes, the crosstalk between mesenchymal stromal/stem cells (MSCs) and macrophages has been shown to play a pivotal role. However, the influence of extracellular matrix (ECM) remodelling in this crosstalk, remains elusive. Human MSCs cultured on tissue culture plastic (TCP) and encased within fibrin in vitro were treated with/without TNFα and IFNγ. Human monocytes were cocultured with untreated/pretreated MSCs on TCP or within fibrin. After seven days, the conditioned media (CM) were collected. Human chondrocytes were exposed to CM in a migration assay. The impact of TGFβ was assessed by adding an inhibitor (TGFβRi). Cell activity was assessed using RT-qPCR and XL-protein-profiler-array. Previously, we demonstrated that culturing human MSCs within 3D-environments significantly enhances their immunoregulatory activity in response to pro-inflammatory stimuli. In this study, monocytes were co-cultured with MSCs within fibrin, acquiring a distinct M2-like repair macrophage phenotype in contrast to TCP co-cultures. MSC/macrophage CM characterization using a protein array demonstrated differences in release of several factors, including chemokines, growth factors and ECM components. Chondrocyte migration was significantly reduced in CM from untreated MSC/monocytes co-cultures in fibrin compared to CM of untreated MSCs/monocytes on TCP. This impact on migration was not seen with chondrocytes cultured in CM of monocytes co-cultured with pretreated MSCs in fibrin. The CM of monocytes co-cultured with pretreated MSCs in fibrin up-regulates COL2A1 and SOX9 compared to TCP. Chondrogenesis and migration were TGFβ dependent. MSC/macrophage crosstalk and responsiveness to cytokines are influenced by the ECM environment, which subsequently impacts tissue-resident cell migration and chondrogenesis. The direct effects of ECM on MSC/macrophage secretory phenotype is complemented by the dynamic ECM binding and release of growth factors such as TGFβ


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 55 - 55
17 Nov 2023
Alkhrayef M Muhammad H Hosni RA McCaskie A Birch M
Full Access

Abstract. Objectives. Tissue repair is believed to rely on tissue-resident progenitor cell populations proliferating, migrating, and undergoing differentiation at the site of injury. During these processes, the crosstalk between mesenchymal stromal/stem cells (MSCs) and macrophages has been shown to play a pivotal role. However, the influence of extracellular matrix (ECM) remodelling in this crosstalk, remains elusive. Methods. Human MSCs cultured on tissue culture plastic (TCP) and encased within fibrin in vitro were treated with/without TNFα and IFNγ. Human monocytes were cocultured with untreated/pretreated MSCs on TCP or within fibrin. After seven days, the conditioned media (CM) were collected. Human chondrocytes were exposed to CM in a migration assay. The impact of TGFβ was assessed by adding an inhibitor (TGFβRi). Cell activity was assessed using RT-qPCR and XL-protein-profiler-array. Results. Previously, we demonstrated that culturing human MSCs within 3D-environments significantly enhances their immunoregulatory activity in response to pro-inflammatory stimuli. In this study, monocytes were co-cultured with MSCs within fibrin, acquiring a distinct M2-like repair macrophage phenotype in contrast to TCP co-cultures. MSC/macrophage CM characterization using a protein array demonstrated differences in release of several factors, including chemokines, growth factors and ECM components. Chondrocyte migration was significantly reduced in CM from untreated MSC/monocytes co-cultures in fibrin compared to CM of untreated MSCs/monocytes on TCP. This impact on migration was not seen with chondrocytes cultured in CM of monocytes co-cultured with pretreated MSCs in fibrin. The CM of monocytes co-cultured with pretreated MSCs in fibrin up-regulates COL2A1 and SOX9 compared to TCP. Chondrogenesis and migration were TGFβ dependent. Conclusion. MSC/macrophage crosstalk and responsiveness to cytokines are influenced by the ECM environment, which subsequently impacts tissue-resident cell migration and chondrogenesis. The direct effects of ECM on MSC/macrophage secretory phenotype is complemented by the dynamic ECM binding and release of growth factors such as TGFβ. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 7 - 7
1 Nov 2021
Trivanovic D Volkmann N Stoeckl M Tertel T Schlierf B Kreuzahler T Giebel B Rudert M Herrmann M
Full Access

Introduction and Objective. The early pro-inflammatory hematoma phase of bone healing is characterized by platelet activation followed by growth factor release. Bone marrow mesenchymal stromal cells (MSC) play a critical role in bone regeneration. However, the impact of the pro-inflammatory hematoma environment on the function of MSC is not fully understood. We here applied platelet-rich plasma (PRP) hydrogels to study how platelet-derived factors modulate functional properties of MSC in comparison to a non-inflammatory control environment simulated by fibrin (FBR) hydrogels. Materials and Methods. MSC were isolated from acetabular bone marrow of patients undergoing hip arthroplasty. PRP was collected from pooled apheresis thrombocyte concentrates. The phenotype of MSC was analyzed after encapsulation in hydrogels or exposure with platelet-derived factors with regards to gene expression changes, cell viability, extracellular vesicle (EV) release and immunomodulatory effects utilizing cellular and molecular, flow cytometry, RT-PCR, western blot and immunofluorescence stainings. Results. Our results showed that encapsulation of MSC in PRP induced changes in cell metabolism increasing lactate production and reducing mitochondria membrane potential. This was followed by significantly decreased mTOR phosphorylation and differential gene regulation. While PRP-released factors could support EV-biogenesis and immunoregulation-related gene expression, FBR hydrogel reduced CD63+ and CD81+ EV release by MSC. In co-cultures with mitogen stimulated PBMC, pre-exposure of MSC with PRP reduced the proliferation rate and frequency of peripheral blood CD4. +. and favored the persistence of FOXP3. +. regulatory T lymphocytes (32±4.7% compared to 9±2.3% in control co-cultures where MSC were exposed to FBR). Conclusions. Our data indicate that exposure of MSC with a hematoma environment causes metabolic adaptation of MSC followed by increased immune regulatory functions, which in turn might contribute to resolution of inflammation required for successful bone healing