Introduction. While THA is associated with positive results and long-term improvement in patient quality of life, outcomes are nonetheless associated with adverse events and post-procedural deficits related to discrepancies in leg length (LLD), offset and cup placement. Post-THA errors in these parameters are associated with gait alteration, low back pain and patient dissatisfaction. Such discrepancies often necessitate revision and increasingly lead to medical malpractice litigation. Maintaining accuracy in post-surgical leg length, offset and cup placement during THA is difficult and subject to error. The sensitivity of these factors is highlighted in studies that have shown that a change of as little as 5 degrees of flexion or abduction can induce alterations in leg length of up to several millimeters. Similarly, positioning of implants can alter global and femoral offset, affecting abductor strength, range of motion and overall physical function. Compounding the biochemical issues associated with inaccurate leg length are the costs associated with these deficits. Traditional freehand techniques of managing intra-operative parameters rely on surgeon experience and tissue tensioning to manually place components accurately. These methods, however, are only able to assess leg length and are subject to inaccuracies associated with patient movement or orientation changes during surgery. Mechanical methods of minimizing post-surgical discrepancies have been developed, such as outrigger or caliper devices, although these methods also address leg length only and provide poor feedback regarding offset and center of rotation, therefore providing insufficient data to accurately achieve appropriate post-surgical leg length. Computer-assisted navigation methods provide more data regarding leg length, offset and center of rotation, but are limited by their cumbersome nature and the large capital costs associated with the systems. The Intellijoint HIP. ®. surgical smart tool (Intellijoint Surgical, Inc., Waterloo, ON) is an intra-operative guidance tool that provides surgeons with real time data on leg length, offset and center of rotation, thereby allowing for confident selection of the correct implant in order to ensure appropriate post-surgical biomechanics. The early clinical results from an initial cohort of patients indicate that Intellijoint HIP. ®. is safe and effective. No adverse events were reported in the initial cohort, and the smart tool was able to measure surgical parameters to within 1mm when compared to radiographic measurements. With training cases removed, 100% of cases had a post-procedure leg length discrepancy of less than 5mm. This paper describes the indications, procedural technique and early clinical results of the Intellijoint HIP. ®. smart tool, which offers a safe, accurate and easy-to-use option for hip surgeons to manage leg length, offset and cup position intra-operatively