Advertisement for orthosearch.org.uk
Results 1 - 20 of 6305
Results per page:

Aims. Nearly 99,000 total knee arthroplasties (TKAs) are performed in UK annually. Despite plenty of research, the satisfaction rate of this surgery is around 80%. One of the important intraoperative factors affecting the outcome is alignment. The relationship between joint obliquity and functional outcomes is not well understood. Therefore, a study is required to investigate and compare the effects of two types of alignment (mechanical and kinematic) on functional outcomes and range of motion. Methods. The aim of the study is to compare navigated kinematically aligned TKAs (KA TKAs) with navigated mechanically aligned TKA (MA TKA) in terms of function and ROM. We aim to recruit a total of 96 patients in the trial. The patients will be recruited from clinics of various consultants working in the trust after screening them for eligibility criteria and obtaining their informed consent to participate in this study. Randomization will be done prior to surgery by a software. The primary outcome measure will be the Knee injury and Osteoarthritis Outcome Score The secondary outcome measures include Oxford Knee Score, ROM, EuroQol five-dimension questionnaire, EuroQol visual analogue scale, 12-Item Short-Form Health Survey (SF-12), and Forgotten Joint Score. The scores will be calculated preoperatively and then at six weeks, six months, and one year after surgery. The scores will undergo a statistical analysis. Discussion. There is no clear evidence on the best alignment for a knee arthroplasty. This randomized controlled trial will test the null hypothesis that navigated KA TKAs do not perform better than navigated MA TKAs. Cite this article: Bone Jt Open 2021;2(11):945–950


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 74 - 80
1 Jun 2021
Deckey DG Rosenow CS Verhey JT Brinkman JC Mayfield CK Clarke HD Bingham JS

Aims. Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the plan prior to bone resection should reduce variability between the planned polyethylene thickness and the final implanted polyethylene. The purpose of this study was to compare accuracy to plan for component positioning and precision, as demonstrated by deviation from plan for polyethylene insert thickness in measured-resection RA-TKA versus M-TKA. Methods. A total of 220 consecutive primary TKAs between May 2016 and November 2018, performed by a single surgeon, were reviewed. Planned coronal plane component alignment and overall limb alignment were all 0° to the mechanical axis; tibial posterior slope was 2°; and polyethylene thickness was 9 mm. For RA-TKA, individual component position was adjusted to assist gap-balancing but planned coronal plane alignment for the femoral and tibial components and overall limb alignment remained 0 ± 3°; planned tibial posterior slope was 1.5°. Mean deviations from plan for each parameter were compared between groups for positioning and size and outliers were assessed. Results. In all, 103 M-TKAs and 96 RA-TKAs were included. In RA-TKA versus M-TKA, respectively: mean femoral positioning (0.9° (SD 1.2°) vs 1.7° (SD 1.1°)), mean tibial positioning (0.3° (SD 0.9°) vs 1.3° (SD 1.0°)), mean posterior tibial slope (-0.3° (SD 1.3°) vs 1.7° (SD 1.1°)), and mean mechanical axis limb alignment (1.0° (SD 1.7°) vs 2.7° (SD 1.9°)) all deviated significantly less from the plan (all p < 0.001); significantly fewer knees required a distal femoral recut (10 (10%) vs 22 (22%), p = 0.033); and deviation from planned polyethylene thickness was significantly less (1.4 mm (SD 1.6) vs 2.7 mm (SD 2.2), p < 0.001). Conclusion. RA-TKA is significantly more accurate and precise in planning both component positioning and final polyethylene insert thickness. Future studies should investigate whether this increased accuracy and precision has an impact on clinical outcomes. The greater accuracy and reproducibility of RA-TKA may be important as precise new goals for component positioning are developed and can be further individualized to the patient. Cite this article: Bone Joint J 2021;103-B(6 Supple A):74–80


Bone & Joint Open
Vol. 3, Issue 5 | Pages 390 - 397
1 May 2022
Hiranaka T Suda Y Saitoh A Tanaka A Arimoto A Koide M Fujishiro T Okamoto K

The kinematic alignment (KA) approach to total knee arthroplasty (TKA) has recently increased in popularity. Accordingly, a number of derivatives have arisen and have caused confusion. Clarification is therefore needed for a better understanding of KA-TKA. Calipered (or true, pure) KA is performed by cutting the bone parallel to the articular surface, compensating for cartilage wear. In soft-tissue respecting KA, the tibial cutting surface is decided parallel to the femoral cutting surface (or trial component) with in-line traction. These approaches are categorized as unrestricted KA because there is no consideration of leg alignment or component orientation. Restricted KA is an approach where the periarthritic joint surface is replicated within a safe range, due to concerns about extreme alignments that have been considered ‘alignment outliers’ in the neutral mechanical alignment approach. More recently, functional alignment and inverse kinematic alignment have been advocated, where bone cuts are made following intraoperative planning, using intraoperative measurements acquired with computer assistance to fulfill good coordination of soft-tissue balance and alignment. The KA-TKA approach aims to restore the patients’ own harmony of three knee elements (morphology, soft-tissue balance, and alignment) and eventually the patients’ own kinematics. The respective approaches start from different points corresponding to one of the elements, yet each aim for the same goal, although the existing implants and techniques have not yet perfectly fulfilled that goal


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 132 - 132
1 Feb 2020
Paglia A Goderecci R Calvisi V
Full Access

Introduction. Functional outcomes of mechanically aligned (MA) total knee arthroplasty have plateaued. The aim of this study is to find an alternative technique for implant positioning that improves functional outcomes of TKA. Methods. We prospectively randomized 100 consecutive patients undergoing TKA into two groups: in the group A an intramedullary femoral guide and an extramedullary tibial guide were used with aim to obtain a neutral traditional mechanical alignment; in the group B an extramedullary femoral guide set on distal femoral condyles and an extramedullary tibial guide neutrally aligned were used to obtain an adaptation of the conventional MA technique. Patients were followed-up clinically with the Short Form Health Survey (SF-12), Oxford Knee Score (OKS) and Visual Analogue Score (VAS) questionnaires pre-operatively and then at 1 year post-operatively. Mechanical alignment was calculated on standing weight bearing Xray pre- and post-operatively. T-test was used to compare the results between groups. Results. Both groups showed an improvement of clinical scores. At 1 year of follow-up OKS and SF-12 were significantly higher in group B: 47,6 ±0.75 and 46.5 ±0.76 respectively; VAS was similar in both groups. Values of mechanical alignment changed from 6.45 ±8.45 to 0.25 ±0.91 for group A and from 6.8 ±7.94 to 2.5 ±4.7 for group B. Conclusion. This study shows that adjusted mechanical alignment (AMA) with a small under-correction of frontal deformity lead to improved functional scores following total knee replacement compared to conventional technique of neutral alignment. These results are satisfactory at short follow-up but long-term studies are needed to evaluate the difference in the rate of wear of the prosthetic components


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1511 - 1518
1 Nov 2020
Banger MS Johnston WD Razii N Doonan J Rowe PJ Jones BG MacLean AD Blyth MJG

Aims. The aim of this study was to compare robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) in order to determine the changes in the anatomy of the knee and alignment of the lower limb following surgery. Methods. An analysis of 38 patients who underwent TKA and 32 who underwent bi-UKA was performed as a secondary study from a prospective, single-centre, randomized controlled trial. CT imaging was used to measure coronal, sagittal, and axial alignment of the knee preoperatively and at three months postoperatively to determine changes in anatomy that had occurred as a result of the surgery. The hip-knee-ankle angle (HKAA) was also measured to identify any differences between the two groups. Results. The pre- to postoperative changes in joint anatomy were significantly less in patients undergoing bi-UKA in all three planes in both the femur and tibia, except for femoral sagittal component orientation in which there was no difference. Overall, for the six parameters of alignment (three femoral and three tibial), 47% of bi-UKAs and 24% TKAs had a change of < 2° (p = 0.045). The change in HKAA towards neutral in varus and valgus knees was significantly less in patients undergoing bi-UKA compared with those undergoing TKA (p < 0.001). Alignment was neutral in those undergoing TKA (mean 179.5° (SD 3.2°)) while those undergoing bi-UKA had mild residual varus or valgus alignment (mean 177.8° (SD 3.4°)) (p < 0.001). Conclusion. Robotic-assisted, cruciate-sparing bi-UKA maintains the natural anatomy of the knee in the coronal, sagittal, and axial planes better, and may therefore preserve normal joint kinematics, compared with a mechanically aligned TKA. This includes preservation of coronal joint line obliquity. HKAA alignment was corrected towards neutral significantly less in patients undergoing bi-UKA, which may represent restoration of the pre-disease constitutional alignment (p < 0.001). Cite this article: Bone Joint J 2020;102-B(11):1511–1518


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 65 - 65
17 Apr 2023
Tacchella C Lombardero SM Clutton E Chen Y Crichton M
Full Access

In this work, we propose a new quantitative way of evaluating acute compartment syndrome (ACS) by dynamic mechanical assessment of soft tissue changes. First, we have developed an animal model of ACS to replicate the physiological changes during the condition. Secondly, we have developed a mechanical assessment tool for quantitative pre-clinical assessment of ACS. Our hand-held indentation device provides an accurate method for investigations into the local dynamic mechanical properties of soft tissue and for in-situ non-invasive assessment and monitoring of ACS. Our compartment syndrome model was developed on the cranial tibial and the peroneus tertius muscles of a pig's leg (postmortem). The compartment syndrome pressure values were obtained by injecting blood from the bone through the muscle. To enable ACS assessment by a hand-held indentation device we combined three main components: a load cell, a linear actuator and a 3-axis accelerometer. Dynamic tests were performed at a frequency of 0.5 Hz and by applying an amplitude of 0.5 mm. Another method used to observe the differences in the mechanical properties inside the leg was a 3D Digital Image Correlation (3D-DIC). Videos were taken from two different positions of the pig's leg at different pressure values: 0 mmHg, 15 mmHg and 40 mmHg. Two strains along the x axis (Exx) and y axis (Eyy) were measured. Between the two pressure cases (15 mmHg and 40 mmHg) a clear deformation of the model is visible. In fact, the bigger the pressure, the more visible the increase in strain is. In our animal model, local muscle pressures reached values higher than 40 mmHg, which correlate with observed human physiology in ACS. In our presentation we will share our dynamic indentation results on this model to demonstrate the sensitivity of our measurement techniques. Compartment syndrome is recognised as needing improved clinical management tools. Our approach provides both a model that reflects physiological behaviour of ACS, and a method for in-situ non-invasive assessment and monitoring


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 82 - 82
2 Jan 2024
Barcik J Ernst M Buchholz T Constant C Mys K Epari D Zeiter S Gueorguiev B Windolf M
Full Access

Secondary bone healing is impacted by the extent of interfragmentary motion at the fracture site. It provides mechanical stimulus that is required for the formation of fracture callus. In clinical settings, interfragmentary motion is induced by physiological loading of the broken bone – for example, by weight-bearing. However, there is no consensus about when mechanical stimuli should be applied to achieve fast and robust healing response. Therefore, this study aims to identify the effect of the immediate and delayed application of mechanical stimuli on secondary bone healing. A partial tibial osteotomy was created in twelve Swiss White Alpine sheep and stabilized using an active external fixator that induced well-controlled interfragmentary motion in form of a strain gradient. Animals were randomly assigned into two groups which mimicked early (immediate group) and late (delayed group) weight-bearing. The immediate group received daily stimulation (1000 cycles/day) from the first day post-op and the delayed group from the 22nd day post-op. Healing progression was evaluated by measurements of the stiffness of the repair tissue during mechanical stimulation and by quantifying callus area on weekly radiographs. At the end of the five weeks period, callus volume was measured on the post-mortem high-resolution computer tomography (HRCT) scan. Stiffness of the repair tissue (p<0.05) and callus progression (p<0.01) on weekly radiographs were significantly larger for the immediate group compared to the delayed group. The callus volume measured on the HRCT was nearly 3.2 times larger for the immediate group than for the delayed group (p<0.01). This study demonstrates that the absence of immediate mechanical stimuli delays callus formation, and that mechanical stimulation already applied in the early post-op phase promotes bone healing


Bone & Joint Research
Vol. 11, Issue 9 | Pages 629 - 638
1 Sep 2022
Pijls BG Sanders IMJG Kuijper EJ Nelissen RGHH

Aims. Here we used a mature seven-day biofilm model of Staphylococcus aureus, exposed to antibiotics up to an additional seven days, to establish the effectiveness of either mechanical cleaning or antibiotics or non-contact induction heating, and which combinations could eradicate S. aureus in mature biofilms. Methods. Mature biofilms of S. aureus (ATCC 29213) were grown on titanium alloy (Ti6Al4V) coupons for seven days and were subjected to the following treatments or their combinations: antibiotics, mechanical cleaning, or heat shock by induction heating of 60°C for one minute. Experiments were repeated at least five times. Results. In the untreated biofilm, growth up to 1.8×10. 11. colony-forming units (CFU)/cm. 2. was observed. Treatment with ciprofloxacin, flucloxacillin, vancomycin, cefuroxime, and amoxicillin all with rifampicin gave 6.0 log, 6.1 log, 1.4 log, 4.8 log, and 3.6 log reduction in CFU/cm. 2. , respectively. Mechanical cleaning alone resulted in 4.9 log reduction and induction heating in 7.3 log reduction. There was an additional effect of ciprofloxacin, flucloxacillin, and induction heating when used in combinations. There was no additional effect for mechanical cleaning. No bacterial growth could be detected after induction heating followed by seven days of ciprofloxacin with rifampicin. Conclusion. Mechanical cleaning, antibiotics, and non-contact induction heating reduced the bacterial load of mature S. aureus biofilms with approximately 5 log or more as a single treatment. The effect of mechanical cleaning on mature S. aureus biofilms was limited when used in combination with antibiotics and/or induction heating. Cite this article: Bone Joint Res 2022;11(9):629–638


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 137 - 137
2 Jan 2024
Tavernaraki N Platania V Chatzinikolaidou M
Full Access

Bone is a dynamic tissue that undergoes continuous mechanical forces. Mechanical stimuli applied on scaffolds resembling a part of the human bone tissue affects the osteogenesis [1]. Poly(3,4-ethylenedioxythiophene) (PEDOT) is a piezoelectric material that responds to mechanical stimulation producing an electrical signal, which in turn promotes the osteogenic differentiation of bone-forming cells by opening voltage-gated calcium channels [2]. In this study we examined the biological behavior of pre-osteoblastic cells seeded onto lyophilized piezoelectric PEDOT-containing scaffolds applying uniaxial compression. Two different concentrations of PEDOT (0.10 and 0.15% w/v) were combined with a 5% w/v poly(vinyl alcohol) (PVA) and 5% w/v gelatin, casted into wells, freeze dried and crosslinked with 2% v/v (3-glycidyloxypropyl)trimethoxysilane and 0.025% w/v glutaraldehyde. The scaffolds were physicochemically characterized by FTIR, measurement of the elastic modulus, swelling ratio and degradation rate. The cell-loaded scaffolds were subjected to uniaxial compression with a frequency of 1 Hz and a strain of 10% for 1 h every second day for 21 days. The loading parameters were selected to resemble the in vivo loading situation [3]. Cell viability and morphology on the PEDOT/PVA/gelatin scaffolds was determined. The alkaline phosphatase (ALP) activity, the collagen and calcium production were determined. The elastic modulus of PEDOT/PVA/gelatin scaffolds ranged between 1 and 5 MPa. The degradation rate indicates a mass loss of 15% after 21 days. The cell viability assessment displays excellent biocompatibility, while SEM images display well-spread cells. The ALP activity at days 3, 7 and 18 as well as the calcium production are higher in the dynamic culture compared to the static one. Moreover, energy dispersive spectroscopy analysis revealed the presence of calcium phosphate in the extracellular matrix after 14 days. The results demonstrate that PEDOT/PVA/gelatin scaffolds promote the adhesion, proliferation, and osteogenic differentiation of pre-osteoblastic cells under mechanical stimulation, thus favoring bone regeneration


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 108 - 108
2 Jan 2024
Pierantoni M Dejea H Geomini L Abrahamsson M Gstöhl S Schlepütz C Englund M Isaksson H
Full Access

To characterize the microstructural organization of collagen fibers in human medial menisci and the response to mechanical loading in relation to age. We combine high resolution imaging with mechanical compression to visualize the altered response of the tissue at the microscale. Menisci distribute the load in the knee and are predominantly composed of water and specifically hierarchically arranged collagen fibers. Structural and compositional changes are known to occur in the meniscus during aging and development of osteoarthritis. However, how microstructural changes due to degeneration affect mechanical performance is still largely unknown [1]. Fresh frozen 4 mm Ø plugs of human medial menisci (n=15, men, 20-85 years) with no macroscopic damage nor known diseases from the MENIX biobank at Skåne University Hospital were imaged by phase contrast synchrotron tomography at the TOMCAT beamline (Paul Scherrer Institute, CH). A rheometer was implemented into the beamline to perform in-situ stress relaxation (2 steps 15% and 30% strain) during imaging (21 keV, 2.75μm pixel size). 40s scans were acquired before and after loading, while 14 fast tomographs (5s acquisitions) were taken during relaxation. The fiber 3D orientations and structural changes during loading were determined using a structure tensor approach (adapting a script from [1]). The 3D collagen fiber orientation in menisci revealed alternating layers of fibers. Two main areas are shown: surfaces and bulk. The surface layers are a mesh of randomly oriented fibers. Within the bulk 2-3 layers of fibers are visible that alternate about 30° to each other. Structural degeneration with age is visible and is currently being quantified. During stress-relaxation all menisci show a similar behavior, with samples from older donors being characterized by larger standard deviation Furthermore, the behavior of the different layers of fibers is tracked during relaxation showing how fibers with different orientation respond to the applied loading. Acknowledgments: We thank PSI for the beamtime at the TOMCAT beamline X02DA, and funding from Swedish Research Council (2019-00953), under the frame of ERA PerMed, and the Novo Nordisk Foundation through MathKOA (NNF21OC0065373)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 69 - 69
2 Jan 2024
Dintheer A Jaeger P Hussien A Snedeker J
Full Access

Extracellular matrix (ECM) mechanical cues guide healing in tendons. Yet, the molecular mechanisms orchestrating the healing processes remain elusive. Appropriate tissue tension is essential for tendon homeostasis and tissue health. By mapping the attainment of tensional homeostasis, we aim to understand how ECM tension regulates healing. We hypothesize that diseased tendon returns to homeostasis only after the cells reach a mechanically gated exit from wound healing. We engineered a 3D mechano-culture system to create tendon-like constructs by embedding patient-derived tendon cells into a collagen I hydrogel. Casting the hydrogel between posts anchored in silicone allowed adjusting the post stiffness. Under this static mechanical stimulation, cells remodel the (unorganized) collagen representing wound healing mechanisms. We quantified tissue-level forces using post deflection measurements. Secreted ECM was visualized by metabolic labelling with non-canonical amino acids, click chemistry and confocal microscopy. We blocked cell-mediated actin-myosin contractility using a ROCK inhibitor (Y27632) to explore the involvement of the Rho/ROCK pathway in tension regulation. Tissue tension forces reached the same homeostatic level at day 21 independent of post compliance (p = 0.9456). While minimal matrix was synthesized in early phases of tissue formation (d3-d5), cell-deposited ECM was present in later stages (d7-d9). More ECM was deposited by tendon constructs cultured on compliant (1Nm) compared to rigid posts (p = 0.0017). Matrix synthesized by constructs cultured on compliant posts was less aligned (greater fiber dispersion, p = 0.0021). ROCK inhibition significantly decreased tissue-level tensional forces (p < 0.0001). Our results indicate that tendon cells balance matrix remodeling and synthesis during tissue repair to reach an intrinsically defined “mechanostat setpoint” guiding tension-mediated exit from wound healing towards homeostasis. We are identifying specific molecular mechanosensors governing tension-regulated healing in tendon and investigate the Rho/ROCK system as their possible downstream pathway


The Bone & Joint Journal
Vol. 106-B, Issue 3 | Pages 240 - 248
1 Mar 2024
Kim SE Kwak J Ro DH Lee MC Han H

Aims. The aim of this study was to evaluate whether achieving medial joint opening, as measured by the change in the joint line convergence angle (∆JLCA), is a better predictor of clinical outcomes after high tibial osteotomy (HTO) compared with the mechanical axis deviation, and to find individualized targets for the redistribution of load that reflect bony alignment, joint laxity, and surgical technique. Methods. This retrospective study analyzed 121 knees in 101 patients. Patient-reported outcome measures (PROMs) were collected preoperatively and one year postoperatively, and were analyzed according to the surgical technique (opening or closing wedge), postoperative mechanical axis deviation (deviations above and below 10% from the target), and achievement of medial joint opening (∆JLCA > 1°). Radiological parameters, including JLCA, mechanical axis deviation, and the difference in JLCA between preoperative standing and supine radiographs (JLCA. PD. ), an indicator of medial soft-tissue laxity, were measured. Cut-off points for parameters related to achieving medial joint opening were calculated from receiver operating characteristic (ROC) curves. Results. Patients in whom the medial joint opening was achieved had significantly better postoperative PROMs compared with those without medial opening (all p < 0.05). Patients who were outliers with deviation of > 10% from the target mechanical axis deviation had significantly similar PROMs compared with patients with an acceptable axis deviation (all p > 0.05). Medial joint opening was affected by postoperative mechanical axis deviation and JLCA. PD. The influence of JLCA. PD. on postoperative axis deviation was more pronounced in a closing wedge than in an opening wedge HTO. Conclusion. Medial joint opening rather than the mechanical axis deviation determined the clinical outcome in patients who underwent HTO. The JLCA. PD. identified the optimal postoperative axis deviation necessary to achieve medial joint opening. For patients with increased laxity, lowering the target axis deviation is recommended to achieve medial joint opening. The target axis deviation should also differ according to the technique of undergoing HTO. Cite this article: Bone Joint J 2024;106-B(3):240–248


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 67 - 67
11 Apr 2023
Britton M Schiavi J Vaughan T
Full Access

Type-2 Diabetic (T2D) patients experience up to a 3-fold increase in bone fracture risk[1]. Paradoxically, T2D-patients have a normal or increased bone mineral density when compared to non-diabetic patients. This implies that T2D has a deleterious effect on bone quality, whereby the intrinsic material properties of the bone matrix are altered. Creating clinical challenges as current diagnostic techniques are unable to accurately predict the fracture probability in T2D-patients. To date, the relationship between cyclic fatigue loading, mechanical properties and microdamage accumulation of T2D-bone tissue has not yet been examined and thus our objective is to investigate this relationship. Ethically approved femoral heads were obtained from patients, with (n=8) and without (n=8) T2D. To obtain the mechanical properties of the sample, one core underwent a monotonic compression test to 10% strain, the other core underwent a cyclic compression test at a normalized stress ratio between 0.0035mm/mm and 0.016mm/mm to a maximum strain of 3%. Microdamage was evaluated by staining the tissue with barium sulfate precipitate [2] and conducting microcomputed tomography scanning with a voxel size of 10μm. The monotonically tested T2D-group showed no statistical difference in mechanical properties to the non-T2D-group, even when normalised against BV/TV. There was also no difference in BV/TV. For the cyclic test, the T2D-group had a significantly higher initial modulus (p<0.01) and final modulus (p<0.05). There was no difference in microdamage accumulation. Previous population-level studies have found that T2D-patients have been shown to have an increased fracture risk when compared to non-T2D-patients. This research indicates that T2D does not impair the mechanical properties of trabecular bone from the femoral heads of T2D-patients, suggesting that other mechanisms may be responsible for the increased fracture risk seen in T2D-patients


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 27 - 27
11 Apr 2023
Puente Reyna A Schwiesau J Altermann B Grupp T
Full Access

The purpose of the study was to compare the mechanical properties, oxidation and wear resistance of a vitamin E blended and moderately crosslinked polyethylene for total knee arthroplasty (MXE) in comparison with clinically established polyethylene materials. The following polyethylene materials were tested: CPE (30 kGy e-beam sterilized), XLPE (75 kGy gamma crosslinked @ 100°C), ViXLPE (0.1 % vitamin E blended, 80 kGy e-beam crosslinked @ 100°C), and MXE (0.1 % vitamin E blended polyethylene, 30 kGy gamma sterilized). For the different tests, the polyethylene materials were either unaged or artificially aged for two or six weeks according to ASTM F2003-02. The oxidation index was measured based on ASTM F2102 at a 1 mm depth. Small punch testing was performed based on ASTM F2977. Mechanical properties were measured on unaged materials according to ASTM D638. Wear simulation was performed on a load controlled 3 + 1 station knee wear simulator (EndoLab GmbH, Thansau, Germany) capable of reproducing loads and movement of highly demanding activities (HDA) as well as ISO 14243-1 load profiles. The load profiles were applied for 5 million cycles (mc) or delamination of the polyethylene components. Medium size AS e.motion. ®. PS Pro (Aesculap AG, Tuttlingen, Germany) femoral and tibial components with a ZrN-multilayer surface, as well as Columbus. ®. CR cobalt-chrome alloy femoral and tibial components were tested. Particle analysis was performed on the serum samples of the ISO 14243-1 wear simulations based on ISO 17853:2011 and ASTM F1877. The analysis of the mechanical properties show that moderately crosslinked polyethylene (MXE) might be a superior material for total knee arthroplasty applications [Schwiesau et al. 2021]. The addition of vitamin E in a moderately crosslinked polyethylene prevented its oxidation, kept its mechanical characteristics, and maintained a low wear, even under a HDA knee wear simulation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 49 - 49
17 Nov 2023
Jones R Gilbert S Mason D
Full Access

Abstract. OBJECTIVE. Changes in subchondral bone are one of few disease characteristics to correlate with pain in OA. 1. Profound neuroplasticity and nociceptor sprouting is displayed within osteoarthritic (OA) subchondral bone and is associated with pain and pathology. 2. The cause of these neural changes remains unestablished. Correct innervation patterns are indispensable for bone growth, homeostasis, and repair. Axon guidance signalling factor, Sema3A is essential for the correct innervation patterning of bony tissues. 3. , expressed in osteocytes. 4. and known to be downregulated in bone OA mechanical loading. 5. Bioinformatic analysis has also shown Sema3a as a differentially expressed pathway by bone in human OA patients. 6. HYPOTHESIS: Pathological mechanical load and inflammation of bone causes dysregulation of Sema3A signalling leading to perturbed sensory nerve plasticity and pain. METHODS. Human KOLF2-C1 iPSC derived nociceptors were generated by TALEN-mediated insertion of transcription factors NGN2+Brn3A and modified chambers differentiation protocol to produce nociceptor-like cells. Nociceptor phenotype was confirmed by immunocytochemistry. Human Y201-MSC cells were embedded in 3D type-I collagen gels (0.05 × 106 cell/gel), in 48-well plates and silicone plates, were differentiated to osteocytes for 7 days before stimulation with IL-6 (5ng/ml) and soluble IL-6 receptor (sIL-6r (40ng/ml), IL6/sIL6r and mechanical load mimetic Yoda1 (5μM) or unstimulated (n=5/group) (48-well plates) or were mechanically loaded in silicone plates (5000μstrain, 10Hz, 3000 cycles) or not loaded (n=5/group). Conditioned media transfer was performed from osteocyte to nociceptor cultures assessed by continuous 24-hour phase contrast confocal microscopy. 24-hours after stimulation RNA was quantified by RT-qPCR (IL6) or RNAseq whole transcriptome analysis/DEseq2 analysis (Load). Protein release was quantified by ELISA. Normally distributed data with homogenous variances was analysed by two-tailed t test. RESULTS. IPSC-derived nociceptor-like cells display elongated (>5mm) dendritic projections and nociceptive molecular markers such as TUJ1, PrPH and Neun and TrkA. Sema3A signalling ligands were expressed in 100% of osteocyte cultures. Mechanical loading regulated the Sema3 pathway; Sema3A (0.4-fold, p<0.001), Sema3B (13-fold, p<0.001), Sema3C (0.4-fold, p<0.001). Under inflammatory stimulation by IL6/IL6sR, SEMA3A (7-fold, p=0.01) and receptor Plexin1 (3-fold, p=0.03) show significant regulation. Sema3A protein release showed a significant downregulation of Sema3A release by IL6/sIL6r+Yoda1 (2-fold, p=0.02). Continuous 24-hour phase contrast confocal microscopy measuring the number of extending/retreating dendritic projections revealed that sensory nerve cultures exposed to media from osteocytes stimulated with IL-6/sIL-6R+Yoda1 displayed significantly more invading dendritic projections (p=0.0175, 12-fold±SEM 3.5) across 3 random fields of view within a single stimulated neural culture and significantly fewer retracting dendritic projections (p=0.0075, 2-fold±SEM 0.33) compared to controls. CONCLUSIONS. Here we show osteocytic regulation of Sema3A under pathological mechanical loading and the ability of media pathologically loaded osteocyte cultures to induce the branching and invasion of cultured nociceptor-like cells as displayed in OA subchondral bone. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 2 - 2
1 Dec 2021
Sanderson W Foster R Edwards J Wilcox R Herbert A
Full Access

Abstract. Objectives. The patella tendon (PT) is commonly used as a graft material for anterior cruciate ligament reconstruction (ACLR). The function of the graft is to restore the mechanical behaviour of the knee joint. Therefore, it is essential that a robust methodology be developed for the mechanical testing of the PT, as well as for the tissue engineered grafts derived from this tissue. Our objectives were to (1) survey the literature, in order to define the state-of-the-art in mechanical testing of the PT, highlighting the most commonly used testing protocols, and (2) conduct validation studies using porcine PT to compare the mechanical measurements obtained using different methodological approaches. Methods. A PubMed search was performed using a boolean search term to identify publications consisting of PT tensile testing, and limited to records published in the past ten years (2010–2020). This returned a total of 143 publications. A meta-analysis was undertaken to quantify the frequency of commonly used protocol variations (pre-conditioning regime, strain rates, maximum strain, etc.). Validation studies were performed on porcine PT (n=4) using Instron tensile testing apparatus to examine the effect of preconditioning on low-strain (toe-region) mechanical properties. Results. Ramp-to-failure testing was found to be most commonly performed (included in over 90 % of publications), followed by stress relaxation and cyclic testing (∼25 %). Preconditioning was most commonly cyclic (27 %), involving 10–100 cycles. Validation studies show the number of cycles and duration of preconditioning, has no significant effect on toe region transition strain, transition stress, or sensitivity to increasing strain. Conclusions. There is a lack of standardisation in the mechanical testing of PT, which could have implications for the comparison of studies conducted using different protocols. However, variations in preconditioning regime have no effect on low-strain mechanical properties


The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1360 - 1368
1 Oct 2016
Waterson HB Clement ND Eyres KS Mandalia VI Toms AD

Aims. Our aim was to compare kinematic with mechanical alignment in total knee arthroplasty (TKA). Patients and Methods. We performed a prospective blinded randomised controlled trial to compare the functional outcome of patients undergoing TKA in mechanical alignment (MA) with those in kinematic alignment (KA). A total of 71 patients undergoing TKA were randomised to either kinematic (n = 36) or mechanical alignment (n = 35). Pre- and post-operative hip-knee-ankle radiographs were analysed. The knee injury and osteoarthritis outcome score (KOOS), American Knee Society Score, Short Form-36, Euro-Qol (EQ-5D), range of movement (ROM), two minute walk, and timed up and go tests were assessed pre-operatively and at six weeks, three and six months and one year post-operatively. Results. A total of 78% of the kinematically aligned group (28 patients) and 77% of the mechanically aligned group (27 patients) were within 3° of their pre-operative plan. There were no statistically significant differences in the mean KOOS (difference 1.3, 95% confidence interval (CI) -9.4 to 12.1, p = 0.80), EQ-5D (difference 0.8, 95% CI -7.9 to 9.6, p = 0.84), ROM (difference 0.1, 95% CI -6.0 to 6.1, p = 0.99), two minute distance tolerance (difference 20.0, 95% CI -52.8 to 92.8, p = 0.58), or timed up and go (difference 0.78, 95% CI -2.3 to 3.9, p = 0.62) between the groups at one year. Conclusion. Kinematically aligned TKAs appear to have comparable short-term results to mechanically aligned TKAs with no significant differences in function one year post-operatively. Further research is required to see if any theoretical long-term functional benefits of kinematic alignment are realised or if there are any potential effects on implant survival. Cite this article: Bone Joint J 2016;98-B:1360–8


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 52 - 52
17 Nov 2023
Jones R Bowd J Gilbert S Wilson C Whatling G Jonkers I Holt C Mason D
Full Access

Abstract. OBJECTIVE. Knee varus malalignment increases medial knee compartment loading and is associated with knee osteoarthritis (OA) progression and severity. 1. Altered biomechanical loading and dysregulation of joint tissue biology drive OA progression, but mechanistic links between these factors are lacking. Subchondral bone structural changes are biomechanically driven, involve bone resorption, immune cell influx, angiogenesis, and sensory nerve invasion, and contribute to joint destruction and pain. 2. We have investigated mechanisms underlying this involving RANKL and alkaline phosphatase (ALP), which reflect bone resorption and mineralisation respectively. 3. and the axonal guidance factor Sema3A. Sema3A is osteotropic, expressed by mechanically sensitive osteocytes, and an inhibitor of sensory nerve, blood vessel and immune cell invasion. 4. Sema3A is also differentially expressed in human OA bone. 5. HYPOTHESIS: Medial knee compartment overloading in varus knee malalignment patients causes dysregulation of bone derived Sema3A signalling directly linking joint biomechanics to pathology and pain. METHODS. Synovial fluid obtained from 30 subjects with medial knee OA (KL grade II-IV) undergoing high tibial osteotomy surgery (HTO) was analysed by mesoscale discovery and ELISA analysis for inflammatory, neural and bone turnover markers. 11 of these patients had been previously analysed in a published patient-specific musculoskeletal model. 6. of gait estimating joint contact location, pressure, forces, and medial-lateral condyle load distribution in a published data set included in analyses. Data analysis was performed using Pearson's correlation matrices and principal component analyses. Principal Components (PCs) with eigenvalues greater than 1 were analysed. RESULTS. PC1 (32.94% of variation) and PC2 (25.79% of variation) from PCA analysis and correlation matrices separated patients according to correlated clusters of established inflammatory markers of OA pain and progression (IL6/IL8, r=0.754, p<0.001) and anti-inflammatory mediators (IL4/IL10, r=0.469, p=0.005). Bone turnover marker ALP was positively associated with KL grade (r=0.815, p=0.002) and negatively associated with IL10 (r=−0.402, p=0.018) and first peak knee loading pressures (r=−0.688, p=0.019). RANKL was positively associated with IL4 (r=0.489, p=0.003). Synovial fluid Sema3A concentrations showed separate clustering from all OA progression markers and was inversely correlated with TNF-α (r=−0.423, p=0.022) in HTO patients. Sema3A was significantly inversely correlated with total predicted force in the medial joint compartment (r=−0.621, p=0.041), mean (r=−0.63, p=0.038) and maximum (r=−0.613, p=0.045) calculated medial compartment joint pressures during the first phase and mean (r=−0.618, p=0.043) and maximum (r=−0.641, p=0.034) medial compartment joint pressures during midstance outputs of patient-specific musculoskeletal model. CONCLUSIONS. This study shows joint inflammatory status and mechanical overloading influence subchondral bone-remodelling. Synovial Sema3A concentrations are inversely correlated to patient-specific musculoskeletal model estimations of pathological medial overloading. This study reveals Sema3A as a biological mediator with capacity to induce OA pain and disease progression that is directly regulated by gait mechanical loading. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 817 - 825
1 Aug 2024
Borukhov I Ismailidis P Esposito CI LiArno S Lyon J McEwen PJ

Aims. This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or kinematic alignment (KA) are more biomimetic concerning trochlear sulcus orientation and restoration of trochlear height. Methods. Bone surfaces from 1,012 CT scans of non-arthritic femora were segmented using a modelling and analytics system. TKA femoral components (Triathlon; Stryker) were virtually implanted in both MA and KA. Trochlear sulcus orientation was assessed by measuring the distal trochlear sulcus angle (DTSA) in native femora and in KA and MA prosthetic femoral components. Trochlear anatomy restoration was evaluated by measuring the differences in medial, lateral, and sulcus trochlear height between native femora and KA and MA prosthetic femoral components. Results. Femoral components in both MA and KA alignments exhibited a more valgus DTSA compared to native femora. However, DTSA deviation from native was significantly less in KA than in MA (4.8° (SD 2.2°) vs 8.8° (SD 1.8°); p < 0.001). DTSA deviation from native orientation correlated positively with the mechanical lateral distal femoral angle (mLDFA) in KA and negatively in MA (r = 0.53, p < 0.001; r = -0.18, p < 0.001). Medial trochlear height was not restored with either MA or KA, with MA resulting in lower medial trochlear height than KA in the proximal 20% of the trochlea. Lateral and sulcus trochlear height was not restored with either alignment in the proximal 80% of the trochlea. At the terminal arc point, KA replicated sulcus and lateral trochlear height, while MA led to over-restoration. Conclusion. Femoral components aligned in KA demonstrated greater biomimetic qualities than those in MA regarding trochlear sulcus orientation and trochlear height restoration, particularly in valgus femora. Variability across knees was observed, warranting further research to evaluate the clinical implications of these findings. Cite this article: Bone Joint J 2024;106-B(8):817–825


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 95 - 95
14 Nov 2024
Machain TC Kharchenko A Hostettler R Lippl J Mouthuy PA
Full Access

Introduction. Supraspinatus tears comprise most rotator cuff injuries, the leading cause of shoulder pain and an increasing problem with ageing populations. Surgical repair of considerable or persistent damages is customary, although not invariably successful. Tissue engineering presents a promising alternative to generate functional tissue constructs with improved healing capacities. This study explores tendon tissue constructs’ culture in a platform providing physiological mechanical stimulation and reports on the effect of different loading regimes on the viability of human tendon cells. Method. Porcine decellularized tendon scaffolds were fixed into flexible, self-contained bioreactor chambers, seeded with human tenocytes, allocated in triplicates to either static control, low (15±0.8Newtons [N]), medium (26±0.5N), or high (49±2.1N)-force-regime groups, connected to a perfusion system and cultured under standard conditions. A humanoid robotic arm provided 30-minute adduction/abduction stimulation to chambers daily over a week. A metabolic activity assay served to assess cell viability at four time points. Statistical significance = p<0.05. Result. One day after beginning mechanical stimulation, chambers in the medium and high-force regimes displayed a rise in metabolic activity by 3% and 5%, respectively. By the last experimental day, all mechanical stimulation regimes had induced an augment in cell viability (15%, 57% and 39% with low, medium, and high loads, respectively) matched against the static controls. Compared to all other conditions, the medium-force regime prompted an increased relative change in metabolic activity for every time point set against day one (p<0.05). Conclusion. Human tenocytes’ viability reflected by metabolic activity in a physiologically relevant bioreactor system is enhanced by loading forces around 25N when mechanically stimulating using adduction/abduction motions. Knowing the most favourable load regime to stimulate tenocyte growth has informed the ongoing exploration of the distinctive effect of different motions on tendon regeneration towards engineering tissue grafts. This work was supported by the Engineering and Physical Sciences Research Council EP/S003509/1