There has been a renewed interest in the importance of achievement of a neutral,
Restoring the overall
Introduction. Functional outcomes of mechanically aligned (MA) total knee arthroplasty have plateaued. The aim of this study is to find an alternative technique for implant positioning that improves functional outcomes of TKA. Methods. We prospectively randomized 100 consecutive patients undergoing TKA into two groups: in the group A an intramedullary femoral guide and an extramedullary tibial guide were used with aim to obtain a neutral traditional
Abstract. Background. Conventional TKR aims for neutral
Introduction: I always aim for neutral
No, Neutral mechanical axis has never been regarded as “necessary” to the success of TKA. In fact it has never been established as “ideal” with published data. Tibial femoral alignment after TKA is important, but it is also an issue that we do not understand completely. Neutral
Conventional total knee arthroplasty aims to place the joint line perpendicular to the mechanical axis resulting in an overall neutral
Introduction. Neutral
Introduction. Debate over appropriate alignment in total knee arthroplasty has become a topical subject as technology allows planned alignments that differ from a neutral mechanical axis. These surgical techniques employ patient-specific cutting blocks derived from 3D reconstructions of pre-operative imaging, commonly MRI or CT. The patient-specific OtisMed system uses a detailed MRI scan of the knee for 3D reconstruction to estimate the kinematic axis, dictating the cutting planes in the custom-fit cutting blocks machined for each patient [1, 2]. The purpose of this study was to evaluate the correlation between post-operative limb alignment and implant migration in subjects receiving shape match derived kinematic alignment. Methods. In a randomized controlled trial comparing patient-specific cutting blocks to navigated surgery, seventeen subjects in the patient specific group had complete 1 year data. They received cruciate retaining cemented total knee replacements (Triathlon, Stryker) using patient-specific cutting blocks (OtisMed custom-fit blocks, Stryker). Intra-operatively, 6–8 tantalum markers (1 mm diameter) were inserted in the proximal tibia. Radiostereometric analysis (RSA) [3, 4] exams were performed with subjects supine on post-operative day 1 and at 6 week, 3, 6, and 12 month follow-ups with dual overhead tubes (Rad 92, Varian Medical Systems, Inc., Palo Alto, CA, USA), digital detectors (CXDI-55C, Canon Inc., Tokyo, Japan), and a uniplanar calibration box (Halifax Biomedical Inc., Mabou, NS, Canada). RSA exams were analyzed in Model-based RSA (Version 3.32, RSAcore, Leiden, The Netherlands. Post-operative limb alignment was evaluated from weight-bearing long-leg films. Results. Post-operative limb alignments ranged from 5 degrees of varus to 5 degrees of valgus. Comparing implant migration to post-operative alignment did not demonstrate a relationship between deviation from neutral
INTRODUCTION. While standard instrumentation tries to reproduce mechanical axes based on
Non-invasive assessment of lower limb
INTRODUCTION. In total knee arthroplasty (TKA), the effectiveness of the
It is clear in 2013 that there is a substantial opportunity to improve patient outcomes after total knee replacement. Much attention in the last decade has focused on the apparent satisfaction gap between patients who have had total hip arthroplasty and those who have had total knee arthroplasty. Most authors note that a higher proportion of total hip patients claim to have complete satisfaction or note that they have forgotten that they had the joint replaced. The concept of “the forgotten joint replacement” is an interesting one because as surgeons and researchers we all recognise that neither total hip replacement nor total knee replacement will completely restore the native hip or knee joint's dynamic 3D biomechanics or kinematics. What the concept of the forgotten joint does tell us however is that there is a level of kinematic function above which humans cannot detect a difference with normal function. The inherent simplicity of the ball-and-socket design of the hip joint means we can achieve this level of function more reliably and reproducibly than we do in the knee joint. The knee joint presents a more difficult challenge. Recent data suggests that there is a definable trade-off in total knee prosthesis design, and likely with component position and limb alignment, between those optimised for the best kinematics and those optimised for the best durability using contemporary biomaterials (namely metal, ceramic and ultra-high molecular weight polyethylene). Given this inherent trade-off then there will be an almost never-ending debate about what constitutes “the best” overall knee implant design because that will inevitably require an individual value-judgement about the relative merit of better kinematics or better durability. Currently, we have some insights into this trade-off when we consider the role of unicompartmental knee replacement in 2013. There is little debate that unicompartmental knee replacement results in closer-to-normal knee kinematics than does total knee replacement and that many patients seem to benefit from a quicker recovery and easier rehabilitation. Data from multiple national joint registries however shows that UKR is not quite as durable as total knee replacement (mean yearly failure rate 1.53% for UKR versus 1.26% for TKR). Different surgeons and different surgeons will look at that data however and come to markedly different conclusions about how to act — some will discount the difference in durability and favor the better function/quicker recovery of UKR while other equally intelligent persons will discount the difference in function and prefer the demonstrated better durability of TKR. Like any value-judgement there is no right answer or wrong answer. As surgeons and researchers we do have opportunities in regard to surgical technique that remain unexplored. We have been limited over the past several decades by thinking primarily in terms of 2D static analyses of alignment, rotation and ligament balance. This is primarily because most assessments have been done using plain radiographs. The last decade however has seen a marked improvement in our capabilities for 3D imaging and dynamic assessment of knee joint function. The promise of computer-navigated and robotic-assisted surgery has largely remained unfulfilled as the limitations of 2D targets have come into focus. It is my belief that tomorrow's gains in total knee replacement will not involve dramatic changes in prosthesis design but instead on defining and then hitting more precise 3D targets for alignment, rotation and ligament balance in surgery. For surgeons and researchers this is an exciting time as there is a distinct opportunity to improve outcomes for millions of total knee replacement patients over the coming decades.
Most discussions of alignment after TKA focus on defining “malalignment”; the prefix mal- is derived from Latin and refers to bad, abnormal or defective and thus by definition malalignment is bad, abnormal or defective alignment. No one then wants a “malaligned” knee. The intellectually curious, however, might switch the focus to the other end of the spectrum and ask what does an ideally aligned knee look like in 2015? Is there really one simple target value for alignment in all patients undergoing TKA? Is that target broad (zero +/−3 degrees mechanical axis) or is it a narrow target in which a penalty, in regard to durability or function, is incurred as soon as you deviate even 1 degree? Is that ideal target the same if we are evaluating the functional performance of the TKA versus the durability of the TKA or could there be 2 different targets, one that maximises function and one that maximises durability? Is that target adequately described by a single 2-dimensional value (varus/valgus alignment in the frontal plane) as measured on a static radiograph? Is that value the same if the patient has a fixed pelvic obliquity, a varus thrust in the contralateral knee or an abnormal foot progression angle? It is revealing to ask “do we understand TKA alignment better in 2015 than in 1979…?” Maybe not. We allowed ourselves over the past 2 decades to be intellectually complacent in regard to questions of ideal alignment after TKA. The constraints on accuracy imposed by our standard total knee instruments and the constraints on assessment imposed by 2-dimensional radiographs made broad, simple targets like a mechanical axis +/− 3 degrees reasonable starting points yet we have not further worked to verify if we can do better. It is naïve to think that the complex motion at the knee occurring in 6-dimensions over time can be reduced to a single static target value like a neutral mechanical axis and have strong predictive value in regard to the success or failure of an individual TKA. We assessed 399 knees of 3 different modern cemented designs at 15 years and found that factors other than alignment were more important than alignment in determining the 15-year survival. Until more precise alignment targets can be identified for individual patients or sub-groups of patients then a neutral mechanical axis remains a reasonable surgical goal. However, the traditional description of TKA alignment as a dichotomous variable (aligned versus malaligned) defined around the broad, generic target value of 0 +/− 3 degrees relative to the mechanical axis is of little practical value in predicting the durability or function of modern TKA.
INTRODUCTION.
Introduction. Varus alignment in total knee replacement (TKR) results in a larger portion of the joint load carried by the medial compartment. [1]. Increased burden on the medial compartment could negatively impact the implant fixation, especially for cementless TKR that requires bone ingrowth. Our aim was to quantify the effect varus alignment on the bone-implant interaction of cementless tibial baseplates. To this end, we evaluated the bone-implant micromotion and the amount of bone at risk of failure. [2,3]. Methods. Finite element models (Fig.1) were developed from pre-operative CT scans of the tibiae of 11 female patients with osteoarthritis (age: 58–77 years). We sought to compare two loading conditions from Smith et al.;. [1]. these corresponded to a mechanically aligned knee and a knee with 4° of varus. Consequently, we virtually implanted each model with a two-peg cementless baseplate following two tibial
The emergence of patient specific instrumentation has seen an expansion from simple radiographs to plan total knee arthroplasty (TKA) with modern systems using computed tomography (CT) or magnetic resonance imaging scans. Concerns have emerged regarding accuracy of these non-weight bearing modalities to assess true mechanical axis. The aim of our study was to compare coronal alignment on full length standing AP imaging generated by the EOS acquisition system with the CT coronal scout image. Eligible patients underwent unilateral or bilateral primary TKA for osteoarthritis under the care of investigating surgeon between 2017 and 2022, with both EOS X-Ray Imaging Acquisition System and CT scans performed preoperatively. Coronal
Introduction. Although total knee arthroplasty (TKA) is generally considered successful, 16–30% of patients are dissatisfied. There are multiple reasons for this, but some of the most frequent reasons for revision are instability and joint stiffness. A possible explanation for this is that the implant alignment is not optimized to ensure joint stability in the individual patient. In this work, we used an artificial neural network (ANN) to learn the relation between a given standard cruciate-retaining (CR) implant position and model-predicted post-operative knee kinematics. The final aim was to find a patient-specific implant alignment that will result in the estimated post-operative knee kinematics closest to the native knee. Methods. We developed subject-specific musculoskeletal models (MSM) based on magnetic resonance images (MRI) of four ex vivo left legs. The MSM allowed for the estimation of secondary knee kinematics (e.g. varus-valgus rotation) as a function of contact, ligament, and muscle forces in a native and post-TKA knee. We then used this model to train an ANN with 1800 simulations of knee flexion with random implant position variations in the ±3 mm and ±3° range from
Unicompartmental knee replacement (UKR) has good outcomes for the treatment of compartmental osteoarthritis of the knee.
Introduction. There are conflicting views when assessing the best imaging modality by which to assess long leg alignment pre and post operatively for patients’ receiving primary total hip replacements. It has been a long standing standard that long-leg radiographs are used for measuring and interpreting alignment of the lower limb, but recently it has been suggested that CT imaging may be a better option for this assessment. Methods. Patients awaiting total knee replacement surgeries were invited to participate in this clinical trial. 120 participants’ consented and completed both pre and post-operative long-leg radiographs, and lower limb CT scans. Long leg radiographs were analysed and measured by senior orthopaedic surgeons pre and post-operatively, while CT scans were analysed using the perth protocol method by trained radiologists.