The primary source for the blood supply of the head of the femur is the deep branch of the
Introduction. The debate regarding the importance of preserving the blood supply to the femoral head (FH) and neck during hip resurfacing arthroplasty (HRA) is ongoing. Several surgeons continue to advocate for the preservation of the blood supply to the resurfaced heads for both the current HRA techniques and more biologic approaches for FH resurfacing. Despite alternative blood-preserving approaches for HRA, many surgeons continue to use the posterior approach (PA) due to personal preference and comfort. It is commonly accepted that the PA inevitably damages the deep branch of the
Introduction. Precise knowledge of the Femoral Head (FH) arterial supply is critical to avoid FH avascular necrosis following open and arthroscopic intra-capsular surgical procedures about the hip. The
The femoral head receives its blood supply primarily
from the
The femoral head receives blood supply mainly
from the deep branch of the
The inferior gluteal artery is described in standard anatomy textbooks as contributing to the blood supply of the hip through an anastomosis with the
We aimed to quantify the relative contributions of the medial
femoral circumflex artery (MFCA) and lateral femoral circumflex
artery (LFCA) to the arterial supply of the head and neck of the
femur. We acquired ten cadaveric pelvises. In each of these, one hip
was randomly assigned as experimental and the other as a matched
control. The MFCA and LFCA were cannulated bilaterally. The hips
were designated LFCA-experimental or MFCA-experimental and underwent
quantitative MRI using a 2 mm slice thickness before and after injection
of MRI-contrast diluted 3:1 with saline (15 ml Gd-DTPA) into either
the LFCA or MFCA. The contralateral control hips had 15 ml of contrast
solution injected into the root of each artery. Next, the MFCA and
LFCA were injected with a mixture of polyurethane and barium sulfate
(33%) and their extra-and intra-arterial course identified by CT
imaging and dissection.Aims
Materials and Methods
This study investigates and defines the topographic
anatomy of the
We performed a series of 16 anatomical dissections
on Caucasian cadaver material to determine the surgical anatomy
of the
Introduction:. A surgical hip dislocation provides circumferential access to the femoral head and is essential in the treatment pediatric and adult hip disease. Iatrogenic injury to the femoral head blood supply during a surgical may result in the osteonecrosis of the femoral head. In order to reduce vessel injury and incidence of AVN, the Greater Trochanteric Osteotomy (GTO) was developed and popularized by Ganz. The downside of this approach is the increased morbidity associated with the GTO including non-union in 8% and painful hardware requiring removal in 20% of patients. (reference) Recent studies performed at our institution have mapped the extra-osseous course of the
We used laser Doppler flowmetry (LDF) with a high energy (20 mW) laser to measure perfusion of the femoral head intraoperatively in 32 hips. The surgical procedure was joint debridement requiring dislocation or subluxation of the hip. The laser probe was placed within the anterosuperior quadrant of the femoral head. Blood flow was monitored in specific positions of the hip before and after dislocation or subluxation. With the femoral head reduced, external rotation, both in extension and flexion, caused a reduction of blood flow. During subluxation or dislocation, it was impaired when the posterosuperior femoral neck was allowed to rest on the posterior acetabular rim. A pulsatile signal returned when the hip was reduced, or was taken out of extreme positions when dislocated. After the final reduction, the signal amplitudes were first slightly lower (12%) compared with the initial value but tended to be restored to the initial levels within 30 minutes. Most of the changes in the signal can be explained by compromise of the extraosseous branches of the
Surgical dislocation of the hip is rarely undertaken. The potential danger to the vascularity of the femoral head has been emphasised, but there is little information as to how this danger can be avoided. We describe a technique for operative dislocation of the hip, based on detailed anatomical studies of the blood supply. It combines aspects of approaches which have been reported previously and consists of an anterior dislocation through a posterior approach with a ‘trochanteric flip’ osteotomy. The external rotator muscles are not divided and the
Femoral neck fractures remain the leading cause of early failure after metal-on-metal hip resurfacing. Although its' exact pathomechanism has yet to be fully elucidated, current retrieval analysis has shown that either an osteonecrotic event and/or significant surgical trauma to the femoral head neck junction are the leading causes. It is most likely that no single factor like patient selection and/or femoral component orientation can fully avoid their occurrence. As in osteonecrosis of the native hip joint, a certain cell injury threshold may have to be reached in order for femoral neck fracture to occur. These insults are not limited to the surgical approach, but also include femoral head preparation, neck notching, and cement penetration. Although some have argued that the posterior approach does not represent an increased risk fracture for ON after hip resurfacing because of the so-called intraosseous blood supply to the femoral head, to date, the current body of literature on femoral head blood flow in the presence of arthritis has confirmed the critical role of the extraosseous blood supply from the ascending branch of the medial circumflex, as well as the lack of any substantial intraosseous blood supply. Conversely, anterior hip dislocation of both the native hip joint as well as the arthritic hip preserves femoral head vascularity. The blood supply can be compromised by either sacrificing the main branch of the ascending
Introduction: Dividing the short external rotators 2 cm from their insertion into the femur should preserve the deep branch of the
Introduction: Two major complications of hip resurfacing arthroplasty are avascular necrosis of the femoral head and femoral neck fracture. Both are thought to be precipitated by disruption of the blood supply to the femoral head and neck during the approach to the hip joint. Ganz et al have described their technique of approaching the hip joint using a “trochanteric flip” osteotomy. This has the theoretical advantage of preserving the
Introduction. The vascular anatomy of the femoral head and neck has been previously reported, with the primary blood supply attributed to the deep branch of the
Introduction: Whereas in traumatic avascular necrosis of the femoral head (ANFH) loss of the femoral head’s blood supply is due to a mechanical event, in non-traumatic AFNH it is the result of a wide variety of etiologies (e.g. alcoholism, hypercortisonism, etc.), which have in common that they lead to an intravascular complication with subsequent malperfusion of the femoral head. Additionally, for part of non-traumatic ANFH no causative factors are known, why they are called idiopathic. A mechanical cause for nontraumatic ANFH – as e.g. a repetitive trauma of the femoral head supplying deep branch of the
Avascular femoral head necrosis in the context of gymnastics is a rare but serious complication, appearing similar to Perthes’ disease but occurring later during adolescence. Based on 3D CT animations, we propose repetitive impact between the main supplying vessels on the posterolateral femoral neck and the posterior acetabular wall in hyperextension and external rotation as a possible cause of direct vascular damage, and subsequent femoral head necrosis in three adolescent female gymnasts we are reporting on. Outcome of hip-preserving head reduction osteotomy combined with periacetabular osteotomy was good in one and moderate in the other up to three years after surgery; based on the pronounced hip destruction, the third received initially a total hip arthroplasty.Aims
Methods
Surgical approaches that claim to be minimally invasive, such as the direct anterior approach (DAA), are reported to have a clinical advantage, but are technically challenging and may create more injury to the soft-tissues during joint exposure. Our aim was to quantify the effect of soft-tissue releases on the joint torque and femoral mobility during joint exposure for hip resurfacing performed via the DAA. Nine fresh-frozen hip joints from five pelvis to mid-tibia cadaveric specimens were approached using the DAA. A custom fixture consisting of a six-axis force/torque sensor and motion sensor was attached to tibial diaphysis to measure manually applied torques and joint angles by the surgeon. Following dislocation, the torques generated to visualize the acetabulum and proximal femur were assessed after sequential release of the joint capsule and short external rotators.Aims
Methods