Advertisement for orthosearch.org.uk
Results 1 - 19 of 19
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 10 - 10
1 Jun 2021
Van Tienen T Defoort K van de Groes S Emans P Heesterbeek P Pikaart R
Full Access

Introduction. Post-meniscectomy syndrome is broadly characterised by intractable pain following the partial or total removal of a meniscus. There is a large treatment gap between the first knee pain after meniscectomy and the eligibility for a TKA. Hence, there is a strong unmet need for a solution that will relieve this post-meniscectomy pain. Goal of this first-in-man study was to evaluate the safety and performance of an anatomically shaped artificial medial meniscus prosthesis and the accompanying surgical technique. Methods. A first-in-man, prospective, multi-centre, single arm clinical investigation was intended to be performed on 18 post-medial meniscectomy syndrome patients with limited underlying cartilage damage (Kellgren Lawrence scale 0–3) in the medial compartment and having a normal lateral compartment. Eventually 5 patients received a polycarbonate urethane mediale meniscus prosthesis (Trammpolin® medial meniscus prosthesis; ATRO Medical B.V., the Netherlands) which was clicked onto two titanium screws fixated at the native horn attachments on the tibia. PROMs were collected at baseline and at 6 weeks, 3, 6, 12 and 24 months following the intervention including X-rays at 6, 12 and 24 Months. MRI scans were repeated after 12 and 24 months. Results. The surgical technique to select the appropriately sized implant and correct positioning of the fixation screws and meniscus prosthesis onto the tibia was demonstrated feasible and reproducible. The surgeries showed that in particular the positioning of the posterior screw is crucial for correct positioning of the prosthesis. Inclusion stopped after 5 patients, who reached the 6 months evaluation. The PROMs did not improve in the first 6 months after surgery. All patients reported knee joint stiffness and slight effusion in their knee at 6 months follow-up. In case of symptomatic patients an evaluation of the device position and integrity was performed by MRI. In three patients the implants were removed because of implant failure and in one patient the implant was removed because of persistent pain and extension deficit. At present one patient has the implant still in situ. The explantations of the implants demonstrated no articular cartilage damage and the fixation screws were securely anchored. Discussion. This is the first clinical study with an artificial meniscus-like prosthesis. Except one, all implants were removed due to implant breakage or discomfort of the patient. Analysis of the torn implants showed fatigue failure resulting from the lack of loadsharing between implant and cartilage: the implant was too stiff and carried all the load in the medial compartment of the knee. Furthermore, the fixation with screws seemed too rigid which restricted the motion of the posterior horn. Based on previous in vitro and animal experiments, we expected more creep of the material and more motion on the screw fixation. Conclusion. This first-in-man clinical study demonstrates that the investigated device design is not safe and did not perform as expected. Therefore, modification of the meniscus prosthesis design and fixation technique is required to allow for more motion of the meniscus prosthesis during knee joint movement


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 118 - 118
1 May 2016
Walker P Arno S Borukhov I Bell C Salvadore G
Full Access

Introduction. The major function of the medial meniscus has been shown to be distribution of the load with reduction of cartilage stresses, while its role in AP stability has been found to be secondary. However several recent studies have shown that cartilage loss in OA occurs in the central region of the tibia while the meniscus is displaced medially. In a lab study (Arno, Hadley 2013) it was confirmed that the AP laxity was greatly reduced with a compressive force across the knee, while the femur shifted posteriorly and the AP laxity was increased after a partial meniscetomy of the posterior horn. It is therefore possible that under load, the compression of the meniscus and the cartilage, 2–3mm in total, allows load transmission on the central tibial plateau, and causes radial expansion and tension of the meniscus providing restraint to femoral displacements. This leads to our hypotheses that the highest loading on the medial meniscus would be at the extremes of motion, rather than in the mid-range, and that the meniscus would provide the majority of the restraint to anterior-posterior femoral displacements throughout flexion when compressive loads were acting. Methods & Materials. MRI scans were taken of ten knee specimens to verify the absence of pathology and produce computer models. The knees were loaded in combinations of compressive and shear loading over a full flexion range. Tekscan sensors were used to measure the pressure distribution across the joint as the knee was flexed continuously. A digital camera was used to track the motion, from which femoral-tibial contacts were determined by computer modelling. Load transmission was determined from the Tekscan for the anterior horn, central body, posterior horn, and the uncovered cartilage in the center of the meniscus. An analysis was carried out (Fig 2) to determine the net anterior or posterior shear force carried by the meniscus. Results. For the three types of loading (Fig 1); compression only, compression and anterior shear, compression and posterior shear; between 40–80% of the total load was transmitted through the meniscus, the overall average being 58%. The remaining 42% was transmitted directly through the uncovered cartilage. The anterior horn was loaded only up to 30 degrees flexion, and played a role in controlling anterior femoral displacement. The central body was loaded 10–20% and would provide some restraint to medial femoral subluxation. Overall the posterior horn carried the highest percentage of the shear load (Figure 3), especially after 30 degrees flexion when a posterior shear force was applied, for which the meniscus was estimated to carry 50% of the shear force. Discussion. The hypotheses were largely supported. There was high anterior horn loading in early flexion, but in the remaining range, the posterior horn was the highest loaded especially under posterior shear. Supporting the posterior shear force under load bearing conditions is evidently an important role of the meniscus. Hence in any attempts at repair or replacement, these dual functions of load-sharing and stability need to be incorporated


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_14 | Pages 10 - 10
23 Jul 2024
Al-hasani F Mhadi M
Full Access

Meniscal tears commonly co-occur with ACL tears, and many studies address their side, pattern, and distribution. Few studies assess the patient's short-term functional outcome concerning tear radial and circumferential distribution based on the Cooper et al. classification. Meniscal tears require primary adequate treatment to restore knee function. Our hypothesis is to preserve the meniscal rim as much as possible to maintain the load-bearing capacity of the menisci after meniscectomy. The purpose of this study is to document the location and type of meniscal tears that accompany anterior cruciate ligament (ACL) tears and their effect on patient functional outcomes following arthroscopic ACL reconstruction and meniscectomy. This prospective cross-sectional observational study was conducted at AL-BASRA Teaching Hospital in Iraq between July 2018 and January 2020 among patients with combined ipsilateral ACL injury and meniscal tears. A total of 28 active young male patients, aged 18 to 42 years, were included. All patients were subjected to our questionnaire, full history, systemic and regional examination, laboratory investigations, imaging studies, preoperative rehabilitation, and were followed by Lysholm score 6 months postoperatively. All 28 patients were males, with a mean age of 27 ± 0.14 years. The right knee was the most commonly affected in 20/28 patients (71.4%). The medial meniscus was most commonly injured in 11 patients, 7 patients had lateral meniscal tears, and 10 patients had tears in both menisci. The most common tear pattern of the medial meniscus was a bucket handle tear (36.4%), while longitudinal tears were the most frequent in the lateral meniscus (71.4%) (P-value = 0.04). The most common radial tear location was zone E-F (5/28, 17.8%), and the most common circumferential zone affected was the middle and inner third, reported in 50% of tears. Good and excellent outcomes using the Lysholm score after 6 months were obtained in 42.9% and 17.9% of patients, respectively. Better functional scores were associated with lateral meniscal tears, bucket handle tears, tears extending to a more peripheral vascular area, and if no more than one-third of the meniscus was resected (P-value = 0.002). Less favourable outcomes were reported in smokers, posterior horn tears, and when surgery was delayed more than 1 year (P-value = 0.03). We conclude that there is a negative correlation between the amount of meniscus resected and functional outcome. Delayed ACL reconstruction increases the risk of bimeniscal tears. Bucket handle tears are the most common tears, mostly in the medial meniscus, while longitudinal tears are most common in the lateral meniscus. We recommend performing early ACL reconstruction within 12 months to reduce the risk of bimeniscal injuries


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 85 - 85
1 Apr 2019
Haidar F Tarabichi S Osman A Elkabbani M Mohamed T
Full Access

Introduction. Most of the algorithm available today to balance varus knee is based on a surgeon's hands-on experience without full understanding of pathological anatomy of varus knee. The high-resolution MRI allows us to recognize the anatomical details of the posteromedial corner and the changes of the soft tissue associated with the osteoarthritis and varus deformity. We have in this study, reviewed 60 cases of severe varus knee scheduled for TKR and compared it to normal MRI and those MRI were evaluated and read by a musculoskeletal radiologist. We have documented clearly the changes that happens in soft tissue, leading to tight medial compartment. We will also show multiple short intra-operative video confirming that MRI findings. Material & method. We have retrospectively reviewed the MRI on 60 patients with advanced osteoarthritis varus knee. We also reviewed 20 MRI for a normal knee matched for age. We evaluated the posteromedial complex and MCL in sagittal PD-weighted VISTA to check the alignment of the MCL and posteromedial complex and the associate MCL bowing and deformity that could happen in osteoarthritis knee. We have measured the thickness of the posteromedial complex and the posterior medial bowing of the superficial MCL and the involvement of the posterior oblique ligament in those patients. To measure the posterior bowing of the MCL, a line was drawn through the posterior aspect of both menisci and we measured the distance between the posterior edge of MCL to that line in actual image. To measure the thickness of the posteromedial complex, we measured it at two areas in the posterior medial corner posteriorly at the level of the medial meniscus. Measuring the medial bowing of the MCL was done by a line drawn through the medial edge of the femoral condyle and the tibial condyle at the level of the medial meniscus to the inner aspect of the MCL. The normal distance between the posterior aspects of the MCL to the posterior meniscus line was approximately measured 2 cm. in average. Results. We were able to recognize and measure the medial deviation of MCL in all arthritic knees due to the deformity and the effect of the medial margin osteophyte and medial extrusion of the meniscus. Thickening of posteromedial complex was recognized in the majority of the cases with prominent thickening seen in 50/60 knees with average thickness measuring approximately 1.2 cm due to the synovial thickening, adhesions, granulation tissue, degenerated medial meniscus, and involvement of the posterior oblique ligament and the capsular branch of the semimembranosus tendon, as well as the oblique popliteal ligament. The involvement of posterior oblique ligament were seen in majority of the cases. In 55 cases we have showed a heterogeneous appearance of the ligament and loss of normal signal within the postero medial complex and we have documented that the oblique ligament will cause the posterior bowing of the MCL. The medial bowing of the MCL is also correlated to the severity of the varus deformity with an average distance to the normal medial line of the medial meniscus measuring approximately 1.1 cm. Discussion. Our study shows that the changes affecting the superficial MCL is likely to be secondary to the obvious changes involving the posteromedial complex and to the marginal osteophyte as well as the extrusion of the medial meniscus. Also, we have confirmed that there are deforming structures such as the oblique ligament with adhesion and thickening with all the posterior medial complex. Those changes clearly caused the posterior bowing to the superficial MCL without an actual shortening of the ligament. The scarring tissue in the posteromedial corner and the adhesion is acting as a soft phyte tensioning and deforming the ligament and the posterior capsule. The oblique ligament act as a deforming forces forcing the superficial MCL to bow posteriorly. The lengths of the superficial MCL stayed the same. Conclusion. The conventional wisdom of releasing the distal attachment of the superficial medial MCL to balance knee has to be a challenge based on our MRI finding. Releasing the superficial MCL can sometimes lead to a major instability of the knee requiring a more constrained implant. Our MRI assessment clearly showed that the Superficial MCL is deformed because of posterior bowing and medial bowing and considerable thickening of the posteromedial corner, as well as the accompanying osteophyte. We believe that clearing the superficial MCL and excising those thickened scar tissue in the posterior medial corner will enable us to balance the knee without creating instability Conclusion: The conventional wisdom of releasing the distal attachment of the superficial medial MCL to balance knee has to be a challenge based on our MRI finding. Releasing the superficial MCL can sometimes lead to a major instability of the knee requiring a more constrained implant. Our MRI assessment clearly showed that the Superficial MCL is deformed because of posterior bowing and medial bowing and considerable thickening of the posteromedial corner, as well as the accompanying osteophyte. We believe that clearing the superficial MCL and excising those thickened scar tissue in the posterior medial corner will enable us to balance the knee without creating instability


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 88 - 88
7 Nov 2023
Greenwood K Molepo M Mogale N Keough N Hohmann E
Full Access

Knee arthroscopy is typically approached from the anterior, posteromedial and posterolateral portals. Access to the posterior compartments through these portals can cause iatrogenic cartilage damage and create difficulties in viewing the structures of the posterior compartments. The purpose of this study was to assess the feasibility of needle arthroscopy using direct posterior portals as both working and visualising portals. For workability, the needle scope was inserted advanced from anterior between the cruciate ligament bundle and the lateral wall of the medial femoral condyle until the posterior compartments were visualised. For visualisation, direct postero-lateral and -medial portals were established. The technique was performed in 9 knees by two experienced researchers. Workability and instrumentation of the posteromedial compartment and meniscus was achieved in 56%. The posterior horns could not be visualised in four specimens as the straight lens could not provide a more medial field of view. Visualisation from the direct medial posterior portal allowed a clear view of the medial meniscus, femoral condyle and posterior cruciate ligament in all specimens. Workability and instrumentation of the posterolateral compartment was not possible with the needle scope. Direct posterior approaches for the posteromedial compartment access are challenging with the current needle scope options and could only be achieved in over 50%. The postero-lateral compartment was not accessible. An angled lens or a flexible Needle scope would be better suited for developing this technique further


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_3 | Pages 8 - 8
23 Jan 2024
Nanjundaiah R Guro R Chandratreya A Kotwal R
Full Access

Aims. We studied the outcomes following arthroscopic primary repair of bucket handle meniscus tears to determine the incidence of re-tears and the functional outcomes of these patients. Methodology. Prospective cohort study. Over a 4-year period (2016 to 2020), 35 adult patients presented with a bucket handle tear of the meniscus. Arthroscopic meniscal repair was performed using either the all inside technique or a combination of all-inside and inside-out techniques. 15 patients also underwent simultaneous arthroscopic anterior cruciate ligament reconstruction. Functional knee scores were assessed using IKDC and Lysholm scores. Results. Mean patient age at surgery was 27 years (range, 17 to 53years). Medial meniscus was torn in 20 and lateral in 15 cases. Zone of tear was white on white in 19, red on white in 9 and red on red in 7 cases. Average delay from injury to surgery was 4 months. At a mean follow-up of 4.5 years, the meniscus repair failed in 3 patients (8.5 %). Outcome following re-tear was meniscus excision. Average IKDC scores in patients with intact repair were 74.04 against 56.67 in patients with a failed repair (p< 0.0001). Similarly, Lyshlom scores were 88.96 and 67.333, respectively (p<0.0001). Conclusion. The survivorship of primary repair of bucket handle meniscus tears in our series was 91.5% at medium term follow-up. Functional outcomes were significantly poor in patients with a failed repair compared to those with an intact repair


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 69 - 69
1 Dec 2022
Clarke M Beaudry E Besada N Oguaju B Nathanail S Westover L Sommerfeldt M
Full Access

Meniscal root tears can result from traumatic injury to the knee or gradual degeneration. When the root is injured, the meniscus becomes de-functioned, resulting in abnormal distribution of hoop stresses, extrusion of the meniscus, and altered knee kinematics. If left untreated, this can cause articular cartilage damage and rapid progression of osteoarthritis. Multiple repair strategies have been described; however, no best fixation practice has been established. To our knowledge, no study has compared suture button, interference screw, and HEALICOIL KNOTLESS fixation techniques for meniscal root repairs. The goal of this study is to understand the biomechanical properties of these fixation techniques and distinguish any advantages of certain techniques over others. Knowledge of fixation robustness will aid in surgical decision making, potentially reducing failure rates, and improving clinical outcomes. 19 fresh porcine tibias with intact medial menisci were randomly assigned to four groups: 1) native posterior medial meniscus root (PMMR) (n = 7), 2) suture button (n = 4), 3) interference screw (n = 4), or 4) HEALICOIL KNOTLESS (n = 4). In 12 specimens, the PMMR was severed and then refixed by the specified group technique. The remaining seven specimens were left intact. All specimens underwent cyclic loading followed by load-to-failure testing. Elongation rate; displacement after 100, 500, and 1000 cycles; stiffness; and maximum load were recorded. Repaired specimens had greater elongation rates and displacements after 100, 500, and 1000 cycles than native PMMR specimens (p 0.05). The native PMMR showed greater maximum load than all repair techniques (p 0.05). In interference screw and HEALICOIL KNOTLESS specimens, failure occurred as the suture was displaced from the fixation and tension was gradually lost. In suture button specimens, the suture was either displaced or completely separated from the button. In some cases, tear formation and partial failure also occurred at the meniscus luggage tag knot. Native PMMR specimens failed through meniscus or meniscus root tearing. All fixation techniques showed similar biomechanical properties and performed inferiorly to the native PMMR. Evidence against significant differences between fixation techniques suggests that the HEALICOIL KNOTLESS technique may present an additional option for fixation in meniscal root repairs. While preliminary in vitro evidence suggests similarities between fixation techniques, further research is required to determine if clinical outcomes differ


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 111 - 111
1 Mar 2017
Reynolds R Walker P Buza J Borukhov I
Full Access

INTRODUCTION. Understanding the biomechanics of the anatomical knee is vital to innovations in implant design and surgical procedures. The anterior – posterior (AP) laxity is of particular importance in terms of functional outcomes. Most of the data on stability has been obtained on the unloaded knee, which does not relate to functional knee behavior. However, some studies have shown that AP laxity decreases under compression (1) (2). This implies that while the ligaments are the primary stabilizers under low loads, other mechanisms come into play in the loaded knee. It is hypothesized this decreased laxity with compressive loads is due to the following: the meniscus, which will restrain the femur in all directions; the cartilage, which will require energy as the femur displaces across the tibial surface in a plowing fashion; and the upwards slope of the anterior medial tibial plateau, which stabilizes the knee by a gravity mechanism. It is also hypothesized that the ACL will be the primary restraint for anterior tibial translation. METHODS. A test rig was designed where shear and compressive forces could be applied and the AP and vertical displacements measured (Figure 1). The AP motion was controlled by the air bearings and motor, allowing for the accurate application of the shear force. Position and force data were measured using load cells, potentiometers, and a linear variable differential transducer. Five knee specimens less than 60 years old and without osteoarthritis (OA), were evaluated at compressive loads of 0, 250, 500, 750 N, with the knee at 15° flexion. Three cycles of shear force at ±100 N constituted a test. The intact knee was tested, followed by testing after each of the following resections: LCL, MCL, PCL, ACL, medial meniscus, and lateral meniscus. RESULTS. The average displacement of the tibia without load was 6.17 mm anterior and −4.92 mm posterior. Under load the posterior translation of the tibia was reduced essentially to zero. After ACL resection, the anterior tibial displacement increased substantially, with a further increase after medial meniscus resection. Cartilage deformation had a minimal effect. DISCUSSION. The hypotheses that the ACL and the upwards tibial slope would provide stability under load were validated. The ACL was essential under all load conditions because the posterior tibial surface was flat (figure 2). The medial meniscus provided vertical stability, as a space buffer (figure 3), and in two specimens under load it provided the same restraint as the ACL (figure 2). The experiment was limited by lack of muscle action, the number of specimens, and a single flexion angle. SIGNIFICANCE. The test rig and methodology had capabilities exceeding those of previous work in determining the mechanisms of AP knee stability under load due to its frictionless air bearings. The results have application ranging from sports medicine to total knee design. The stabilizing effect of the tibial slope seen here validates tibial osteotomies for improved stability. The importance of reproducing ACL function in total knee design is emphasized. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 61 - 61
1 Dec 2022
Shah A Abbas A Lex J Hauer T Abouali J Toor J
Full Access

Knee arthroscopy with meniscectomy is the third most common Orthopaedic surgery performed after TKA and THA, comprising up to 16.6% of all procedures. The efficiency of Orthopaedic care delivery with respect to waiting times and systemic costs is extremely concerning. Canadian Orthopaedic patients experience the longest wait times of any G7 country, yet perioperative surgical care constitutes a significant portion of a hospital's budget. In-Office Needle Arthroscopy (IONA) is an emerging technology that has been primarily studied as a diagnostic tool. Recent evidence shows that it is a cost-effective alternative to hospital- and community-based MRI with comparable accuracy. Recent procedure guides detailing IONA medial meniscectomy suggest a potential node for OR diversion. Given the high case volume of knee arthroscopy as well as the potential amenability to be diverted away from the OR to the office setting, IONA has the potential to generate considerable improvements in healthcare system efficiency with respect to throughput and cost savings. As such, the purpose of this study is to investigate the cost savings and impact on waiting times on a mid-sized Canadian community hospital if IONA is offered as an alternative to traditional operating room (OR) arthroscopy for medial meniscal tears. In order to develop a comprehensive understanding and accurate representation of the quantifiable operations involved in the current state for medial meniscus tear care, process mapping was performed that describes the journey of a patient from when they present with knee pain to their general practitioner until case resolution. This technique was then repeated to create a second process map describing the hypothetical proposed state whereby OR diversion may be conducted utilizing IONA. Once the respective process maps for each state were determined, each process map was translated into a Dupont decision tree. In order to accurately determine the total number of patients which would be eligible for this care pathway at our institution, the OR booking scheduling for arthroscopy and meniscectomy/repair over a four year time period (2016-2020) were reviewed. A sensitivity analysis was performed to examine the effect of the number of patients who select IONA over meniscectomy and the number of revision meniscectomies after IONA on 1) the profit and profit margin determined by the MCS-Dupont financial model and 2) the throughput (percentage and number) determined by the MCS-throughput model. Based on historic data at our institution, an average of 198 patients (SD 31) underwent either a meniscectomy or repair from years 2016-2020. Revenue for both states was similar (p = .22), with the current state revenue being $ 248,555.99 (standard deviation $ 39,005.43) and proposed state of $ 249,223.86 (SD $ 39,188.73). However, the reduction in expenses was significant (p < .0001) at 5.15%, with expenses in the current state being $ 281,415.23 (SD $ 44,157.80) and proposed state of $ 266,912.68 (SD $ 42,093.19), representing $14,502.95 in savings. Accordingly, profit improvement was also significant (p < .0001) at 46.2%, with current state profit being $ (32,859.24) (SD $ 5,153.49) and proposed state being $ (17,678.82) (SD $ 2,921.28). The addition of IONA into the care pathway of the proposed state produced an average improvement in throughput of 42 patients (SD 7), representing a 21.2% reduction in the number of patients that require an OR procedure. Financial sensitivity analysis revealed that the proposed state profit was higher than the current state profit if as few as 10% of patients select IONA, with the maximum revision rate needing to remain below 40% to achieve improved profits. The most important finding from this study is that IONA is a cost-effective alternative to traditional surgical arthroscopy for medial meniscus meniscectomy. Importantly, IONA can also be used as a diagnostic procedure. It is shown to be a cost-effective alternative to MRI with similar diagnostic accuracy. The role of IONA as a joint diagnostic-therapeutic tool could positively impact MRI waiting times and MRI/MRA costs, and further reduce indirect costs to society. Given the well-established benefit of early meniscus treatment, accelerating both diagnosis and therapy is bound to result in positive effects


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 28 - 28
1 Jul 2020
Shao Y Chen X Luo Z
Full Access

Osteoarthritis (OA) is a chronic degenerative joint disease with cartilage degeneration, subchondral bone sclerosis, synovial inflammation and osteophyte formation. Sensory nerves play an important role in bone metabolism and in the progression of inflammation. This study explored the effects of capsaicin-induced sensory nerve denervation on OA progression in mice. This study was approved by the Institutional Animal Care and Use Committee. OA was induced via destabilization of the medial meniscus (DMM). Sensory denervation was induced by subcutaneous injection of capsaicin (90mg/kg) one week prior to DMM. One week after capsaicin injection, sensory denervation in the tibia was confirmed by immunofluorescent staining with calcitonin gene-related peptide (CGRP)-specific antibodies. Four weeks after DMM, micro-CT scans, histological analysis and RT-PCR tests were performed to evaluate OA progression. Statistical analysis was performed using SPSS 13. P values of less than 0.05 were considered statistically significant. Subcutaneous injection of capsaicin successfully induced tibial sensory denervation (n=3), which aggravated OA by increasing subchondral bone resorption. The Osteoarthritis Research Society International (OARSI) score of the capsaicin+DMM group (n=8) (11.81±2.92) was significantly higher (P=0.003) than the score of the vehicle+DMM group (n=8) (8.31±1.80). The BV/TV of the tibial subchondral bone in the capsaicin+DMM group (n=8) was 55.67%±3.08, which was significantly lower (P < 0 .001) than in the vehicle+DMM group (n=8) (86.22%±1.92). In addition, the level of expression of somatostatin in the capsaicin+DMM group (n=8) was lower than in the vehicle+DMM group (n=8) (P=0.007). Capsaicin-induced sensory denervation increased tibial subchondral bone resorption, reduced the expression of somatostatin and eventually exacerbated the existing cartilage degeneration in mice. Despite capsaicin is often used clinically to relieve OA pain, its safety is still controversial according to the OARSI guidelines for the non-surgical management of knee osteoarthritis. The findings of our study suggest that application of capsaicin, although effective in relieving pain, may accelerate the progression of existing OA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 127 - 127
1 May 2016
Emmanuel K Wirth W Hochreiter J Eckstein F
Full Access

Purpose. It is well known that meniscus extrusion is associated with structural progression of knee OA. However, it is unknown whether medial meniscus extrusion promotes cartilage loss in specific femorotibial subregions, or whether it is associated with a increase in cartilage thickness loss throughout the entire femorotibial compartment. We applied quantitative MRI-based measurements of subregional cartilage thickness (change) and meniscus position, to address the above question in knees with and without radiographic joint space narrowing (JSN). Methods. 60 participants with unilateral medial OARSI JSN grade 1–3, and contralateral knee OARSI JSN grade 0 were drawn from the Osteoarthritis Initiative. Manual segmentation of the medial tibial and weight-bearing medial femoral cartilage was performed, using baseline and 1-year follow-up sagittal double echo steady-state (DESS) MRI, and proprietary software (Chondrometrics GmbH, Ainring, Germany). Segmentation of the entire medial meniscus was performed with the same software, using baseline coronal DESS images. Longitudinal cartilage loss was computed for 5 tibial (central, external, internal, anterior, posterior) and 3 femoral (central, external, internal) subregions. Meniscus position was determined as the % area of the entire meniscus extruding the tibial plateau medially and the distance between the external meniscus border and the tibial cartilage in an image located 4mm posterior to the central image (a location commonly used for semi-quantitative meniscus scoring). The relationship between meniscus position and cartilage loss was assessed using Pearson (r) correlation coefficients, for knees with JSN and without JSN. Results. The percentage of knees showing a quantitative value of >3mm medial meniscus extrusion was 50% in JSN knees, and only 12% in noJSN knees. The 1-year cartilage loss in the medial femorotibial compartment was 74±182µm (2.0%) in JSN knees, and 26±120µm (0.8%) in noJSN knees. There was a significant correlation between cartilage loss throughout the entire femorotibial compartment (MFTC) and extrusion area in JSN knees but not for noJSN knees. Also, the extrusion distance measured 4mm posterior to the central slice was not significantly correlated with MFTC cartilage loss. The strongest (negative) correlation between meniscus position and subregional femorotibial cartilage loss (r=−0.36) was observed for the external medial tibia. In contrast, no significant relationship was seen in the central tibia. No significant relationship was found in other tibial subregions, except for the anterior medial tibia, but only in JSN knees (r=−0.27). Correlation coefficients for the femoral subregions were generally smaller than those for tibial subregions, with only the internal medial weight-bearing femur attaining statistical significance (r =−0.26). Conclusions. The current results show that the relationship between meniscus extrusion and cartilage loss differs substantially between femorotibial subregions. The correlation was strongest for the external medial tibia, a region that is physiologically covered by the medial meniscus. It was less for other tibial and femoral subregions, including the central medial tibia, a region that exhibited similar rates of cartilage loss as the external subregion. The findings suggest that external tibia may be particularly vulnerable to cartilage tissue loss once the meniscus extrudes and the surface is “exposed” to direct, non-physiological, cartilage-cartilage contact


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_10 | Pages 30 - 30
1 Oct 2015
Peehal J McGuire E Dixon P O'Brien S
Full Access

Aim. To find out the usefulness of knee arthroscopy with debridement in patients of 60 years or more. Materials and Methods. We retrospectively looked at the patients of 60 years or more age who under went knee arthroscopy between Jan 2012 and Dec 2012 and collected demographic data, indications for arthroscopy, grading of preoperative knee x-rays (Kellgren-Lawrence), intra-operative findings, post operative relief of symptoms and any further surgeries till the time of study. Results. n=58, mean age was 67.3 years (60 – 81), male: female ratio 36:26, side 26:36 (R: L). Mean follow up 14.8 weeks (2–52). Most common indication was medial meniscus pathology (60%). More than 50% of the cases were of Grade III and IV (Kellgren-Lawrence). Intra-operative findings showed 62% tri-compartment and 12% bi-compartment arthritic involvement. 59% had medial, 7% had lateral and 7% had both meniscus tears. 75% of the patients felt symptomatically better at the time of last follow up and only 14% of the patients under went arthroplasty till the time of study. Conclusion. We conclude that knee arthroscopy with debridement offers symptomatic relief in majority (75%) of patients of 60 years or more of age with only few (14%) requiring early arthroplasty


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 54 - 54
1 Feb 2017
Kawano T Mori T
Full Access

Purpose. Degenerative osteoarthritis of the knee usually shows arthritic change in the medial tibiofemoral joint with severe varus deformity. In TKA, the medial release technique is often used for achieving mediolateral balancing, but there is some disagreement regarding the importance of pursuing the perfect rectangular gaps. Our hypothesis is that the minimal release especially in MCL is beneficial regarding on retaining the physiological medial stability and knee kinematics, which leads to improved functional outcome. Therefore, the purpose of this study is to examine the thickness of the tibia resection if the extent of the medial release is minimized to preserve the medial soft tissue in TKA. Patients and Methods. Thirty TKAs were performed for varus osteoarthritis by a single surgeon. In the TKA, femoral bone was prepared according to the measured resection technique, bilateral meniscus and anterior cruciate ligament were excised. After the osteophytes surrounding the femoral posterior condyle were removed, the knee with the femoral trial component was fully extended and the amount of the tibial bone cut was decided for the 10mm tibial insert by referring to the medial joint line of the femoral trial component. After the every bone preparation and placement of all the trial components, If flexion contracture due to the narrow extension gap was found, additional tibial bone cut or medial soft tissue release were performed. Results. MCL deep layer release was performed following the medial meniscus removal in all the TKAs, additional tibial bone cut was performed for three cases, but there was no additional medial soft tissue treatment in any TKAs. Final extension gap in the medial side was 21.2 mm, the average of the tibial insert thickness actually used was 10.6 mm, and the thickness of all the femoral implant at the distal part was 9 mm, therefore the residual medial extension gap in extension was averaged 1.8 ± 0.54 mm. On the other hand, the thickness of the tibial bone cut in the lateral side was various from 11 mm to 16 mm (average was 12.9 ± 1.13 mm). Discussion and Conclusions. All the TKAs in this study were performed to create the proper medial stability in extension without excessive medial release by cutting the adequately thck tibial bone, which lead to thicker tibia resection than the applied tibial insert in the lateral side. As lateral laxity is necessary for the medial pivot movement of the normal knee, slight lateral laxity can be accepted with TKA. The balance between lateral laxity and medial stability in both extension and flexion has not been well elucidated, further studies are necessary regarding on in vivo kinematic


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 120 - 120
1 Feb 2017
Leong A Iranpour F Cobb J
Full Access

Background. Constitutional knee varus increases the risk of medial OA disease due to increase in the knee adduction moment and shifting of the mechanical axis medially. Hueter-Volkmann's law states that the amount of load experienced by the growth plate during development influences the bone morphology. For this reason, heightened sports activity during growth is associated with constitutional varus due to added knee adduction moment. In early OA, X-rays often show a flattened medial femoral condyle extension facet (EF). However, it is unknown whether this is a result of osteoarthritic wear, creep deformation over decades of use, or an outcome of Hueter-Volkmann's law during development. A larger and flattened medial EF can bear more weight, due to increased load distribution. However, a flattened EF may also extrude the meniscus, leading meniscus degeneration and joint failure. Therefore, this study aimed to investigate whether varus knees have flattened medial EFs of both femur and tibia in a cohort of patients with no signs yet of bony attrition. Methods. Segmentation and morphology analysis was conducted using Materialise software (version 8.0, Materialise Inc., Belgium). This study excluded knees with bony attrition of the EFs based on Ahlbäck criteria, intraoperative findings, and operation notes history. Standard reference frames were used for both the femur and tibia to ensure reliable and repeatable measurements. The hip-knee-angle (HKA) angle defined varus or valgus knee alignment. Femur: The femoral EFs and flexion facets (FFs) had best-fit spheres fitted with 6 repetitions. (Fig1). Tibia: The slopes of the antero-medial medial tibial plateau were approximated using lines. (fig2). Results. 72 knees met the inclusion and exclusion criteria. The average age was 59 ± 11 years. The youngest was 31 and the oldest 84 years. Thirty-three were male and 39 were female. There was good intra- and inter-observer reliability for EF sphere fitting. Femur: The results demonstrated that the medial femoral condyle EF is flattened in knees with constitutional varus, as measured by the Sphere Ratios between the medial and lateral EF (varus versus straight: p = 0.006), and in the scaled values for the medial EF sphere radius (varus versus straight: p = 0.005). There was a statistically significant, moderate and positive correlation between the medial femoral EF radius, and the medial femoral EF-FF AP offset. (fig3). Tibia: There was a statistically significant difference between the steepness of the slopes of the medial tibial plateau EF in varus and valgus knees, suggesting varus knees have a less concave (flatter) medial EF. (fig3). Conclusions. In comparison to straight knees, varus knees have flattened medial EFs in both femur and tibia. As this was the case in knees with no evidence of bony attrition, this could mean flattened medial EFs may be a result of medial physis inhibition during development, due to Hueter-Volkmann's law. Flattened medial EFs may increase load distribution in the medial compartment, but could also be a potential aetiology in primary knee OA due to over extrusion of the medial meniscus and edge loading


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 370 - 370
1 Dec 2013
Kessler O
Full Access

INTRODUCTION:. To avoid the early onset of osteoarthritis after partial meniscectomy an effective replacement of injured meniscal tissue would be desirable. The present study investigates the behaviour of a new silk derived scaffold supplied by Orthox Ltd. (Abingdon, UK) in an in vivo sheep model. METHODS:. The scaffolds where derived from silk fibres by processing into an open porous matrix. Nine sheep (4 ± 1 years) underwent partial meniscectomy at the anterior horn of the medial meniscus followed by implantation of a scaffold. The unoperated contralateral stifle joint served as control. After six months the animals were sacrificed and the joints inspected for inflammation. The Young's modulus of the tibial cartilage, meniscus and scaffold was determined by indentation or confined compression tests. All tissues were fixed in formaldehyde for histology. The data were analysed by a Wilcoxon and Mann-Whitney-U-test. RESULTS:. The sheep were free of lameness 4 days p.o. The macroscopic analysis of the genual region and of the synovial membrane showed no signs of inflammation. This was confirmed by histological sections of synovial membrane, meniscus and scaffold. In histology, amorphous material, some fibroblast-like cell clusters and connective tissue formation was visible inside the pores of the scaffold. There were no statistically significant differences between the Young's moduli of the three measuring points in the operated and unoperated stifle joints. The meniscal tissue showed a higher modulus than the scaffolds. The scaffold's modulus significantly increased after three months implantation. DISCUSSION & CONCLUSIONS:. The presented silk scaffold withstood the loads occurring during the six months implantation period. It showed promising properties concerning biocompatibility and cartilage protection and its mechanical properties started to approach those of meniscal tissue


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 91 - 91
1 Jan 2016
Van Der Straeten C Doyen B Dutordoir C Goedertier W Pirard S Victor J
Full Access

INTRODUCTION. Meniscal tears are very common and treated surgically by suturing or partial or total meniscectomy. After meniscectomy, the tibiofemoral contact area is decreased whih leads to higher contact stresses associated with clinical symproms and a faster progression of tibiofemoral osteoarthritis. Besides meniscus allograft transplantation, artificial implants have been developed to replace the menisci after meniscectomy. AIM. We investigated the short- and medium-term clinical results and survivorship of two artificial meniscus implants used as a treatment for post-meniscectomy pain in young to middle-aged patients: the anchored polyurethane degradable Actifit® (2007–2013) and the non-anchored polycarbonate-urethane NUSurface® meniscal implants (2011–2013). PATIENTS AND METHODS. Sixty-seven Actifit were implanted in 67 patients with a mean age of 30.5 years (12 to 50) as a lateral meniscus replacement in 24 cases and medial in 43. Forty-one NUSurface were implanted as a medial meniscus replacement in 35 patients aged 31 to 61 at surgery. Clinical scores (KOOS, Lysholm, IKDC, VAS and EQ-5D) and MRI were obtained preoperatively and at 1, 2 and 5 years (if applicable) postoperatively. Complications and reinterventions were noted and cumulative implant survivorship computed. RESULTS. Seventeen Actifit had been removed at a mean of 22 months postop for persisting pain and/or extrusion of the implant on MRI. Three were converted to a Total Knee Arthroplasty (TKA), 7 replaced by a meniscal allograft and 7 were removed. The cumulative survivorship was 63.6% at 6 years. Forty-six patients with the Actifit in situ had a significant improvement of all clinical scores compared to preoperative scores (p<0.05) and were satisfied with the result. In the NUSurface group, 19 of the 41 implanted menisci had been removed at 2 to 26 months follow-up. Reasons for failure were radial tear or rupture of the meniscus in 7 cases, dislocation with or without tear in 4, synovitis and hydrops in 2 possibly related to synovial reaction to polymer particles, medial pressure caused by a too large size in 3 and persistent pain or OA evolution in 3. In 5 patients the implant was replaced by the same type artificial meniscus, unsuccessfully in 3. Besides, complications occurred in 32 patients including inflammation, effusion and squeaking. Nevertheless the KOOS, IKDC and VAS for pain were significantly improved at 12 months postoperatively (p<0.001). DISCUSSION. Short-term clinical evaluation of artificial meniscal replacement after meniscectomy showed an initial improvement of pain and knee function. However, both in the anchored degradable polyurethane meniscal implant group as in the non-anchored polycarbonate-urethane implant group the number of short-term failures was high and associated with important morbidity. The hard, non-degradable polycarbonate-urethane meniscal implant was torn or worn in 7 cases within 2 years postop. Three patients had synovial reactions possibly related to particulate debris. In conclusion, the currently available artificial meniscal transplants have a too high short-term failure rate to be advocated for widespread clinical use


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 79 - 79
1 May 2013
Scott R
Full Access

CURRENT INDICATIONS. The ideal patient for unicompartmental arthroplasty has been described as an elderly sedentary individual with significant joint space loss isolated to either the medial or lateral compartment. Angular deformity should be no more than 5 or 10 degrees off a neutral mechanical axis. Ideal weight is below 180 pounds. Pre-operative flexion contracture should be less than 15 degrees. At surgery, the anterior cruciate ligament is ideally intact and there is no evidence of inflammatory synovitis. (Kozinn, Scott, 1989) Indications for the procedure have broadened today because of the availability of less invasive operative techniques and more rapid recovery with UKA. Because of its conservative nature, the procedure is being thought of as a conservative first arthroplasty in the middle-aged patient. Because of its less invasive nature with more rapid recovery and potentially less medical morbidity, it is being considered as the “last arthroplasty” in the octogenarian or older. OUTCOMES OF UKA. Initial results reported for UKA in the 1970s were not as encouraging as they are today. This is most likely due to lessons that had yet to be learned about patient selection, surgical technique and prosthetic design. By the 1980s, reported results were improving with post-operative range of motion much higher than that reported for TKA. As longer follow-ups were reported, results were obtained that were competitive with those reported for TKA. Through the first post-operative decade, revision rates were being seen at approximately 1% failure per year or a 90% survivorship of the prosthesis at 10 years. More recently, however, some 10-year results have been reported that have survivorship well over 95% at 10 years. Modes of failure most often consist of problems with component wear or loosening or due to secondary degeneration of the opposite compartment. This latter complication is usually a late cause of failure, but can occur early if the alignment of the knee is over-corrected by the surgical technique. UKA AS AN OPTION IN THE MIDDLE-AGED PATIENT. Although the classic selection criteria for UKA have emphasised the elderly patient as a candidate, the indications for UKA have been extended to a younger age group. The advantages of UKA in the middle-aged patient (especially female) are its higher initial success, few early complications, preservation of both cruciate ligaments and easier future conversion. Caution should be used, however, in advocating this procedure for the young, heavy, athletic person, as high levels of physical activity may be detrimental to the longevity of the procedure. LATERAL UKA. Lateral UKA is performed much less often than medial UKA (approximately 10% of UKAs are lateral). It is technically more challenging than medial arthroplasty. Some surgeons perform the procedure through a small lateral arthrotomy while others advocate a medial approach with care to avoid injury to the medial meniscus. This medial approach still yields excellent results with a short recovery while allowing the surgeon wide exposure to assess the joint, accurately perform the procedure and intra-operatively convert to a total knee arthroplasty if indicated. THE FUTURE. Research must continue in the areas of ideal patient selection, prosthetic design and surgical technique. Improvements in the durability of the polyethylene will enhance longevity. Mobile bearing articulations may improve long-term polyethylene wear by providing increased surface conformity without constraint


Bone & Joint Research
Vol. 4, Issue 5 | Pages 84 - 92
1 May 2015
Hamamura K Nishimura A Iino T Takigawa S Sudo A Yokota H

Objectives

Salubrinal is a synthetic agent that elevates phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) and alleviates stress to the endoplasmic reticulum. Previously, we reported that in chondrocytes, Salubrinal attenuates expression and activity of matrix metalloproteinase 13 (MMP13) through downregulating nuclear factor kappa B (NFκB) signalling. We herein examine whether Salubrinal prevents the degradation of articular cartilage in a mouse model of osteoarthritis (OA).

Methods

OA was surgically induced in the left knee of female mice. Animal groups included age-matched sham control, OA placebo, and OA treated with Salubrinal or Guanabenz. Three weeks after the induction of OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At three and six weeks, the femora and tibiae were isolated and the sagittal sections were stained with Safranin O.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 494 - 499
1 Apr 2008
Howells NR Gill HS Carr AJ Price AJ Rees JL

The aim of this study was to investigate the effect of laboratory-based simulator training on the ability of surgical trainees to perform diagnostic arthroscopy of the knee.

A total of 20 junior orthopaedic trainees were randomised to receive either a fixed protocol of arthroscopic simulator training on a bench-top knee simulator or no additional training. Motion analysis was used to assess performance objectively. Each trainee then received traditional instruction and demonstrations of diagnostic arthroscopy of the knee in theatre before performing the procedure under the supervision of a blinded consultant trainer. Their performance was assessed using a procedure-based assessment from the Orthopaedic Competence Assessment Project and a five-point global rating assessment scale.

In theatre the simulator-trained group performed significantly better than the untrained group using the Orthopaedic Competence Assessment Project score (p = 0.0007) and assessment by the global rating scale (p = 0.0011), demonstrating the transfer of psychomotor skills from simulator training to arthroscopy in the operating theatre. This has implications for the planning of future training curricula.