Aims. Successful cell therapy in hip osteonecrosis (ON) may help to avoid ON progression or total hip arthroplasty (THA), but the achieved bone regeneration is unclear. The aim of this study was to evaluate amount and location of bone regeneration obtained after surgical injection of expanded autologous
Aims. Platelet concentrates, like platelet-rich plasma (PRP) and platelet lysate (PL), are widely used in regenerative medicine, especially in bone regeneration. However, the lack of standard procedures and controls leads to high variability in the obtained results, limiting their regular clinical use. Here, we propose the use of platelet-derived extracellular vesicles (EVs) as an off-the-shelf alternative for PRP and PL for bone regeneration. In this article, we evaluate the effect of PL-derived EVs on the biocompatibility and differentiation of
Articular cartilage has poor repair potential and the tissue formed is mechanically incompetent.
For the treatment of ununited fractures, we developed
a system of delivering magnetic labelled mesenchymal stromal cells
(MSCs) using an extracorporeal magnetic device. In this study, we
transplanted ferucarbotran-labelled and luciferase-positive bone
marrow-derived MSCs into a non-healing femoral fracture rat model
in the presence of a magnetic field. The biological fate of the
transplanted MSCs was observed using luciferase-based bioluminescence
imaging and we found that the number of MSC derived photons increased
from day one to day three and thereafter decreased over time. The
magnetic cell delivery system induced the accumulation of photons at
the fracture site, while also retaining higher photon intensity
from day three to week four. Furthermore, radiological and histological
findings suggested improved callus formation and endochondral ossification.
We therefore believe that this delivery system may be a promising
option for bone regeneration.
We used interconnected porous calcium hydroxyapatite ceramic to bridge a rabbit ulnar defect. Two weeks after inducing the defect we percutaneously injected rabbit bone marrow-derived
Objectives. Venous thromboembolism (VTE) is a major potential complication following orthopaedic surgery. Subcutaneously administered enoxaparin has been used as the benchmark to reduce the incidence of VTE. However, concerns have been raised regarding the long-term administration of enoxaparin and its possible negative effects on bone healing and bone density with an increase of the risk of osteoporotic fractures. New oral anticoagulants such as rivaroxaban have recently been introduced, however, there is a lack of information regarding how these drugs affect bone metabolism and post-operative bone healing. Methods. We measured the migration and proliferation capacity of mesenchymal stem cells (MSCs) under enoxaparin or rivaroxaban treatment for three consecutive weeks, and evaluated effects on MSC mRNA expression of markers for stress and osteogenic differentiation. Results. We demonstrate that enoxaparin, but not rivaroxaban, increases the migration potential of MSCs and increases their cell count in line with elevated mRNA expression of C-X-C chemokine receptor type 4 (CXCR4), tumor necrosis factor alpha (TNFα), and alpha-B-crystallin (CryaB). However, a decrease in early osteogenic markers (insulin-like growth factors 1 and 2 (IGF1, IGF2), bone morphogenetic protein2 (BMP2)) indicated inhibitory effects on MSC differentiation into osteoblasts caused by enoxaparin, but not by rivaroxaban. Conclusions. Our findings may explain the adverse effects of enoxaparin treatment on bone healing. Rivaroxaban has no significant impact on MSC metabolism or capacity for osteogenic differentiation in vitro. Cite this article: Dr H. Pilge. Enoxaparin and rivaroxaban have different effects on human
Recent studies suggested that both the soluble protein of the
Long bone fractures in patients with diabetes mellitus (DM) are slow to heal, often resulting in delayed reunion or non-union. It is reasonable to postulate that the underlying cause of these DM-associated complications is a reduced population of bone marrow progenitor cells and/or their dysfunction. With the hypothesis that the administration of healthy, allogeneic adult bone marrow-derived
Early clinical studies investigating the effects of delivery of
Recapitulating tissue elasticity can direct
Introduction. Current cell-based treatments and marrow stimulating techniques to repair articular cartilage defects are limited in restoring the tissue in its native composition. Despite progress in cartilage tissue engineering and chondrogenesis in vitro, the main limitation of this approach is the progression towards hypertrophy during prolonged culture in pellets or embedded in biomaterials. The objectives of this study were (A) to compare human bone marrow-derived
Mesenchymal stem cells (MSCs) and chondrocytes have both been crucial in trials for cartilage repair, and there has been growing interest into their respective secretomes owing to their role in chondrogenic crosstalk. This has been studied by Our study utilised an Abstract
Objective
Methods
Osteoarthritis is a global problem and the treatment of early disease is a clear area of unmet clinical need. Treatment strategies include cell therapies utilising chondrocytes e.g. autologous chondrocyte implantation and
Bone marrow
Introduction. Bereft of their optimal tissue context, cells lose their phenotype, function and therapeutic potential during in vitro culture. Despite the fact that in vivo cells are exposed simultaneously to multiple signals, traditional ex vivo cultures are monofactorial. With these in mind, herein we assessed the combined effect of surface topography, substrate rigidity, collagen type I coating and macromolecular crowding in human tenocyte, skin fibroblast and bone marrow
The use of biologics in the treatment of musculoskeletal injuries in Olympic and professional athletes appears to be increasing. There are no studies which currently map the extent, range, and nature of existing literature concerning the use and efficacy of such therapies in this arena. The objective of this scoping review is to map the available evidence regarding the use of biologics in the treatment of musculoskeletal injuries in Olympic and professional sport. Best-practice methodological frameworks suggested by Arksey and O’Malley, Levac et al, and the Joanna Briggs Institute will be used. This scoping review will aim to firstly map the current extent, range, and nature of evidence for biologic strategies to treat injuries in professional and Olympic sport; secondly, to summarize and disseminate existing research findings; and thirdly, to identify gaps in existing literature. A three-step search strategy will identify peer reviewed and non-peer reviewed literature, including reviews, original research, and both published and unpublished (‘grey’) literature. An initial limited search will identify suitable search terms, followed by a search of five electronic databases (MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Web of Science, and Google Scholar) using keyword and index terms. Studies will be screened independently by two reviewers for final inclusion.Aims
Methods
Aims. Extracellular vesicles (EVs) are nanoparticles secreted by all cells, enriched in proteins, lipids, and nucleic acids related to cell-to-cell communication and vital components of cell-based therapies.
Aims. The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration. Methods. IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow
It is well known that environmental cues such as mechanical loading and/or cell culture medium composition affect tissue-engineered constructs resembling natural bone. These studies are mostly based on an initial setting of the influential parameter that will not be further changed throughout the study. Through the growth of the cells and the deposition of the extracellular matrix (ECM) the initial environmental conditions of the cells will change, and with that also the loads on the cells will change. This study investigates how changes of mechanical load or media composition during culture influences the differentiation and ECM production of
The HIPGEN study funded under EU Horizon 2020 (Grant 7792939) has the aim to investigate the potential of the first regenerative cell therapy for the improvement of recovery after muscle injury in hip fracture patients. For this aim we intramuscularly injected placental derived