Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_5 | Pages 35 - 35
1 Apr 2022
See CC Al-Naser S Fernandes J Nicolaou N Giles S
Full Access

Introduction. Metabolic bone disease encompasses disorders of bone mineralization, abnormal matrix formation or deposition and alteration in osteoblastic and osteoclastic activity. In the paediatric cohort, patients with metabolic bone disease present with pain, fractures and deformities. The aim was to evaluate the use of lateral entry rigid intramedullary nailing in lower limbs in children and adolescents. Materials and Methods. Retrospective review was performed for an 11-year period. Lower limb rigid intramedullary nailing was performed in 27 patients with a total of 63 segments (57 femora, 6 tibiae). Majority of patients had underlying diagnoses of osteogenesis imperfecta or fibrous dysplasia (including McCune Albright disease). Mean age at surgery was 14 years. Indications for surgery included acute fractures, prophylactic stabilisation, previous nonunion and malunion, deformity correction and lengthening via distraction osteogenesis. Results. All fractures healed. Correction of deformity was successfully achieved in all segments. Delayed union occurred in 4 segments in 1 patient and was successfully treated with nail dynamization. Other complications included prominence, cortical penetrance and loosening of locking screws. One patient who had lengthening performed had nonunion and was managed with exchange nailing and adjunctive measures. Conclusions. Rigid intramedullary nailing is very effective in stabilisation and deformity correction of long bones in adolescent patients with pathological bone disease. The technique has low complication rates. We recommend the use of this technique in paediatric units with experience in managing metabolic bone conditions


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 17 - 17
1 Dec 2022
Smit K L'Espérance C Livock H Tice A Carsen S Jarvis J Kerrigan A Seth S
Full Access

Olecranon fractures are common injuries representing roughly 5% of pediatric elbow fractures. The traditional surgical management is open reduction and internal fixation with a tension band technique where the pins are buried under the skin and tamped into the triceps. We have used a modification of this technique, where the pins have been left out of the skin to be removed in clinic. The purpose of the current study is to compare the outcomes of surgically treated olecranon fractures using a tension-band technique with buried k-wires (PINS IN) versus percutaneous k-wires (PINS OUT). We performed a retrospective chart review on all pediatric patients (18 years of age or less) with olecranon fractures that were surgically treated at a pediatric academic center between 2015 to present. Fractures were identified using ICD-10 codes and manually identified for those with an isolated olecranon fracture. Patients were excluded if they had polytrauma, metabolic bone disease, were treated non-op or if a non-tension band technique was used (ex: plate/screws). Patients were then divided into 2 groups, olecranon fractures using a tension-band technique with buried k-wires (PINS IN) and with percutaneous k-wires (PINS OUT). In the PINS OUT group, the k-wires were removed in clinic at the surgeon's discretion once adequate fracture healing was identified. The 2 groups were then compared for demographics, time to mobilization, fracture healing, complications and return to OR. A total of 35 patients met inclusion criteria. There were 28 patients in the PINS IN group with an average age of 12.8 years, of which 82% male and 43% fractured their right olecranon. There were 7 patients in the PINS OUT group with an average age of 12.6 years, of which 57% were male and 43% fractured their right olecranon. All patients in both groups were treated with open reduction internal fixation with a tension band-technique. In the PINS IN group, 64% were treated with 2.0 k-wires and various materials for the tension band (82% suture, 18% cerclage wire). In the PINS OUT group, 71% were treated with 2.0 k-wires and all were treated with sutures for the tension band. The PINS IN group were faster to mobilize (3.4 weeks (range 2-5 weeks) vs 5 weeks (range 4-7 weeks) p=0.01) but had a significantly higher complications rate compared to the PINS OUT group (6 vs 0, p =0.0001) and a significantly higher return to OR (71% vs 0%, p=0.0001), mainly for hardware irritation or limited range of motion. All fractures healed in both groups within 7 weeks. Pediatric olecranon fractures treated with a suture tension-band technique and k-wires left percutaneously is a safe and alternative technique compared to the traditional buried k-wires technique. The PINS OUT technique, although needing longer immobilization, could lead to less complications and decreased return to the OR due to irritation and limited ROM


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 20 - 20
1 Jun 2018
Springer B
Full Access

Periprosthetic fractures around the femur during and after total hip arthroplasty (THA) remain a common mode of failure. It is important therefore to recognise those factors that place patients at increased risk for development of this complication. Prevention of this complication, always trumps treatment. Risk factors can be stratified into: 1. Patient related factors; 2. Host bone and anatomical considerations; 3. Procedural related factors; and 4. Implant related factors. Patient Factors. There are several patient related factors that place patients at risk for development of a periprosthetic fracture during and after total hip arthroplasty. Metabolic bone disease, particularly osteoporosis increases the risk of periprosthetic fracture. In addition, patients that smoke, have long term steroid use or disuse, osteopenia due to inactivity should be identified. A metabolic bone work up and evaluation of bone mineralization with a bone densitometry test can be helpful in identifying and implementing treatment prior to THA. Pre-operative Host Bone and Anatomic Considerations. In addition to metabolic bone disease the “shape of the bone” should be taken into consideration as well. Dorr has described three different types of bone morphology (Dorr A, B, C), each with unique characteristics of size and shape. It is important to recognise that not one single cementless implant may fit all bone types. The importance of templating a THA prior to surgery cannot be overstated. Stem morphology must be appropriately matched to patient anatomy. Today, several types of cementless stem designs exist with differing shape and areas of fixation. It is important to understand via pre-operative templating which stem works best in what situation. Procedural Related Factors. There has been a resurgence in interest in the varying surgical approaches to THA. While the validity and benefits of each surgical approach remains a point of debate, each approach carries with it its own set of risks. Several studies have demonstrated increased risk of periprosthetic fractures during THA with the use of the direct anterior approach. Risk factors for increased risk of periprosthetic fracture may include obesity, bone quality and stem design. Implant Related Factors. As mentioned there are several varying cementless implant shapes and sizes that can be utilised. There is no question that cementless fixation remains the most common mode of fixation in THA. However, one must not forget the role of cemented fixation in THA. Published results on long term fixation with cemented stems are comparable if not exceeding those of press fit fixation. In addition, the literature is clear that cemented fixation in the elderly hip fracture patient population is associated with a lower risk of periprosthetic fracture and lower risk of revision. The indication and principles of cemented stem fixation in THA should not be forgotten


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 36 - 36
1 Aug 2017
Rosenberg A
Full Access

Extra-articular deformity may be present in patients requiring TKA. Underlying causes include trauma, metabolic bone disease, congenital deformity, or prior osteotomy. Patients with intra-articular deformity have a combination of intra-articular bone loss and concomitant ligament contraction which can be managed in the standard fashion. In these cases establishing appropriate limb alignment and management of bone loss coincide well with the standard ligament balancing employed to provide a stable knee. However, if extra-articular deformity is not corrected extra-articularly, it must be corrected by a compensatory distal femoral or proximal tibial resection to reproduce appropriate limb alignment. Complex instabilities may result from this type of wedge resection because it occurs between the proximal and distal attachments of the collateral ligaments and so produces asymmetrical ligament length alterations. Femoral compensatory wedge resection for extra-articular deformity produces extension instability without affecting the flexion gap and so femoral deformities are POTENTIALLY more difficult to correct than tibial deformities where the compensatory tibial cut influences flexion AND extension equally. Lack of access to the intramedullary canal (as well as increased complexity of producing appropriately placed bone cuts) may be managed with computer guidance or patient specific instruments. The closer a deformity is to the knee, the greater its importance and the effect on the surgical correction. This is a directly proportional relationship, so that as the apex of the deformity moves from juxta-articular to more distant, the amount of corrective wedge needed to re-align the limb decreases proportionally. Rotatory deformities most commonly effect extensor mechanism tracking. The effect is similar to any other deformity in that proximity to the knee and increases the likelihood that it will have a significant local effect. In general, these deformities may be clinically, and radiographically more subtle and so must be searched for. They should be managed by restoring normal rotational parameters of the bone or by appropriate compensation of component rotation relative to the bone. As the need for prosthetic constraint increases due to ligament imbalance or deficiency, intramedullary stems may be required. Their use may be compromised by the presence of the deformity. The younger the patient and the more severe the deformity the more likely I am to treat the deformity by correction at the site of the deformity rather than compensating with abnormal bone resections. The older the patient and the milder the deformity (or the amount of correction required) the more intra-articular correction +/− increased TKA constraint is feasible


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 34 - 34
1 Nov 2016
Rosenberg A
Full Access

Extra-articular deformity may be present in patients requiring TKA. Underlying causes include trauma, metabolic bone disease, congenital deformity, or prior osteotomy. Patients with intra-articular deformity can have a combination of intra-articular bone loss and concomitant ligament contraction which can be managed in the standard fashion. In these cases establishing appropriate limb alignment and management of bone loss coincide well with the standard ligament balancing employed to provide a stable knee. However, if extra-articular deformity is not corrected extra-articularly, it must be corrected by a compensatory distal femoral or proximal tibial resection to reproduce appropriate limb alignment. Complex instabilities may result from this type of wedge resection because it occurs between the proximal and distal attachments of the collateral ligaments and so produces asymmetrical ligament length alterations. Femoral compensatory wedge resection for extra-articular deformity produces extension instability without affecting the flexion gap and so femoral deformities are POTENTIALLY more difficult to correct than tibial deformities where the compensatory tibial cut influences flexion AND extension equally. Lack of access to the intramedullary canal (as well as increased complexity of producing appropriately placed bone cuts) may be managed with computer guidance or patient specific instruments. The closer a deformity is to the knee, the greater its importance and the effect on the surgical correction. This is a directly proportional relationship, so that as the apex of the deformity moves from juxta-articular to more distant, the amount of corrective wedge needed to re-align the limb decreases proportionally. Rotatory deformities are complex and most commonly effect extensor mechanism tracking. In general the effect is similar to any other deformity in that proximity to the knee increases the likelihood that it will have a significant local effect. In general, these deformities are clinically, and radiographically more subtle and so must be searched for. They should be managed by an attempt to restore normal rotational parameters of the bone itself or appropriate compensation of component rotation in relation to the bone. As prosthetic constraint increases one may need to use intramedullary stems. Their use may be compromised by the deformity. Finally, the younger the patient and the more severe the deformity the more likely I am to treat the deformity by correction at the site of the deformity rather than compensating with abnormal bone resections. The older the patient and the milder the deformity (or the amount of wedge correction required) the more likely I am to manage the deformity with intra-articular correction and increased TKA constraint


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 81 - 81
1 Jul 2014
Ries M
Full Access

Acetabular protrusio is defined radiographically as migration of the femoral head medial to Kohler's line (a line from the lateral border of the obturator foramen to the medial border of the sciatic notch). Protrusio can develop in association with metabolic bone diseases such as osteogenesis imperfecta, Marfan's Syndrome, and Paget's disease, inflammatory arthritis or osteoarthritis, tumors, or result from prior trauma. Acetabular protrusio can cause limited hip motion due to impingement of the femoral neck against the acetabular rim. When protrusio develops in association with osteoarthritis, coxa vara is often also present. Surgical treatment of acetabular protrusio during total hip arthroplasty should lateralise the center of the hip to its anatomic position. This typically can be achieved with use of a larger, slightly oversized, rim fit cementless acetabular component and medial morselised femoral head bone autograft. In cases with more severe deformity, a reconstruction cage may be required. Alternatively a medialised acetabular shell can be used with a lateralised liner. If coxa vara is also present, standard femoral component position (approximately 1cm above the lesser trochanter) can result in an increase in leg length. Careful pre-operative templating should be performed and may require more distal placement of the femoral component to avoid overlengthening the limb


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 136 - 136
1 Feb 2017
Ghouse S van Arkel R Babu S Nai K Hooper P Jeffers J
Full Access

Orthopaedic reconstruction procedures to combat osteoarthritis, inflammatory arthritis, metabolic bone disease and other musculoskeletal disorders have increased dramatically, resulting in high demand on the advancement of bone implant technology. In the past, joint replacement operations were commonly performed primarily on elderly patients, in view of the prosthesis survivorship. With the advances in surgical techniques and prosthesis technology, younger patients are undergoing surgeries for both local tissue defects and joint replacements. This patient group is now more active and functionally more demanding after surgery. Today, implanted prostheses need to be more durable (load-bearing), they need to better match the patient's original biomechanics and be able to survive longer. Additive manufacturing (AM) provides new possibilities to further combat the problem of stress-shielding and promote better bone remodelling/ingrowth and thus long term fixation. This can be accomplished by matching the varying strain response (stiffness) of trabecular or subchondral bone locally at joints. The purpose of this research is therefore to determine whether a porous structure can be produced that can match the required behaviour and properties of trabecular bone regardless of skeletal location and can it be incorporated into a long-term implant. A stochastic structure visually similar to trabecular bone was designed and optimised for AM (Figure 1) and produced over a range of porosities in multiple materials, Stainless Steel 316, Titanium (Grade 23 – Ti6Al4V ELI) and Commercially Pure Titanium (Grade 2) using a Renishaw AM250 metal additive manufacturing system. Over 150 cylindrical specimens were produced per material and subjected to a compression test to determine the specimens' Elastic Modulus (Stiffness) and Compressive Yield Strength. Micro-CT scans and gravimetric analysis were also performed to determine and validate the specimens' porosity. Results were then graphed on a Strength vs. Stiffness Ashby plot (Figure 2) comparing the values to those of trabecular bone in the tibia and femur. It was found that AM can produce porous structures with an elastic modulus as low as 100 MPa up to 2.7 GPa (the highest stiffness investigated in this study). Titanium structures with a stiffness <500MPa had compressive strengths towards the bottom range of similar stiffness trabecular bone. Between 500 MPa − 1 GPa Titanium AM porous structures match the compressive strength of equivalent stiffness trabecular bone and from 1 GPa − 2 GPa the Ti structures exceed the strength of equivalent stiffness trabecular bone up to ∼2.5 times and consequently increase by a power law. These results show that AM can produce structures with similar stiffness to trabecular bone over a range of skeletal locations whilst matching or exceeding the compressive strength of bone. The results have not yet taken into account fatigue life with the fatigue life of these types of structures tending to be between 0.1 – 0.4 of their compressive strength. This means that a titanium porous structure would need to be 2.5 – 10 times stiffer or stronger than the portion of trabecular bone it is replacing. This data is highly encouraging for AM manufactured, bone stiffness matched implant technology


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 30 - 30
1 Apr 2017
Gustke K
Full Access

Acetabular protrusio occurs from migration of the femoral head medial to Kohler's line. This occurs in inflammatory arthritis, osteoarthritis with coxa vara deformities, previous acetabular fracture, and in metabolic bone diseases such as osteomalacia, Paget's disease, Marfan's syndrome, and osteogenesis imperfecta. Total hip replacement in this situation is difficult due to the requirement to place the acetabular component opening at the level of the normal rim or the patient will be at risk for component-on-component or bone-on-bone impingement, resulting in dislocation or component loosening. The deficient medial wall doesn't resist cup subsidence and the deficient peripheral rim may provide poor initial cup stability. Many management options have been described including using cement, bulk bone graft, and particulate graft to support the cup medially, and use of a reinforcement ring cage to provide better rim support. Gates reported on a series of 36 primary total hip replacements with acetabular protrusio treated with cemented cups and medial particulate autograft with a mean follow-up of 12.8 years with 6 definitively loose, 3 probably loose, and 22 possibly loose. The technique that provides initial porous cup stability and potential for long-term biological fixation is preferred. Mullaji and Shetty reported 90% good and excellent results and no loosening or migration at a mean 4.2 years in 30 primary total hips with acetabular protrusio treated with oversized porous cups for rim support and medial particulate bone grafting. Forty percent of their cases had protrusio greater than 15 mm medial to Kohler's line. Hansen and Ries also reported no revisions using this same technique in 19 revision total hips with an average follow-up of 2.8 years. However, they emphasised that this technique should only be used if the peripheral rim is intact, and if inadequate, to use a reconstruction cage. In revision total hips with large medial acetabular defects this is more likely to be the case. However, use of a reconstruction cage doesn't provide biological fixation. Ilyas reported a 15.1% loosening rate using cages for revisions with medial defects at a follow-up of 6 years. I have alternatively used a porous protrusio shell when rim support is poor and the medial defect is greater than 10 mm. The technique is to perform a cylindrical peripheral ream and a medial hemispherical ream. This provides greater host bone to shell contact for stability and greater biological fixation, and fills much of the medial defect. I used this technique in 43 cases with an average follow-up of 3.7 years. There were no revisions, no apparent cup migrations, and no progressive component bone radiolucencies. For primary total hips with protrusio, when good rim support can be achieved with a few millimeters of peripheral over-ream, a standard porous cup and medial particulate autografting is preferred. However, in many primary cases with greater than 10 mm of protrusio, the peripheral rim may be significantly stress shielded and thus, may have poor rim support unless the rim is significantly over-reamed. Because of my excellent results using protrusio shells in revision cases, I will consider also using a protrusio shell in primary total hips in elderly patients with >10 mm of protrusio. I have experience in 10 primary cases with an average follow-up of 4.1 years. One failed for infection. The other 9 have been successful with no apparent cup migration and no progressive component bone radiolucencies


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 192 - 192
1 Jun 2012
Rajgopal A
Full Access

Introduction. Arthritic knees requiring total knee replacement may present with additional deformities located along the femur or tibia away from the articular region. These deformities may be congenital, developmental, associated with metabolic bone disease, or acquired as a result of malunited fractures or previous advocated for arthritic knee with ipsilateral extra-articular deformity. Methods. We undertook retrospective study to evaluate the results of total knee arthroplasty in arthritic knee with extra-articular deformity in 26 knees (24 patients). Sixteen deformities were in tibia and ten deformities were in femur. All patients underwent total knee arthroplasty with intraarticular bone resection and soft tissue balancing. Results. Average period of follow up was 30 months. Average preoperative arc of motion was 57.5 degrees, which improved to 102.5 degrees. The average preoperative knee society knee score 23.5 points, which improved to an average of 91.3 points at the time of last follow up. The average functional score was 27.0 points, which improved to average of 88.0 points. There were no complications such as infection, ligament instability or component loosening. Conclusion. Intra-articular bone resection is an effective procedure for management of arthritic knees with extra-articular deformity


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 31 - 31
1 Feb 2015
Kraay M
Full Access

Protrusio acetabuli (arthrokatadysis or Otto pelvis) is a relatively rare condition associated with secondary osteoarthritis of the hip. Radiographically, protrusio acetabuli is present when the medial aspect of the femoral head projects medial to Kohler's (ilioischial) line. This results in medialization of the center of rotation (COR) of the hip. Protrusio acetabuli is typically associated with metabolic bone disease (osteoporosis, osteomalacia, Paget's disease) or inflammatory arthritis (RA or ankylosing spondylitis). Idiopathic acetabular protrusio can occur without the above associated factors however. Patients with protrusio acetabuli typically present with significant restriction of range of motion (ROM) of the hip due to femoral neck and trochanteric impingement in the deep acetabular socket and pain associated with secondary osteoarthritis (OA). Total hip arthroplasty (THA) in patients with protrusion acetabuli is more challenging than THA in patients with a normal hip COR. ROM is typically quite restricted which can compromise surgical exposure. Dislocation of the hip in the patient with a deep socket and medialised COR can be extremely difficult and associated with fracture of the femur if not carefully performed. Restoration of the hip COR to the normal more lateralised position is a principle goal of surgery. This restores more normal mechanics of the hip and has been associated with improved durability. A variety of techniques to accomplish this have been described including medial acetabular bone grafting with cemented cups, protrusio rings or porous coated cementless cups fixed with multiple screws. The latter technique has been shown to be more durable and associated with better outcomes. THA in protrusio acetabuli starts with templating of the preoperative x-rays to determine the optimal acetabular implant size and final position of the acetabular component that restores the hip COR to the normal position. Patients with protrusio acetabuli often have varus oriented femoral necks and the femur needs to be carefully templated as well to insure that an appropriate femoral component is available that will allow for restoration of the patient's anatomy. Cartilage covering the thinned medial wall needs to be carefully removed without disruption of the medial acetabular wall. The acetabulum is then carefully reamed with the goal of obtaining stable peripheral rim support of a cementless socket and at least 50% contact of the implant on good quality host bone. Unlike acetabular preparation in the normal hip, preventing the reamer from “bottoming out” is essential in order to obtain desired rim support and return of the hip COR to the normal lateralised position. When good rim support of the reamer is obtained, a trial component is placed and intraoperative x-ray obtained to confirm fit, position and restoration of hip COR. Limited addition reaming can be performed to obtain desired degree of press fit (1‐2mm) and contact with host bone. Morselised autograft from the femoral head and neck is then packed into the medial defect and reverse reamed. The cementless acetabular component is then impacted into position and fixed with screws. Weight bearing is determined by bone quality, size and containment of the medial defect, amount of contact of the cementless cup with host bone and stability of the acetabular construct. Incorporation of autograft bone in the acetabulum and stable long term fixation occurs reliably if stable initial press-fit fixation of the cementless cup is obtained. Restoration of hip COR to within 7mm of its normal location is associated with better implant survival


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 60 - 60
1 May 2013
Haddad F
Full Access

The principles of acetabular reconstruction include the creation of a stable acetabular bed, secure prosthetic fixation with freedom of orientation, bony reconstitution, and the restoration of a normal hip centre of rotation with acceptable biomechanics. Acetabular impaction grafting, particularly with cemented implants, has been shown to be a reliable means of acetabular revision. Whilst our practice is heavily weighted towards cementless revision of the acetabulum with impaction grafting, there is a large body of evidence from Tom Slooff and his successors that cemented revision with impaction grafting undertaken with strict attention to technical detail is associated with excellent long terms results in all ages and across a number of underlying pathologies including dysplasia and rheumatoid arthritis. We use revision to a cementless hemispherical porous-coated acetabular cup for most isolated cavitary or segmental defects and for many combined deficiencies. Morsellised allograft is packed in using chips of varied size and a combination of impaction and reverse reaming is used in order to create a hemisphere. There is increasing evidence for the use of synthetic grafts, usually mixed with allograft, in this setting. The reconstruction relies on the ability to achieve biological fixation of the component to the underlying host bone. This requires intimate host bone contact, and rigid implant stability. It is important to achieve host bone contact in a least part of the dome and posterior column – when this is possible, and particularly when there is a good rim fit, we have not found it absolutely necessary to have contact with host bone over 50% of the surface. Once the decision to attempt a cementless reconstruction is made, hemispherical reamers are used to prepare the acetabular cavity. Sequentially larger reamers are used until there is three-point contact with the ilium, ischium and pubis. Acetabular reaming should be performed in the desired orientation of the final implant, with approximately 200 of anteversion and 400 of abduction (or lateral opening). Removing residual posterior column bone should be avoided. Reaming to bleeding bone is desirable. Morsellised allograft is inserted and packed and/or reverse reamed into any cavitary defects. This method can also be applied to medial wall uncontained defects by placing the graft onto the medial membrane or obturator internus muscle, and gently packing it down before inserting the cementless acetabular component. Either the reamer heads or trial cups can be used to trial prior to choosing and inserting the definitive implant. The fixation is augmented with screws in all cases. Incorporation of the graft may be helped by the use of autologous bone marrow. Cementless acetabular components with impaction grafting should not be used when the host biology does not allow for stability or for bone ingrowth. This includes the severely osteopenic pelvis, pelvic osteonecrosis after irradiation, tumours, and metabolic bone disorders. They should also not be used in the presence of pelvic discontinuity unless the structure of the pelvic ring has been restored with a plate, or specialised materials/porous metals are used. The challenge of reconstituting the acetabulum depends on the degree and type of bone loss. The principles of maximising host bone-implant contact and implant stability have borne fruit in our experience with cementless revision. The advantages of bone grafting in acetabular reconstruction include the ability to restore bone stock, to rebuild a normal hip center and hip biomechanics and to increase bone stock for future revisions


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 427 - 431
1 Mar 2015
Wu C Hsieh P Fan Jiang J Shih H Chen C Hu C

Fresh-frozen allograft bone is frequently used in orthopaedic surgery. We investigated the incidence of allograft-related infection and analysed the outcomes of recipients of bacterial culture-positive allografts from our single-institute bone bank during bone transplantation. The fresh-frozen allografts were harvested in a strict sterile environment during total joint arthroplasty surgery and immediately stored in a freezer at -78º to -68º C after packing. Between January 2007 and December 2012, 2024 patients received 2083 allografts with a minimum of 12 months of follow-up. The overall allograft-associated infection rate was 1.2% (24/2024). Swab cultures of 2083 allografts taken before implantation revealed 21 (1.0%) positive findings. The 21 recipients were given various antibiotics at the individual orthopaedic surgeon’s discretion. At the latest follow-up, none of these 21 recipients displayed clinical signs of infection following treatment. Based on these findings, we conclude that an incidental positive culture finding for allografts does not correlate with subsequent surgical site infection. Additional prolonged post-operative antibiotic therapy may not be necessary for recipients of fresh-frozen bone allograft with positive culture findings.

Cite this article: Bone Joint J 2015;97-B:427–31.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 414 - 419
1 Mar 2014
Kodumuri P Ollivere B Holley J Moran CG

We evaluated the top 13 journals in trauma and orthopaedics by impact factor and looked at the longer-term effect regarding citations of their papers.

All 4951 papers published in these journals during 2007 and 2008 were reviewed and categorised by their type, subspecialty and super-specialty. All citations indexed through Google Scholar were reviewed to establish the rate of citation per paper at two, four and five years post-publication. The top five journals published a total of 1986 papers. Only three (0.15%) were on operative orthopaedic surgery and none were on trauma. Most (n = 1084, 54.5%) were about experimental basic science. Surgical papers had a lower rate of citation (2.18) at two years than basic science or clinical medical papers (4.68). However, by four years the rates were similar (26.57 for surgery, 30.35 for basic science/medical), which suggests that there is a considerable time lag before clinical surgical research has an impact.

We conclude that high impact journals do not address clinical research in surgery and when they do, there is a delay before such papers are cited. We suggest that a rate of citation at five years post-publication might be a more appropriate indicator of importance for papers in our specialty.

Cite this article: Bone Joint J 2014;96-B:414–19.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 146 - 152
1 Jan 2010
Bilen FE Kocaoglu M Eralp L Balci HI

We report the results of using a combination of fixator-assisted nailing with lengthening over an intramedullary nail in patients with tibial deformity and shortening. Between 1997 and 2007, 13 tibiae in nine patients with a mean age of 25.4 years (17 to 34) were treated with a unilateral external fixator for acute correction of deformity, followed by lengthening over an intramedullary nail with a circular external fixator applied at the same operating session. At the end of the distraction period locking screws were inserted through the intramedullary nail and the external fixator was removed.

The mean amount of lengthening was 5.9 cm (2 to 8). The mean time of external fixation was 90 days (38 to 265). The mean external fixation index was 15.8 days/cm (8.9 to 33.1) and the mean bone healing index was 38 days/cm (30 to 60).

One patient developed an equinus deformity which responded to stretching and bracing. Another developed a drop foot due to a compartment syndrome, which was treated by fasciotomy. It recovered in three months. Two patients required bone grafting for poor callus formation.

We conclude that the combination of fixator-assisted nailing with lengthening over an intramedullary nail can reduce the overall external fixation time and prevent fractures and deformity of the regenerated bone.