Advertisement for orthosearch.org.uk
Results 1 - 20 of 328
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 6 - 6
2 Jan 2024
Orellana F Grassi A Wahl P Nuss K Neels A Zaffagnini S Parrilli A
Full Access

A comprehensive understanding of the self-repair abilities of menisci and their overall function in the knee joint requires three-dimensional information. However, previous investigations of the meniscal blood supply have been limited to two-dimensional imaging methods, which fail to accurately capture tissue complexity. In this study, micro-CT was used to analyse the 3D microvascular structure of the meniscus, providing a detailed visualization and precise quantification of the vascular network. A contrast agent (μAngiofil®) was injected directly into the femoral artery of cadaver legs to provide the proper contrast enhancement. First, the entire knee joint was analysed with micro-CT, then to increase the applicable resolution the lateral and medial menisci were excised and investigated with a maximum resolution of up to 4 μm. The resulting micro-CT datasets were analysed both qualitatively and quantitatively. Key parameters of the vascular network, such as vascular volume fraction, vessel radius, vessel length density, and tortuosity, were separately determined for the lateral and medial meniscus, and their four circumferential zones defined by Cooper. In accordance with previous literature, the quantitative micro-CT data confirm a decrease in vascular volume fraction along the meniscal zones. The highest concentration of blood vessels was measured in the meniscocapsular region 0, which is characterized by vascular segments with a significantly larger average radius. Furthermore, the highest vessel length density observed in zone 0 suggests a more rapid delivery of oxygen and nutrients compared to other regions. Vascular tortuosity was detected in all circumferential regions, indicating the occurrence of vascular remodelling in all tissue areas. In conclusion, micro-CT is a non-invasive imaging technique that allows for the visualization of the internal structure of an object in three dimensions. These advanced 3D vascular analyses have the potential to establish new surgical approaches that rely on the healing potential of specific areas of the meniscus. Acknowledgements: The authors acknowledge R. Hlushchuk, S. Halm, and O. Khoma from the University of Bern for their help with contrast agent perfusions


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 12 - 12
1 Apr 2018
Trieb K Senck S
Full Access

Due to the increasing life expectancy the incidence of gonarthrosis, the degeneration of articular cartilage and bone in the knee joint, is increasing worldwide. Although the success rate of knee arthroplasties is high, complications like the loosening of the implant necessitate subsequent treatments. Moreover, the morphology and microstructure of the knee joint varies considerably between patients, therefore the anatomical expertise of orthopedic surgeons is essential. In this analysis we therefore investigate the variation and micro-architectural alterations in subchondral bone in osteoarthritis (OA) patients undergoing a knee replacement surgery. We investigate OA bone degenerations using clinical X-rays and micro-computed tomography (micro-CT). Tibial bone samples are collected from 100 patients undergoing a total knee arthroplasty at the Klinikum Wels-Grieskirchen. Images are obtained using an industrial micro-CT scanner RayScan 250E. Microstructural parameters include bone volume fraction and cortical thickness of the subcondral bone and are obtained from micro-CT images with isometric voxel sizes of 50 µm. Using micro-CT, we show a high morphological variation in relation to cortical thickness, both within the respective condyle as well as between the medial and lateral condyle. Cortical thickness seems to correlate with cartilage thickness and knee joint alignment. The results are incorporated into a gonarthrosis database that integrates microstructural parameters via a combined analysis of X-ray and micro-CT data. This database aims to facilitate the assessment of osteoarthritis, i.e. in relation to cartilage degeneration, in future patients on the basis of the investigated patient collective


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 89 - 89
11 Apr 2023
Dascombe L Le Maitre C Aberdein N
Full Access

This study aimed to characterise the microarchitecture of bone in different species of animal leading to the development of a physiologically relevant 3D printed cellular model of trabecular (Tb) and cortical bone (CB). Using high resolution micro-computed tomography (μ-CT) bone samples from multiple species were scanned and analysed before creating in silico models for 3D printing. Biologically relevant printing materials with physical characteristics similar to that of in vivo bone will be selected and tested for printability. Porcine and murine bone samples were scanned using μ-CT, with a resolution of 4.60 μM for murine and 11 μM for porcine and reconstructed to determine the architectural properties of both Tb and CB independently. A region of interest, 1 mm in height, will be used to generate an in-silico 3D model with dimensions (10 mm. 3. ) and suitable resolution before being translated into printable G code using CAD assisted software. A 1 mm section of each bone was analysed, to determine the differences in the microarchitecture with the intent of setting a benchmark for the developmental 3D in vitro model to be comparable against. In contrast, porcine caudal vertebrae (PCV) have an increased volume due to the size of the bone sample. Interestingly, BV/TR for Tb is similar between species in all samples except murine femur. Murine tibia and PCV have a similar Tb. number and thickness, however different SMI shape and separation. μ-CT scanning and analysis permits tessellation of the 3D output which will lead to the generation of an in silico printable model. Biomaterials are currently under optimisation to allow printability and shape integrity to reflect the morphological and physiological properties of bone


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_9 | Pages 47 - 47
1 Sep 2019
Gurrib S Best S Cameron R
Full Access

Aim of Study and Background. The vertebral endplate (VEP) is characterised as a bilayer of cartilage and bone, acting as a boundary between the disc and the vertebra. The disc being the largest avascular tissue in the body, relies primarily on the nutritional pathways from the vascular network in the adjacent VEP. Disruption of this nutrient supply has been identified as a major contributor to disc degeneration, yet the 3D topology of the network is poorly understood. The aim of this work is the characterisation of this vascular network to further understand the physiology of the vascular network and the correlation between disc degeneration and nutrient supply. Methods and Results. Caudal and cranial VEP sections were sampled from lumbar ovine spines and imaged using high-resolution micro-computed tomography (micro-CT) at 4.92 µm pixel size. The diameter, length, orientation and depth from the VEP surface were measured for individual canals using 3D canal centreline models using ScanIP. The results showed higher concentration of canals in the central regions of the VEP and in caudal VEP to the disc. Large transverse canals were identified running parallel to the VEP surface connected to both the disc and the vertebra, and depth-dependence of the length and diameter of the canals was recorded. Conclusion. This work demonstrates that the micro-CT, coupled with centreline models is an extremely useful tool for the characterisation of the vascular network in the VEP. Further study is required to evaluate the effect of degeneration on the observed patterns and to assess reliability of these results when compared with human VEP. No conflicts of interest. No funding obtained


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 558 - 559
1 Nov 2011
Teeter MG Naudie DD McErlain DD Brandt J Yuan X MacDonald SJ Holdsworth DW
Full Access

Purpose: This study develops and validates a technique to quantify polyethylene wear in tibial inserts using micro-computed tomography (micro-CT), a nondestructive high resolution imaging technique that provides detailed images of surface geometry in addition to volumetric measurements. Method: Six unworn and six wear-simulated Anatomic Modular Knee (DePuy Inc, Warsaw, IN) tibial inserts were evaluated. Each insert was scanned three times using micro-CT at a resolution of 50 μm. The insert surface was reconstructed for each scan through automatic segmentation and the insert volume was calculated. Gravimetric analysis was also performed for all inserts, and the micro-CT and gravimetric volumes were compared to determine accuracy. The utility of surface deviation maps derived from micro-CT was demonstrated by co-registering a worn and unworn insert. 3D deviations were measured continuously across the entire insert surface, including the articular and backside surfaces. Results: The mean percent volume difference between the micro-CT and gravimetric techniques was 0.04% for the unworn inserts and 0.03% for the worn inserts. No significant difference was found between the micro-CT and gravimetric volumes for the unworn or worn inserts (P = 0.237 and P = 0.135, respectively). The mean coefficient of variation for volume between scans was 0.07% for both unworn and worn inserts. The map of surface deviations between the worn and unworn insert revealed focal deviations exceeding 750 μm due to wear. Conclusion: Micro-CT provides precise and accurate volumetric measurements of polyethylene tibial inserts. Quantifiable 3D articular and backside surface deviation maps can be created from the detailed geometry provided by the technique. Compared to coordinate mapping, micro-CT provides 10 times greater surface sampling resolution (50 μm vs 500 μm) across the entire insert surface. Micro-CT is a useful analysis tool for wear simulator and retrieval studies of the polyethylene components used in total knee replacement


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_4 | Pages 2 - 2
1 Feb 2014
Matthews S Horner M Zehra U Robson-Brown K Dolan P
Full Access

Introduction. Dual energy X-ray absorptiometry (DEXA) is the gold standard for assessing bone mineral density (BMD) and fracture risk in vivo. However, it has limitations in the spine because vertebrae show marked regional variations in BMD that are difficult to detect clinically. This study investigated whether micro-CT can provide improved estimates of BMD that better predict vertebral strength. Methods. Ten cadaveric vertebral bodies (mean age: 83.7 +/− 10.8 yrs) were scanned using lateral-projection DEXA and Micro-CT. Standardised protocols were used to determine BMD of the whole vertebral body and of anterior/posterior and superior/inferior regions. Vertebral body volume was assessed by water displacement after which specimens were compressed to failure to determine their compressive strength. Specimens were then ashed to determine their bone mineral content (BMC). Parameters were compared using ANOVA and linear regression. Results. Measures of volumetric BMD obtained from Micro-CT were significantly higher than those obtained by DEXA (P<0.001), and estimates using the two techniques were not significantly correlated. DEXA measurements were strongly predictive of compressive strength, with areal BMD of the anterior vertebral body being the best predictor (R. 2. = 0.722, P = 0.002). Micro-CT measurements did not predict strength. Vertebral body BMD (derived from ash weight) correlated more highly with volumetric BMD values obtained from DEXA (R = 0.88) than those obtained from micro-CT (R = 0.72). Conclusion. BMD assessed by lateral DEXA predicted strength and BMC of osteoporotic vertebrae more accurately than micro-CT measures. Poor correlation between BMD measurements from DEXA and micro-CT suggests that ‘phantoms’ used in Micro-CT may require fine-tuning in order to better represent osteoporotic vertebrae


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 352 - 352
1 May 2009
Gray S Watson M Callon K Williams G Reid I Cornish J
Full Access

Leptin is a major hormonal product of the adipocyte which regulates appetite and reproductive function through its hypothalamic receptors. It has now become clear that leptin receptors are much more widely distributed than just the hypothalamus, and the skeleton has emerged as an important site of action of leptin. The signalling form of the leptin receptor has been found in several cell types including human osteoblasts, rat osteoblasts and human chondrocytes. In vitro we have shown leptin to an anabolic factor, stimulating osteoblast proliferation and inhibiting osteoclastogenesis. Leptin increases bone mass and reduces bone fragility when administered peripherally but has an indirect inhibitory effect on bone mass via the hypothalamus when administered directly into the central nervous system. Data from animal models where there is an absence of either leptin production (ob/ob) or its receptor (db/db) have been contradictory. In this study we compared the bone phenotype of leptin receptor-deficient (db/db) and wild-type (WT) mice. Micro-CT analysis was done on proximal tibiae using a Skyscan 1172 scanner. Db/db mice had significantly reduced trabecular bone volume, trabecular thickness and trabecular number and a higher degree of trabecular separation. Cortical bone was also significantly lower in db/db animals in volume, cross-sectional thickness and perimeter. These results demonstrate that in the absence of leptin signalling there is reduced bone mass indicating that leptin indeed acts in vivo as a bone anabolic factor, mimicking the in vitro results


Bone & Joint Research
Vol. 5, Issue 6 | Pages 253 - 262
1 Jun 2016
Liu H Li W Liu YS Zhou YS

Objectives. This study aims to evaluate if micro-CT can work as a method for the 3D assessment and analysis of cancellous bone by comparing micro-CT with undecalcified histological sections in OVX rats. Methods. The mandible and tibia of sham, ovariectomised (OVX) and zoledronate-injected ovariectomised (OVX-ZOL) rats were assessed morphometrically. Specimens were scanned by micro-CT. Undecalcified histological sections were manufactured from the specimen scanned by micro-CT and stained with haematoxylin and eosin. Bivariate linear regressions and one-way analysis of variance were undertaken for statistics using SPSS 16.0.1 software. Results. There were highly significant correlations between undecalcified histological sections and micro-CT for all parameters (bone volume density (BV/TV), bone surface density (BS/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp))in the mandible and tibia. Bone histomorphometric parameters analysed by both methods exhibited significant differences among sham, OVX, and OVX-ZOL groups. There were significant correlations between mandible and tibia in BV/TV, BS/BV, and Tb.Sp. Conclusions. Micro-CT is a complementary tool to histological sections in basic research that could improve our understanding of bone histomorphometry. The mandible can be used as an effective site to assess bone morphometry of OVX or metabolic bone disease rat models. Cite this article: H. Liu, W. Li, Y. S. Liu, Y. S. Zhou. Bone micro-architectural analysis of mandible and tibia in ovariectomised rats: A quantitative structural comparison between undecalcified histological sections and micro-CT. Bone Joint Res 2016;5:253–262


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 43 - 43
1 Feb 2020
Knowles N Kusins J Faieghi M Ryan M Dall'Ara E Ferreira L
Full Access

Introduction. Subject-specific finite element models (FEMs) allow for a variety of biomechanical conditions to be tested in a highly repeatable manner. Accuracy of FEMs is improved by mapping density using quantitative computed tomography (QCT) and choosing a constitutive relationship relating density and mechanical properties of bone. Although QCT-derived FEMs have become common practice in contemporary computational studies of whole bones, many density-modulus relationships used at the whole bone level were derived using mechanical loading of small trabecular or cortical bone cores. These cores were mechanically loaded to derive an apparent modulus, which is related to each core's mean apparent or ash density. This study used these relationships and either elemental or nodal material mapping strategies to elucidate optimal methods for scapular QCT-FEMs. Methods. Six cadaveric scapulae (3 male; 3 female; mean age: 68±10 years) were loaded within a micro-CT in a custom CT-compatible hexapod robot Pre- and post-loaded scans were acquired (spatial resolution = 33.5 µm) and DVC was used to quantify experimental full-field displacements (BoneDVC, Insigneo) (Figure 1).. Experimental reaction forces applied to the scapulae were measured using a 6-DOF load cell. FEMs were derived from corresponding QCT scans of each cadaver bone. These models were mapped with one of fifteen density-modulus relationships and elemental or nodal material mapping strategies. DVC-derived BCs were imposed on the QCT-FEMs using local displacement measurements obtained from the DVC algorithm. Comparisons between the empirical and computational models were performed using resultant reaction loads and full-field displacements (Figure 2). Results and Discussion. Reaction forces predicted by the QCT-FEMs showed large percentage error variations across all specimens and density-modulus relationships with elemental material mapping. The percentage errors were as large as 899%, but as low as 3=57% for the different specimens. Similarly, when using a nodal material mapping strategy, percentage errors were as large as 965%, but as low as 4=59% for the different specimens (Figure 3). For all specimens, minimal variation only occurred in the slope between the QCT-FEM and DVC displacements in the x and y directions for either elemental or nodal material mapping strategies. Slopes ranged from 0.86 to 1.06. This held true for 3 specimens in the z direction; however, for the remaining 3 specimens more pronounced variations occurred between the QCT-FEM and DVC displacements, dependent on density-modulus relationship. The r. 2. values were consistently between 0.82 and 1.00 for both material mapping strategies and density-modulus relationships for all three Cartesian components of displacement and all specimens. Conclusions. The results suggest that QCT-FEMs using DVC derived boundary conditions can replicate experimental loading of cadaveric specimens. It was also shown that only slight variations exist when either elemental or nodal material mapping strategies are adopted. Given the recent advancements provided by DVC-derived BCs, this study provides a basis for a common methodology that can be implemented in future studies comparing similar outcomes in all anatomic locations. Expanding the current sample size has the potential to determine if a single density-modulus relationship can exist or if specimen or anatomic location-specific relationships should be utilized. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 287 - 287
1 May 2009
Bolland B Kanczler J Dunlop D Oreffo R
Full Access

Quantification and 3D visualization of new vessel networks in vivo remains a major unresolved issue in tissue engineering constructs. This study has examined the potential of combining the use of a radio opaque dye and micro-CT to visualize and quantify microvascular networks in 3D in vivo. We have applied this technique to the study of neoangiogenesis in a bone impaction graft model in vivo as proof of concept. Tissue engineered constructs were created with natural (morsellised allograft) and synthetic grafts (Poly Lactic Acid, PLA). Culture expanded human bone marrow stromal cells (HBMSC) labeled with a fluorescent probe (Cell Tracker Green, CTG) to measure cell viability, were seeded onto prepared scaffolds (morsellised allograft or PLA) and impacted with a force equivalent to a standard femoral impaction (474J/m2). The impacted HBMSC / scaffolds and scaffolds alone were contained within capsules and implanted subcutaneously into severely compromised immunodeficient mice. Radiopaque dye was infused into all vessels via cardiac cannulation prior to removal of implants. Micro CT imaging and immunohistochemistry was performed in all samples. Cell survival was evident by abundant fluorescent staining. The average number of blood vessels penetrating the capsules were 16.33 in the allograft / HBMSC constructs compared to 3.5 (p=0.001) in the allograft alone samples and 32.67 in the PLA / HBMSC constructs compared to 7.67 (p=0.001) in the PLA alone samples. The average total vessel volume within the capsules was 0.43mm3 in the allograft / HBMSC constructs compared to 0.04mm3 (p=0.05) in the allograft alone samples and 1.19mm3 in the PLA / HBMSC constructs compared to 0.12mm3 (p=0.004) in the PLA alone samples. Extensive staining for Type 1 Collagen, new matrix and Von Willebrand factor in living tissue engineered constructs confirmed osteogenic cell phenotype, and new blood vessel formation respectively. In summary, these studies demonstrate, HBMSC combined with either morsellised allograft or PLA can survive the forces of femoral impaction, differentiate along the osteogenic lineage and promote neovascularisation in vivo. Successful combined neovascularisation and bone formation in impacted tissue engineered constructs in vivo augers well for their potential use in IBG. This novel technique utilising contrast enhanced 3D reconstructions in combination with immunohistochemistry enables quantification of neovascularisation and new bone formation in impacted tissue engineered constructs with widespread experimental application in regenerative medicine and tissue engineering analysis


Bone & Joint Research
Vol. 11, Issue 7 | Pages 484 - 493
13 Jul 2022
Hayer S Niederreiter B Kalkgruber M Wanic K Maißner J Smolen JS Aletaha D Blüml S Redlich K

Aims. Insufficient treatment response in rheumatoid arthritis (RA) patients requires novel treatment strategies to halt disease progression. The potential benefit of combination of cytokine-inhibitors in RA is still unclear and needs further investigation. To explore the impact of combined deficiency of two major cytokines, namely interleukin (IL)-1 and IL-6, in this study double deficient mice for IL-1αβ and IL-6 were investigated in different tumour necrosis factor (TNF)-driven inflammatory bone disorders, namely peripheral arthritis and sacroiliitis, as well as systemic bone loss. Methods. Disease course, histopathological features of arthritis, and micro-CT (µCT) bone analysis of local and systemic bone loss were assessed in 15-week-old IL1-/-IL6-/-hTNFtg in comparison to IL1-/-hTNFtg, IL6-/-hTNFtg, and hTNFtg mice. µCT bone analysis of single deficient and wild-type mice was also performed. Results. Combined deficiency of IL-1/IL-6 markedly ameliorated TNF-mediated arthritis and bilateral sacroiliitis, but without additive benefits compared to single IL-1 deficiency. This finding confirms the important role of IL-1 and the marginal role of IL-6 in TNF-driven pathways of local joint damage, but questions the efficacy of potential combinatorial therapies of IL-1 and IL-6 in treatment of RA. In contrast, combined deficiency of IL-1/IL-6 led to an additive protective effect on TNF-driven systemic bone loss compared to single IL-1 and IL-6 deficiency. This finding clearly indicates a common contribution of both IL-1 and IL-6 in TNF-driven systemic bone loss, and points to a discrepancy of cytokine dependency in local and systemic TNF-driven mechanisms of inflammatory arthritis. Conclusion. Combinatorial treatments in RA might provide different benefits to inflammatory local arthritis and systemic comorbidities. Cite this article: Bone Joint Res 2022;11(7):484–493


Bone & Joint Research
Vol. 10, Issue 12 | Pages 797 - 806
8 Dec 2021
Chevalier Y Matsuura M Krüger S Traxler H Fleege† C Rauschmann M Schilling C

Aims. Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques. Methods. Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S. 4. ). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads. Results. Experimental pull-out strengths were excellently correlated to the µFE pull-out stiffness of the ROI (R. 2. > 0.87) and FV (R. 2. > 0.84) models. No significant difference due to screw design was observed. Cement augmentation increased pull-out stiffness by up to 94% and 48% for L and R screws, respectively, but only increased bending stiffness by up to 6.9% and 1.5%, respectively. Cementing involving only one screw tip resulted in lower stiffness increases in all tested screw designs and loading cases. The stiffening effect of cement augmentation on pull-out and bending stiffness was strongly and negatively correlated to local bone density around the screw (correlation coefficient (R) = -0.95). Conclusion. This combined experimental, µCT and µFE study showed that regional analyses may be sufficient to predict fixation strength in pull-out and that full analyses could show that cement augmentation around pedicle screws increased fixation stiffness in both pull-out and bending, especially for low-density bone. Cite this article: Bone Joint Res 2021;10(12):797–806


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 21 - 21
1 Jan 2017
Thompson K Freitag L Eberli U Camenisch K Arens D Richards G Stadelmann V Moriarty F
Full Access

This longitudinal microCT study revealed the osteolytic response to a Staphylococcus epidermidis-infected implant in vivoand also demonstrates how antibiotics and/or a low bone mass state influence the morphological changes in bone and the course of the infection.

Colonisation of orthopaedic implants with Staphylococcus aureusor S. epidermidisis a major clinical concern, since infection-induced osteolysis can drastically impair implant fixation or integration within bone. High fracture incidence in post-menopausal osteoporosis patients means that this patient group are at risk of implant infection. The low bone mass in these patients may exacerbate infection-induced osteolysis, or alter antibiotic efficacy. Therefore, the aims of this study were to examine the bone changes resulting from a S. epidermidisimplant infection in vivousing microCT imaging, and to determine if a low bone mass stateinfluences the course of the infection and the efficacy of antibiotic therapy. An in vivomodel system using microCT scanning [1], involving the implantation of either a sterile or a S. epidermidis-colonised PEEK screw into the proximal tibia of 24 week-old female Wistar rats, was used to investigate the morphological changes in bone following infection over a 28 day period. In addition, the efficacy of a combination antibiotic therapy (rifampin and cefazolin: administered twice daily from days 7–21 post-screw implantation) for affecting osteolysis was also assessed. A subgroup of animals was subjected to ovariectomy (OVX) at 12 weeks of age, allowing for a 12 week period for bone loss prior to screw implantation at 24 weeks. Bone resorption and formation rates, bone-implant contact and peri-implant bone volume in the proximity of the screw were assessed by microCT scanning at days 0, 3, 6, 9, 14, 20 and 28 days post-surgery. Following euthanasia at day 28, the implanted screw, bone and soft tissues were subjected to quantitative bacteriology as a measure of the efficacy of the antibiotic regimen. In non-OVX animals S. epidermidisinfection induced marked osteolysis, which peaked between 9 and 14 days post-screw implantation. Peak bone resorption was detected at day 6, before recovering to baseline levels at day 14. Infection also resulted in extensive deposition of mineralised tissue, initially within the periosteal region (day 9–14), then subsequently in the osteolytic region at day 20–28. Quantitative bacteriology indicated all non-OVX animals remained infected. Rifampin and cefazolin successfully cleared the infection in 5/6 non-OVX animals group although there was no difference observed in CT-derived bone parameters. OVX resulted in extensive loss of trabecular bone but this did not alter the temporal pattern of infection-induced osteolysis, or mineralised tissue deposition, which was similar to that observed in the non-OVX animals. Similarly, there was no difference in bacterial counts between non-OVX and OVX animals (39,005 colony-forming units (CFU) [range: 3,675–156,800] vs 37,665 CFU [range 3,250–84,000], respectively). Interestingly, antibiotic treatment was less effective in the OVX animals (3/5 remained infected), suggesting that antibiotics have reduced efficacy in OVX animals. This study demonstrates S. epidermidis-induced osteolysis displays a similar temporal pattern in both normal and low bone mass states, with comparable bacterial loads present within the localised infection site.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 222 - 222
1 Jul 2014
Lu H Hu J Cao Y Wu T Li D Cao M
Full Access

Summary Statement

In this study, we employed a novel imaging modalities, the synchrotron radiation microcomputed tomography (SRμCT) to visualise the 3D morphology of the spinal cord microvasculature and successfully obtained the 3D images.

Introduction

Understanding the morphology of the spinal cord microvasculature in three-dimensions (3D) is limited by the lack of an effective high-resolution imaging technique. In this study, we used two novel imaging modalities, conventional x-ray microcomputed tomography (CμCT) and synchrotron radiation microcomputed tomography (SRμCT), to visualise the 3D morphology of the spinal cord microvasculature and to compare their utility in basic science research.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 252 - 252
1 Jul 2011
Hojjat S Hardisty MR Whyne C
Full Access

Purpose: The objective of this study is to develop and utilize a highly automated microCT based analysis tool to quantify microstructural differences in bone due to metastatic involvement in whole rat vertebrae.

Method: First and Third lumbar vertebrae from healthy (n=4) and metastatically involved (n=4) rnu/rnu rats were excised for analysis (total of 8 vertebrae). Lytic metastases were developed via intracardiac injection of MT1 human breast cancer cells. The specimens were scanned using microCT at 17.5 microns isotropic resolution. A highly automated algorithm was developed for whole vertebral segmentation based on the microCT data, including the posterior elements (AmiraDev3.1). This was accomplished using an atlas-based method incorporating demons deformable registration followed by refinement through level set curvature evolution. Volumetric concurrency was used to compare segmentations generated by the automated algorithm to manually refined segmentations. The segmentations were up-sampled by 4 and edge-enhanced and further segmented using a thresholding technique to have a clear segmentation of the individual trabeculae without advancing into the bone marrow(AmiraDev3.1). The cortical shell was removed automatically before analyzing the trabecular structure. Cortical bone volume(CBV) was calculated by subtracting the volume of the full segmentation from the segmentation with no cortical shell. The interior segmentation was then used to calculate Trabecular Bone Volume(TBV), Trabecular Thickness(TbTh), Trabecular Separation(TbSp), Trabecular Number(TbN) based on the expressions described by Parfitt, et al(1983). Finally mean intercept length(MIL) was used to calculate the anisotropy of the trabecular tissue. Analysis were carried out on both the healthy and metastatically involved vertebrae.

Results: The automated algorithm including the level set method refinement produced good tracking of the boundaries of entire rat vertebrae. Consistent results yielded significant reduction in TBV, slight reduction in TbN and TbTh, and significant increase in TbS in metastatic vertebrae compared to healthy. no significant differences were observed in CBV. The metastatic vertebrae was also found to be significantly more anisotropic than the healthy group.

Conclusion: The accuracy of the highly automated algorithm developed in this study to analyze microstructure in whole rat vertebrae make it a suitable tool for further analyzing the effects of existing and new treatments for spinal metastases at a preclinical level.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 522 - 529
1 Mar 2021
Nichol T Callaghan J Townsend R Stockley I Hatton PV Le Maitre C Smith TJ Akid R

Aims

The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses.

Methods

Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods.


Bone & Joint Research
Vol. 11, Issue 7 | Pages 503 - 512
25 Jul 2022
Wu Y Shao Y Xie D Pan J Chen H Yao J Liang J Ke H Cai D Zeng C

Aims. To verify whether secretory leucocyte protease inhibitor (SLPI) can promote early tendon-to-bone healing after anterior cruciate ligament (ACL) reconstruction. Methods. In vitro: the mobility of the rat bone mesenchymal stem cells (BMSCs) treated with SLPI was evaluated by scratch assay. Then the expression levels of osteogenic differentiation-related genes were analyzed by real-time quantitative PCR (qPCR) to determine the osteogenic effect of SLPI on BMSCs. In vivo: a rat model of ACL reconstruction was used to verify the effect of SLPI on tendon-to-bone healing. All the animals of the SLPI group and the negative control (NC) group were euthanized for histological evaluation, micro-CT scanning, and biomechanical testing. Results. SLPI improved the migration ability of BMSCs and upregulated the expression of genes related to osteogenic differentiation of BMSCs in vitro. In vivo, the SLPI group had higher histological scores at the tendon-bone interface by histological evaluation. Micro-CT showed more new bone formation and bone ingrowth around the grafted tendon in the SLPI group. Evaluation of the healing strength of the tendon-bone connection showed that the SLPI group had a higher maximum failure force and stiffness. Conclusion. SLPI can effectively promote early tendon-to-bone healing after ACL reconstruction via enhancing the migration and osteogenic differentiation of BMSCs. Cite this article: Bone Joint Res 2022;11(7):503–512


Bone & Joint Research
Vol. 11, Issue 3 | Pages 162 - 170
14 Mar 2022
Samvelyan HJ Huesa C Cui L Farquharson C Staines KA

Aims. Osteoarthritis (OA) is the most prevalent systemic musculoskeletal disorder, characterized by articular cartilage degeneration and subchondral bone (SCB) sclerosis. Here, we sought to examine the contribution of accelerated growth to OA development using a murine model of excessive longitudinal growth. Suppressor of cytokine signalling 2 (SOCS2) is a negative regulator of growth hormone (GH) signalling, thus mice deficient in SOCS2 (Socs2. -/-. ) display accelerated bone growth. Methods. We examined vulnerability of Socs2. -/-. mice to OA following surgical induction of disease (destabilization of the medial meniscus (DMM)), and with ageing, by histology and micro-CT. Results. We observed a significant increase in mean number (wild-type (WT) DMM: 532 (SD 56); WT sham: 495 (SD 45); knockout (KO) DMM: 169 (SD 49); KO sham: 187 (SD 56); p < 0.001) and density (WT DMM: 2.2 (SD 0.9); WT sham: 1.2 (SD 0.5); KO DMM: 13.0 (SD 0.5); KO sham: 14.4 (SD 0.7)) of growth plate bridges in Socs2. -/-. in comparison with WT. Histological examination of WT and Socs2. -/-. knees revealed articular cartilage damage with DMM in comparison to sham. Articular cartilage lesion severity scores (mean and maximum) were similar in WT and Socs2. -/-. mice with either DMM, or with ageing. Micro-CT analysis revealed significant decreases in SCB thickness, epiphyseal trabecular number, and thickness in the medial compartment of Socs2. -/-. , in comparison with WT (p < 0.001). DMM had no effect on the SCB thickness in comparison with sham in either genotype. Conclusion. Together, these data suggest that enhanced GH signalling through SOCS2 deletion accelerates growth plate fusion, however this has no effect on OA vulnerability in this model. Cite this article: Bone Joint Res 2022;11(3):162–170


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 34 - 34
1 Dec 2022
Cavazzoni G Cristofolini L Barbanti-Bròdano G Dall'Ara E Palanca M
Full Access

Bone metastases radiographically appear as regions with high (i.e. blastic metastases) or low (i.e. lytic metastases) bone mineral density. The clinical assessment of metastatic features is based on computed tomography (CT) but it is still unclear if the actual size of the metastases can be accurately detected from the CT images and if the microstructure in regions surrounding the metastases is altered (Nägele et al., 2004, Calc Tiss Int). This study aims to evaluate (i) the capability of the CT in evaluating the metastases size and (ii) if metastases affect the bone microstructure around them. Ten spine segments consisted of a vertebra with lytic or mixed metastases and an adjacent control (radiologically healthy) were obtained through an ethically approved donation program. The specimens were scanned with a clinical CT (AquilionOne, Toshiba: slice thickness:1mm, in-plane resolution:0.45mm) to assess clinical metastatic features and a micro-CT (VivaCT80, Scanco, isotropic voxel size:0.039mm) to evaluate the detailed microstructure. The volume of the metastases was measured from both CT and micro-CT images (Palanca et al., 2021, Bone) and compared with a linear regression. The microstructural alteration around the metastases was evaluated in the volume of interest (VOI) defined in the micro-CT images as the volume of the vertebral body excluding the metastases. Three 3D microstructural parameters were calculated in the VOI (CTAn, Bruker SkyScan): Bone Volume Fraction (BV/TV), Trabecular Thickness (Tb.Th.), Trabecular Spacing (Tb.Sp.). Medians of each parameter were compared (Kruskal-Wallis, p=0.05). One specimen was excluded as it was not possible to define the size of the metastases in the CT scans. A strong correlation between the volume obtained from the CT and micro-CT images was found (R2=0.91, Slope=0.97, Intercept=2.55, RMSE=5.7%, MaxError=13.12%). The differences in BV/TV, Tb.Th. and Tb.Sp. among vertebrae with lytic and mixed metastases and control vertebrae were not statistically significant (p-value>0.6). Similar median values of BV/TV were found in vertebrae with lytic (13.2±2.4%) and mixed (12.8±9.8%) metastases, and in controls (13.0±10.1%). The median Tb.Th. was 176±18 ∓m, 179±43 ∓m and 167±91 ∓m in vertebrae with lytic and mixed metastases and control vertebrae, respectively. The median Tb. Sp. was 846±26 ∓m, 849±286 ∓m and 880±116 ∓m in vertebrae with lytic and mixed metastases and control vertebrae, respectively. In conclusion, the size of vertebral metastases can be accurately assess using CT images. The 3D microstructural parameters measured were comparable with those reported in the literature for healthy vertebrae (Nägele et al., 2004, Calc Tiss Int, Sone et al., 2004, Bone) and showed how the microstructure of the bone tissue surrounding the lesion is not altered by the metastases


Bone & Joint Research
Vol. 13, Issue 7 | Pages 332 - 341
5 Jul 2024
Wang T Yang C Li G Wang Y Ji B Chen Y Zhou H Cao L

Aims. Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI). Methods. A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR. Results. The group with LIPUS and 0.35% PI exhibited decreased levels of serum biochemical markers, improved weightbearing scores, reduced reactive bone changes, absence of viable bacteria, and decreased inflammation compared to the Control group. Despite the greater antibiofilm activity observed in the PI group compared to the LIPUS and saline group, none of the monotherapies were successful in preventing reactive bone changes or eliminating the infection. Conclusion. In the rat model of PJI treated with DAIR, LIPUS combined with 0.35% PI demonstrated stronger antibiofilm potential than monotherapy, without impairing any local soft-tissue. Cite this article: Bone Joint Res 2024;13(7):332–341