Metal-on-metal (MoM) hip resurfacing was introduced into clinical
practice because it was perceived to be a better alternative to
conventional total hip replacement for young and active patients.
However, an increasing number of reports of complications have arisen
focusing on design and orientation of the components, the generation
of metallic wear particles and serum levels of metallic ions. The
procedure introduced a combination of two elements: large-dimension
components and hard abrasive particles of metal wear. The objective
of our study was to investigate the theory that microseparation
of the articular surfaces draws in a high volume of bursal fluid
and its contents into the articulation, and at relocation under
load would generate high pressures of fluid ejection, resulting
in an abrasive water jet. This theoretical concept using MoM resurfacing components (head
diameter 55 mm) was modelled mathematically and confirmed experimentally
using a material-testing machine that pushed the head into the cup
at a rate of 1000 mm/min until fully engaged.Objectives
Methods
INTRODUCTION. Ceramic-on-ceramic hip resurfacing offers a bone conserving treatment for more active patients without the potential metal ion risks associated with resurfacing devices. The Biolox Delta ceramic material has over 15 years of clinical history with low wear and good biocompatibility but has been limited previously in total hip replacement to 48mm diameter bearings [1]. Further increasing the diameter for resurfacing bearings and removing the metal shell to allow for direct fixation of the ceramic cup may increase the wear of this material and increase the risk of fracture. METHODS. Eighteen implants (ReCerf™, MatOrtho, UK; Figure1) were wear tested; six were ⊘40mm (small) and twelve ⊘64mm (large). All small and six large implants were tested under ISO 14242 standard conditions for 5 million cycles (mc) at 30° inclination (45° clinically). The six remaining large implants were tested under
Summary Statement. A new 28mm-diameter ceramic-on-ceramic (COC) acetabular bearing couple (Biomet Orthopedics) showed extremely low wear, even under adverse
Aim: In alumina-on-alumina (Al/Al) THA, microsepa-ration is reported to accelerate wear and to be a risk factor of alumina cup fracture. While
Introduction:.
Introduction. Translational surgical mismatch in the centres of rotation of the femoral head and acetabular cup in hip joint replacements can lead to dynamic
Following total hip replacement surgery, fluroscopy studies have shown that a mean separation of 2 mm can occur between CoCr femoral heads and UHMWPE acetabular cups during the swing phase of gait [. 1. ]. In vivo and in vitro studies [. 2. , . 3. ] of alumina ceramic on ceramic hip replacements have demonstrated that swing phase
Purpose of the study: Implantation of the acetabular socket with high inclination generates increased contract stress, wear and revision rate for total hip arthroplasty (THA). Study of ceramic-on-ceramic THA explants has revealed a high wear rate in bands, suggesting a
In vivo and in vitro studies of ceramic on ceramic (COC) bearings have demonstrated that swing phase
INTRODUCTION. Retrieval and clinical studies of metal-on-metal (MoM) bearings have associated increased wear. 1. and elevated patient ion levels. 2. with steep cup inclination angles and edge loading conditions. The University of Leeds have previously developed a hip simulator method that has been validated against retrievals and shown to replicate clinically relevant wear rates and wear mechanisms. 3,4. This method involves introducing lateral
INTRODUCTION. Ceramic-on-ceramic hip replacements have generated great interest in recent years due to substantial improvements in manufacturing techniques and material properties. 1.
High cup abduction angles generate increased contact stresses, higher wear rates and increased revision rates. However, there is no reported study about the influence of cup abduction on stresses under head lateralisation conditions for ceramic-on-Ceramic THA. A finite elements model of a ceramic-on-ceramic THA was developed in order to predict the contact area and the contact pressure, first under an ideal regime and then under lateralised conditions. A 32 mm head diameter with a 30 microns radial clearance was used. The cup was positioned with a 0°anteversion angle and the abduction angle was varied from 45° to 90°. The medial-lateral lateralisation was varied from 0 to 500 microns. A load of 2500 N was applied through the head center.Background
Material and method
Introduction and Aims. In order to improve the longevity and design of an implant, a wide range of pre-clinical testing conditions should be considered including variations in surgical delivery, and patients' anatomy and biomechanics. The aim of this research study was to determine the effect of the acetabular cup inclination angle with different levels of joint centre mismatch on the magnitude of dynamic
Introduction. Stripe wear, observed on retrieved ceramic hip replacements, has only been replicated in vitro under translational mal-positioning conditions where the centres of rotation of the head and the cup are mismatched. 1,2. ; an in vitro condition termed “microseparation”. The aim of this study was to compare the edge loading mechanisms observed under
Introduction. Increased wear rates [1, 2] and acetabular rim fracture [3] of hip replacement bearings reported clinically have been associated with edge loading, which could occur due to rotational and/or translational mal-positioning [4]. Surgical mal-positioning can lead to dynamic
Ceramic-on-ceramic total hip replacements (THRs) have shown low wear volumes in standard gait hip simulator studies. 1. However clinical reports have indicated a variation in wear rates and formation of stripe wear on the ceramic femoral heads. 2. The aim of this study was to investigate the influence of different clinical conditions such as cup inclination angle and
In vitro the introduction of
Introduction. Ceramic composites have been developed to further improve the mechanical properties, reduce risk of fracture, and increase the survivorship of ceramic-on-ceramic bearings in total hip replacement. 1. . The aim of this study was to evaluate the wear of two novel ceramic composite materials under edge loading conditions due to translational mal-positioning when used in both like-on-like and mixed pairing configurations; and to compare their performance to earlier generation ceramic-on-ceramic bearings. Materials and Methods. The head-on-cup configurations of three ceramic materials (see Figure 1), were ATZ-on-ATZ, ZTA-on-ZTA, Al. 2. O. 3. -on-Al. 2. O. 3. , ATZ-on-ZTA, ZTA-on-ATZ, Al. 2. O. 3. -on-ATZ, ATZ-on-Al. 2. O. 3. and Al. 2. O. 3. -on-ZTA. All combinations were size 28mm and were supplied by Mathys Orthopädie GmbH (Morsdorf, Germany). They were tested for four million cycles on the Leeds II hip simulator under
Introduction: Following hip replacement surgery the tension of the soft tissues and the laxity of the joint may vary. Variations in surgical approach, technique and fixation method may influence the effective joint laxity and the level of force applied across the prostheses during the swing phase of gait. The aim of this study was to investigate the effect of different swing phase load conditions on the wear metal-on-metal hip prostheses using a hip simulator. Methods: Cobalt chrome metal-on-metal bearings, 28mm in diameter were tested for five million cycles in a Prosim hip simulator with flexion-extension and internal-external rotation kinematic inputs. A Paul-type twin peak loading curve was applied, which was modified to provide three different swing phase load conditions;. Low positive swing phase load (<
100N). Positive swing phase load (300N, as per standard ISO 14242–1). Negative swing phase load, leading to
Background. Many factors contribute to the occurrence of edge-loading conditions in hip replacement; soft tissue tension, surgical position, patient biomechanical variations and type of activities, hip design, etc. The aim of this study was to determine the effect of different levels of rotational and translational surgical positioning of hip replacement bearings on the occurrence and severity of edge-loading and the resultant wear rates. Method. The Leeds II Hip-Joint Simulator and 36mm diameter alumina matrix composite ceramic bearings (BIOLOX delta, DePuy Synthes, UK) were used in this study. Different levels of mismatch between the reconstructed rotational centres of the head and the cup were considered (2, 3 and 4mm) in the medial-lateral axis. Two cup inclination angles were investigated; an equivalent to 45 and 65 degrees in-vivo, thus six conditions (n=6 for each condition) were studied in total with three million cycles completed for each condition. The wear of the ceramic-on-ceramic bearings were determined using a microbalance (Mettler Toledo, XP205, UK) and the dynamic