Aims. The aim of this study was to develop and evaluate machine-learning-based computerized adaptive tests (CATs) for the Oxford Hip Score (OHS), Oxford Knee Score (OKS), Oxford Shoulder Score (OSS), and the Oxford Elbow Score (OES) and its subscales. Methods. We developed CAT algorithms for the OHS, OKS, OSS, overall OES, and each of the OES subscales, using responses to the full-length questionnaires and a machine-learning technique called regression tree learning. The algorithms were evaluated through a series of simulation studies, in which they aimed to predict respondents’ full-length questionnaire scores from only a selection of their item responses. In each case, the total number of items used by the CAT algorithm was recorded and CAT scores were compared to full-length questionnaire scores by mean, SD, score distribution plots, Pearson’s correlation coefficient, intraclass correlation (ICC), and the Bland-Altman method. Differences between CAT scores and full-length questionnaire scores were contextualized through comparison to the instruments’
Utility score is a preference-based measure of general health state – where 0 is equal to death, and 1 is equal to perfect health. To understand a patient's smallest perceptible change in utility score, the
The aim of the this study was to determine the effect of the knee flexion angle (KFA) during tibial anterior cruciate ligament (ACL) graft fixation on patient reported outcomes, graft stability, extension loss and re-operation following anatomic single-bundle ACL reconstruction. All 169 included patients (mean age 28.5 years, 65% male) were treated with anatomic single bundle ACL reconstruction using patellar tendon autograft and randomized to tibial fixation of the ACL graft at either 0o (n=85) or 30o (n=84). The primary outcome was the Knee Injury and Osteoarthritis Outcome Score (KOOS) two years following surgery. Secondary outcomes were the Marx Activity Scale (MAS), the rate of re-operation, and physical exam findings at one year including KT-1000 and side to side differences in knee extension. The follow-up rate was 82% (n=139) for the primary outcome. Graft failure rate at two years was 1% (n=2, 1 per group). ACL tibial graft fixation at 0o or 30o did not have a significant effect on KOOS scores at two years following ACLR. Patients whose graft was fixed at a knee flexion angle of 0o had greater scores on the Marx Activity Scale (mean 9.6 [95%CI 8.5-10.6] versus 8.0 [95%CI 6.9-9.1, p=0.04) and a greater proportion of patients who achieved the
In multilevel posterior cervical instrumented fusions, extending the fusion across the cervico-thoracic junction at T1 or T2 (CTJ) has been associated with decreased rate of re-operation and pseudarthrosis but with longer surgical time and increased blood loss. The impact on patient reported outcomes (PROs) remains unclear. The primary objective was to determine whether extending the fusion through the CTJ influenced PROs at 3 and 12 months after surgery. Secondary objectives were to compare the number of patients reaching the
Hallux valgus surgery can result in moderate to severe post-operative pain requiring the use of narcotic medication. The percutaneous distal metatarsal osteotomy is a minimally invasive approach which offers many advantages including minimal scarring, immediate weight bearing and decreased post-operative pain. The goal of this study is to determine whether the use of narcotics can be eliminated using an approach combining multimodal analgesia, ankle block anesthesia and a minimally invasive surgical approach. Following ethics board approval, a total of 160 ambulatory patients between the ages of 18-70 with BMI ≤ 40 undergoing percutaneous hallux valgus surgery are to be recruited and randomized into Narcotic-free (NF) or Standard (S) groups. To date, 72 patients have been recruited (38 NF and 34 S). The NF group received acetaminophen, naproxen, pregabalin 75mg and 100mg Ralivia (tramadol extended release) before surgery and acetaminophen, naproxen, pregabalin 150mg one dose and Ralivia 100mg BID for five days, as well as a rescue narcotic (hydromorphone, 1mg pills) after surgery. The S group received acetaminophen and naproxen prior to surgery and acetaminophen, naproxen and hydromorphone (1mg pills) post-operatively, our current standard. Visual analog scales (VAS) were used to assess pain and narcotic consumption was recorded at 6, 12, 24, 36, 48, 72 hours and seven days post-operatively. Patients wore a smart watch to record the number of daily steps and sleep hours. A two-sided t-test was used to compare the VAS scores and narcotic consumption. During the first post-operative week, the NF group consumed in total an average of 6.5 pills while the S group consumed in total an average of 16 pills and this difference was statistically significant (p-value=0.001). Importantly, 19 patients (50%) in the NF group and four patients (12%) in the S group did not consume any narcotics post-operatively. For the VAS scores at 24, 48, 72 hours and seven days the NF group's average scores were 2.17, 3.17, 2.92, 2.06 respectively and the S group's average scores were 3.97, 4.2, 3.23, 1.97. There was a statistically significant difference between the groups at 24 and 48hours (the NF group scored lower on the VAS) with a p-value of 0.0008 and 0.04 respectively, but this difference is not considered clinically significant as the
Introduction. Clinical decision support tools are software that match the input characteristics of an individual patient to an established knowledge base to create patient-specific assessments that support and better inform individualized healthcare decisions. Clinical decision support tools can facilitate better evidence-based care and offer the potential for improved treatment quality and selection, shared decision making, while also standardizing patient expectations. Methods. Predict+ is a novel, clinical decision support tool that leverages clinical data from the Exactech Equinoxe shoulder clinical outcomes database, which is composed of >11,000 shoulder arthroplasty patients using one specific implant type from more than 30 different clinical sites using standardized forms. Predict+ utilizes multiple coordinated and locked supervised machine learning algorithms to make patient-specific predictions of 7 outcome measures at multiple postoperative timepoints (from 3 months to 7 years after surgery) using as few as 19 preoperative inputs. Predict+ algorithms predictive accuracy for the 7 clinical outcome measures for each of aTSA and rTSA were quantified using the mean absolute error and the area under the receiver operating curve (AUROC). Results. Predict+ was released in November 2020 and is currently in limited launch in the US and select international markets. Predict+ utilizes an interactive graphical user interface to facilitate efficient entry of the preoperative inputs to generate personalized predictions of 7 clinical outcome measures achieved with aTSA and rTSA. Predict+ outputs a simple, patient-friendly graphical overview of preoperative status and a personalized 2-year outcome summary of aTSA and rTSA predictions for all 7 outcome measures to aid in the preoperative patient consultation process. Additionally, Predict+ outputs a detailed line-graph view of a patient's preoperative status and their personalized aTSA, rTSA, and aTSA vs. rTSA predicted outcomes for the 7 outcome measures at 6 postoperative timepoints. For each line-graph, the
Shoulder impingement is one of the most common non-traumatic upper limb causes of disability in adults. Often resulting in pain and disability, management remains highly debated. This meta-analysis of randomized trials aims to evaluate the efficacy of surgical intervention in the setting of shoulder impingement in comparison to non-operative or sham treatments. Two reviewers independently screened MEDLINE, EMBASE, PUBMED and Cochrane databases for randomized control trials published from 1946 through to May 19th, 2018. A risk of bias assessment was conducted for all included studies and outcomes were pooled using a random effects model. The primary outcome was improvement in pain up to two years. Secondary outcomes included functional outcome scores reported at the short term (/=2 years). Heterogeneity was assessed using the I2statistic. Functional outcome scores were presented along with
The primary purpose of this study was to assess whether patients presenting with clinical graft laxity following primary anatomic anterior cruciate ligament (ACL) reconstruction using hamstring autograft reported a significant difference in disease-specific quality-of-life (QOL) as measured by the ACL-QOL questionnaire. Clinical ACL graft laxity was assessed in a cohort of 1134/1436 (79%) of eligible patients using the Lachman and Pivot-shift tests pre-operatively and at 12- and 24-months following ACL reconstruction. Post-operative ACL laxity was assessed by an orthopaedic surgeon and a physical therapist who were blinded to each other's examination. If there was a discrepancy between the clinical examination findings from these two assessors, then a third impartial examiner assessed the patient to ensure a grading consensus was reached. Patients completed the ACL-QOL questionnaire pre-operatively, and 12- and 24-months post-operatively. Descriptive statistics were used to assess patient demographics, rate of post-operative ACL graft laxity, surgical failures, and ACL-QOL scores. A Spearman rho correlation coefficient was utilised to assess the relationships between ACL-QOL scores and the Lachman and Pivot-shift tests at 24-months post-operative. An independent t-test was used to determine if there were differences in the ACL-QOL scores of subjects who sustained a graft failure compared to the intact graft group. ACL-QOL scores and post-operative laxity were assessed using a one-way analysis of variance (ANOVA). There were 70 graft failures (6.17%) in the 1134 patients assessed at 24-months. A total of 226 patients (19.9%) demonstrated 24-months post-operative ACL graft laxity. An isolated positive Lachman test was assessed in 146 patients (12.9%), an isolated positive Pivot-shift test was apparent in 14 patients (1.2%), and combined positive Lachman and Pivot-shift tests were assessed in 66 patients (5.8%) at 24-months post-operative. There was a statistically significant relationship between 24-month post-operative graft laxity and ACL-QOL scores (p < 0.001). Specifically, there was a significant correlation between the ACL-QOL and the Lachman test (rho = −0.20, p < 0.001) as well as the Pivot-shift test (rho = −0.22, p < 0.001). There was no significant difference between the scores collected from the graft failure group prior to failure occurring (mean = 74.38, SD = 18.61), and the intact graft group (mean = 73.97, SD = 21.51). At 24-months post-operative, the one-way ANOVA demonstrated a statistically significant difference between the ACL-QOL scores of the no laxity group (mean = 79.1, SD = 16.9) and the combined positive Lachman and Pivot-shift group (mean = 68.5, SD = 22.9), (p = 0, mean difference = 10.6). Two-years post ACL reconstruction, 19.9% of patients presented with clinical graft laxity. Post-operative graft laxity was significantly correlated with lower ACL-QOL scores. The difference in ACL-QOL scores for patients with an isolated positive Lachman or Pivot-shift test did not meet the threshold of a clinically meaningful difference. Patients with clinical laxity on both the Lachman and Pivot-shift tests demonstrated the lowest patient-reported ACL-QOL scores, and these results exceeded the
Young, active patients with end-stage medial osteoarthritis (OA) secondary to anterior cruciate ligament (ACL) deficiency present a treatment challenge for surgeons. Current surgical treatment options include high tibial osteotomy (HTO) with or without ACL reconstruction, unicompartmental knee arthroplasty (UKA) with ACL reconstruction, and total knee arthroplasty (TKA). A recent systematic review reported a much higher rate of complications in HTO combined with ACL reconstruction than with UKA-ACL (21.1% vs 2.8%), while survivorship between the two procedures was similar. UKA offers several advantages over TKA, namely faster recovery, lower blood loss, lower rate of postoperative complications, better range of motion, and better knee kinematics. However, UKA has classically been contraindicated in the presence of ACL deficiency due to reported concerns over increased incidence aseptic loosening tibia. However, as a majority of patients presenting with this pathology are young and active, concerns about implant longevity with TKRA and loss of bone stock have arisen. As a result, several authors have described combining ACL reconstruction with medial UKA to decrease the tibiofemoral translation-related stress on the tibial component, thereby decreasing aseptic loosening-related failures. The purpose of this study was to compare the functional outcomes and survivorship of combined medial UKA and ACL reconstruction (UKA-ACL) with those of a matched TKA cohort. We hypothesized that UKA-ACL patients would have better functional outcomes than TKA patients while maintaining similar survivorship. Material and Methods. We conducted a case-control study establishing UKA-ACL as the study group and TKA as the control group by a single senior surgeon between October 2005 and January 2015. We excluded patients who were over the age of 55 at the time of surgery and those who had less than two-year follow-up. A total of 21 patients (23 knees) were ultimately included in each group. Propensity matching was for age-, sex-, and body mass index (BMI)-matched control group of TKA cases. Surgical technique. UKA-ACL. This patient's had an arthroscopy to allow for tunnel preparation in the standard fashion and then the graft was passed and fixed on the femoral side. An MIS medial incision was then made to allow for insertion of the Oxford mobile-bearing unicompartmental prosthesis (Zimmer Biomet, Warsaw, IN). Primary choice of ACL graft was autogenous ipsilateral semitendinosus and gracilis tendons, which was available I and 6 of the cases were revision from previous Gore-Tex synthetic ligament reconstruction. Results. Preoperatively, baseline questionnaires demonstrated that the TKA group had scored significantly lower on the symptom subscore of the KOOS. There was no difference between the groups in the rest of the KOOS subscores, (the UCLA, and the Tegner. All scores (UCLA, and Tegner – TBC post stats) improved significantly after surgery in both groups. Improvement in each subscore of the KOOS surpassed the
The purpose of this study was to compare intra-operative, clinical, functional, and patient-reported outcomes following revision anterior cruciate ligament reconstruction (ACL-R) with a matched cohort of primary isolated ACL-R. A secondary purpose was to compare patient-reported outcomes within revision ACL-R based on intra-operative cartilage pathology. Between January 2010 and August 2017, 396 patients underwent revision ACL-R, and were matched to primary isolated ACL-R patients using sex, age, body mass index (BMI), and Beighton score. Intra-operative assessments including meniscal and chondral pathology, and graft diameter were recorded. Lachman and pivot shift tests were completed independently on each patient at two-years post-operative by a physiotherapist and orthopaedic surgeon. A battery of functional tests was assssed including single-leg Bosu balance, and four single-leg hop tests. The Anterior Cruciate Ligament-Quality of Life Questionnaire (ACL-QOL) was completed pre-operatively and two-years post-operatively. Descriptive statistics including means (M) and standard deviations (SD), and as appropriate paired t-tests were used to compare between-groups demographics, the degree and frequency of meniscal and chondral pathology, graft diameter, rate of post-operative ACL graft laxity, the surgical failure rate, and ACL-QOL scores. Comparative assessment of operative to non-operative limb performance on the functional tests was used to assess limb symmetry indices (LSI). Revision ACL-R patients were 52.3% male, mean age 30.7 years (SD=10.2), mean BMI 25.3 kg/m2 (SD=3.79), and mean Beighton score 3.52 (SD=2.51). In the revision group, meniscal (83%) and chondral pathology (57.5%) was significantly more frequent than in the primary group (68.2% and 32.1%) respectively, (p < 0 .05). Mean graft diameter (mm) in the revision ACL-R group for hamstring (M=7.89, SD=0.99), allograft (M=8.42, SD=0.82), and patellar or quadriceps tendon (M=9.56, SD=0.69) was larger than in the primary ACL-R group (M=7.54, SD=0.76, M=8.06, SD=0.55, M=9, SD=1) respectively. The presence of combined positive Lachman and pivot shift tests was significantly more frequent in the revision (21.5%) than primary group (4.89%), (p < 0 .05). Surgical failure rate was higher in the revision (10.3%) than primary group (5.9%). Seventy-three percent of revision patients completed functional testing. No significant LSI differences were demonstrated between the revision and primary ACL-R groups on any of the functional tests. No statistically significant differences were demonstrated in mean preoperative ACL-QOL scores between the revision (M=28.5/100, SD=13.5) and primary groups (M=28.5/100, SD=14.4). Mean two-year scores demonstrated statistically significant and
Although patient-reported outcomes (PROs) have become increasingly important in the evaluation of spine surgery patients, interpretability may be limited by a patient's ability to recall pre-intervention impairment. The accuracy of patient recall of preoperative back pain, leg pain, and disability after spine surgery remains unknown. We sought to characterise the accuracy of patient recall of preoperative symptoms in a cohort of lumbar spine surgery patients. We analysed consecutive patients undergoing lumbar decompression or decompression and fusion for lumbar radiculopathy by a single surgeon over a four-year period. Using standardised questionnaires, we recorded back and leg numeric pain scores (NPS) and Oswestry Disability Indices (ODI) preoperatively and asked patients to recall their preoperative status at a minimum of one-year following surgery. We then statistically compared and characterised patient recall of their pre-operative status and their actual pre-operative status. Patients with incomplete follow up or diagnoses other than degenerative lumbar stenosis were excluded. Sixty-seven patients with a mean age of 66.1 years (55% female) were included in the final analysis. All cases were either posterior or combined anterior/ posterior procedures. Mean levels of surgery was 1.7 and 93.8% of all cases were instrumented. Mean duration of preoperative symptoms was 44.5 months (3.7 years). Preoperative vs postoperative PROs improved with regards to NPS back (5.2 vs 2.2, p= to 2 point difference), exceeding the
For as long as surgeons have been performing total and partial knee arthroplasty, surgeons have debated the efficacy, safety, and requirement of a pneumatic tourniquet. Advocates claim that blood loss is less, visualization is improved, and the cement technique is better with the use of a tourniquet. Others would argue that the use of the tourniquet or limited tourniquet use is safer, does not increase blood loss, and does not compromise visualization and cementing technique. Multiple meta-analyses have been performed that provide very little true evidence of superiority. One such study from Yi et al, concludes that the use of the tourniquet reduces surgical time, intraoperative and total blood loss, but increases postoperative total blood loss. They also conclude that DVT and SSI are “relatively augmented” with use. There may be issues with the timing of tourniquet release in these pooled studies, with others stating that releasing the tourniquet prior to wound closure, supposedly for hemostasis, significantly increases the total and calculated blood loss. Huang et al report that with proper control in the amount of pressure, a debatable topic in and of itself, and shorter duration of inflation, release after closure can reduce blood loss without increased complications. One additional issue is patellar tracking, and the need to lateral release. The tourniquet significantly affects assessment of tracking and the need for lateral release, potentially causing the surgeon to unnecessarily perform a lateral release with the tourniquet inflated. Lastly, research has suggested that using a tourniquet may affect recovery of lower extremity strength and function. Dennis et al compared quadriceps strength and found that use of the tourniquet resulted in “slightly” lower strength postoperatively out to 3 months. The fatal flaw in this study and others is that there is no accepted
Purpose. Although total knee replacement (TKR) has a high reported success rate, the pain relief and functional improvement after surgery varies. We asked what is the prevalence of patients showing no clinically significant improvement 1-year after TKR, and what are the patient level factors that may predict this outcome. Method. We reviewed primary TKR registry data that were collected from two academic hospitals: the Toronto Western Hospital (TWH) and the Henderson Hospital(HH) in Ontario. Relevant covariates including demographic data, body mass index, and comorbidity were recorded. Knee joint pain and functional status were assessed at baseline and at 1-year follow-up with the Western Ontario McMaster University Osteoarthritis Index (WOMAC) and Oxford knee score (OKS) to measure the change using the
The aim of this study was to investigate surgeons’ reported change of treatment preference in response to the results and conclusion from a randomized contolled trial (RCT) and to study patterns of change between subspecialties and nationalities. Two questionnaires were developed through the Delphi process for this cross-sectional survey of surgical preference. The first questionnaire was sent out before the publication of a RCT and the second questionnaire was sent out after publication. The RCT investigated repair or non-repair of the pronator quadratus (PQ) muscle during volar locked plating of distal radial fractures (DRFs). Overall, 380 orthopaedic surgeons were invited to participate in the first questionnaire, of whom 115 replied. One hundred surgeons were invited to participate in the second questionnaire. The primary outcome was the proportion of surgeons for whom a treatment change was warranted, who then reported a change of treatment preference following the RCT. Secondary outcomes included the reasons for repair or non-repair, reasons for and against following the RCT results, and difference of preferred treatment of the PQ muscle between surgeons of different nationalities, qualifications, years of training, and number of procedures performed per year.Aims
Methods