Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Bone & Joint Open
Vol. 3, Issue 10 | Pages 786 - 794
12 Oct 2022
Harrison CJ Plummer OR Dawson J Jenkinson C Hunt A Rodrigues JN

Aims. The aim of this study was to develop and evaluate machine-learning-based computerized adaptive tests (CATs) for the Oxford Hip Score (OHS), Oxford Knee Score (OKS), Oxford Shoulder Score (OSS), and the Oxford Elbow Score (OES) and its subscales. Methods. We developed CAT algorithms for the OHS, OKS, OSS, overall OES, and each of the OES subscales, using responses to the full-length questionnaires and a machine-learning technique called regression tree learning. The algorithms were evaluated through a series of simulation studies, in which they aimed to predict respondents’ full-length questionnaire scores from only a selection of their item responses. In each case, the total number of items used by the CAT algorithm was recorded and CAT scores were compared to full-length questionnaire scores by mean, SD, score distribution plots, Pearson’s correlation coefficient, intraclass correlation (ICC), and the Bland-Altman method. Differences between CAT scores and full-length questionnaire scores were contextualized through comparison to the instruments’ minimal clinically important difference (MCID). Results. The CAT algorithms accurately estimated 12-item questionnaire scores from between four and nine items. Scores followed a very similar distribution between CAT and full-length assessments, with the mean score difference ranging from 0.03 to 0.26 out of 48 points. Pearson’s correlation coefficient and ICC were 0.98 for each 12-item scale and 0.95 or higher for the OES subscales. In over 95% of cases, a patient’s CAT score was within five points of the full-length questionnaire score for each 12-item questionnaire. Conclusion. Oxford Hip Score, Oxford Knee Score, Oxford Shoulder Score, and Oxford Elbow Score (including separate subscale scores) CATs all markedly reduce the burden of items to be completed without sacrificing score accuracy. Cite this article: Bone Jt Open 2022;3(10):786–794


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 117 - 117
23 Feb 2023
Zhou Y Shadbolt C Rele S Spelman T Dowsey M Choong P Schilling C
Full Access

Utility score is a preference-based measure of general health state – where 0 is equal to death, and 1 is equal to perfect health. To understand a patient's smallest perceptible change in utility score, the minimal clinically important difference (MCID) can be calculated. However, there are multiple methods to calculate MCID with no consensus about which method is most appropriate. The aim of this study is to calculate MCID values for the Veterans-RAND 12 (VR12) utility score using varying methods. Our hypothesis is that different methods will yield different MCID values. A tertiary institutional registry (SMART) was used as the study cohort. Patients who underwent unilateral TKA for osteoarthritis from January 2012 to January 2020 were included. Utility score was calculated from VR12 responses using the standardised Brazier's method. Distribution and anchor methods were used for the MCID calculation. For distribution methods, 0.5 standard deviations of the baseline and change scores were used. For anchor methods, the physical and emotional anchor questions in the VR12 survey were used to benchmark utility score outcomes. Anchor methods included mean difference in change score, mean difference in 12 month score, and receiver operating characteristics (ROC) analysis with the Youden index. Complete case analysis of 1735 out of 1809 eligible patients was performed. Significant variation in the MCID estimates for VR12 utility score were reported dependent on the calculation method used. The MCID estimate from 0.5 standard deviations of the change score was 0.083. The MCID estimate from the ROC analysis method using physical or emotional anchor question improvement was 0.115 (CI95 0.08-0.14; AUC 0.656). Different MCID calculation methods yielded different MCID values. Our results suggest that MCID is not an umbrella concept but rather many distinct concepts. A general consensus is required to standardise how MCID is defined, calculated, and applied in clinical practice


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 68 - 68
1 Dec 2022
Hoit G Chahal J Whelan DB Theodoropoulos JS Ajrawat P Betsch M Docter S Dwyer T
Full Access

The aim of the this study was to determine the effect of the knee flexion angle (KFA) during tibial anterior cruciate ligament (ACL) graft fixation on patient reported outcomes, graft stability, extension loss and re-operation following anatomic single-bundle ACL reconstruction. All 169 included patients (mean age 28.5 years, 65% male) were treated with anatomic single bundle ACL reconstruction using patellar tendon autograft and randomized to tibial fixation of the ACL graft at either 0o (n=85) or 30o (n=84). The primary outcome was the Knee Injury and Osteoarthritis Outcome Score (KOOS) two years following surgery. Secondary outcomes were the Marx Activity Scale (MAS), the rate of re-operation, and physical exam findings at one year including KT-1000 and side to side differences in knee extension. The follow-up rate was 82% (n=139) for the primary outcome. Graft failure rate at two years was 1% (n=2, 1 per group). ACL tibial graft fixation at 0o or 30o did not have a significant effect on KOOS scores at two years following ACLR. Patients whose graft was fixed at a knee flexion angle of 0o had greater scores on the Marx Activity Scale (mean 9.6 [95%CI 8.5-10.6] versus 8.0 [95%CI 6.9-9.1, p=0.04) and a greater proportion of patients who achieved the minimal clinical important difference (MCID) for the KOOS pain subscale (94% vs 81%, p=0.04). There was no significant difference in knee extension loss, KT-1000 measurements or re-operation between the two groups. In the setting of anatomic single-bundle ACLR using patellar tendon autograft and anteromedial portal femoral drilling, there was no difference in KOOS scores among patients fixed at 0o and 30o. Patient fixed in full extension did demonstrate higher activity scores at 2 years following surgery and a greater likelihood of achieving the MCID for KOOS pain


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 49 - 49
1 Dec 2022
Charest-Morin R Bailey C McIntosh G Rampersaud RY Jacobs B Cadotte D Fisher C Hall H Manson N Paquet J Christie S Thomas K Phan P Johnson MG Weber M Attabib N Nataraj A Dea N
Full Access

In multilevel posterior cervical instrumented fusions, extending the fusion across the cervico-thoracic junction at T1 or T2 (CTJ) has been associated with decreased rate of re-operation and pseudarthrosis but with longer surgical time and increased blood loss. The impact on patient reported outcomes (PROs) remains unclear. The primary objective was to determine whether extending the fusion through the CTJ influenced PROs at 3 and 12 months after surgery. Secondary objectives were to compare the number of patients reaching the minimally clinically important difference (MCID) for the PROs and mJOA, operative time duration, intra-operative blood loss (IOBL), length of stay (LOS), discharge disposition, adverse events (AEs), re-operation within 12 months of the surgery, and patient satisfaction. This is a retrospective analysis of prospectively collected data from a multicenter observational cohort study of patients with degenerative cervical myelopathy. Patients who underwent a posterior instrumented fusion of 4 levels of greater (between C2-T2) between January 2015 and October 2020 with 12 months follow-up were included. PROS (NDI, EQ5D, SF-12 PCS and MCS, NRS arm and neck pain) and mJOA were compared using ANCOVA, adjusted for baseline differences. Patient demographics, comorbidities and surgical details were abstracted. Percentafe of patient reaching MCID for these outcomes was compared using chi-square test. Operative duration, IOBL, AEs, re-operation, discharge disposittion, LOS and satisfaction were compared using chi-square test for categorical variables and independent samples t-tests for continuous variables. A total of 206 patients were included in this study (105 patients not crossing the CTJ and 101 crossing the CTJ). Patients who underwent a construct extending through the CTJ were more likely to be female and had worse baseline EQ5D and NDI scores (p> 0.05). When adjusted for baseline difference, there was no statistically significant difference between the two groups for the PROs and mJOA at 3 and 12 months. Surgical duration was longer (p 0.05). Satisfaction with the surgery was high in both groups but significantly different at 12 months (80% versus 72%, p= 0.042 for the group not crossing the CTJ and the group crossing the CTJ, respectively). The percentage of patients reaching MCID for the NDI score was 55% in the non-crossing group versus 69% in the group extending through the CTJ (p= 0.06). Up to 12 months after the surgery, there was no statistically significant differences in PROs between posterior construct extended to or not extended to the upper thoracic spine. The adverse event profile did not differ significantly, but longer surgical time and blood loss were associated with construct extending across the CTJ


Full Access

Hallux valgus surgery can result in moderate to severe post-operative pain requiring the use of narcotic medication. The percutaneous distal metatarsal osteotomy is a minimally invasive approach which offers many advantages including minimal scarring, immediate weight bearing and decreased post-operative pain. The goal of this study is to determine whether the use of narcotics can be eliminated using an approach combining multimodal analgesia, ankle block anesthesia and a minimally invasive surgical approach. Following ethics board approval, a total of 160 ambulatory patients between the ages of 18-70 with BMI ≤ 40 undergoing percutaneous hallux valgus surgery are to be recruited and randomized into Narcotic-free (NF) or Standard (S) groups. To date, 72 patients have been recruited (38 NF and 34 S). The NF group received acetaminophen, naproxen, pregabalin 75mg and 100mg Ralivia (tramadol extended release) before surgery and acetaminophen, naproxen, pregabalin 150mg one dose and Ralivia 100mg BID for five days, as well as a rescue narcotic (hydromorphone, 1mg pills) after surgery. The S group received acetaminophen and naproxen prior to surgery and acetaminophen, naproxen and hydromorphone (1mg pills) post-operatively, our current standard. Visual analog scales (VAS) were used to assess pain and narcotic consumption was recorded at 6, 12, 24, 36, 48, 72 hours and seven days post-operatively. Patients wore a smart watch to record the number of daily steps and sleep hours. A two-sided t-test was used to compare the VAS scores and narcotic consumption. During the first post-operative week, the NF group consumed in total an average of 6.5 pills while the S group consumed in total an average of 16 pills and this difference was statistically significant (p-value=0.001). Importantly, 19 patients (50%) in the NF group and four patients (12%) in the S group did not consume any narcotics post-operatively. For the VAS scores at 24, 48, 72 hours and seven days the NF group's average scores were 2.17, 3.17, 2.92, 2.06 respectively and the S group's average scores were 3.97, 4.2, 3.23, 1.97. There was a statistically significant difference between the groups at 24 and 48hours (the NF group scored lower on the VAS) with a p-value of 0.0008 and 0.04 respectively, but this difference is not considered clinically significant as the minimal clinically important difference reported in the literature is a two-point differential. The NF group walked an average of 1985.75 steps/day and slept an average of 8h01 minute/night, while the S group walked an average of 1898.26 steps/day and slept an average of 8h26 minutes/night in the first post-operative week. Hallux valgus remains a common orthopedic foot problem for which surgical treatment results in moderate to severe post-operative pain. This study demonstrates that with the use of multimodal analgesia, ultrasound guided ankle blocks and a percutaneous surgical technique, narcotic requirements decreased post-operatively. The use of long-acting tramadol further decreased the need for narcotic consumption. Despite decreased use of narcotics, this combined novel approach to hallux valgus surgery allows for early mobilization and excellent pain control


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 16 - 16
1 Jun 2021
Roche C Simmons C Polakovic S Schoch B Parsons M Aibinder W Watling J Ko J Gobbato B Throckmorton T Routman H
Full Access

Introduction. Clinical decision support tools are software that match the input characteristics of an individual patient to an established knowledge base to create patient-specific assessments that support and better inform individualized healthcare decisions. Clinical decision support tools can facilitate better evidence-based care and offer the potential for improved treatment quality and selection, shared decision making, while also standardizing patient expectations. Methods. Predict+ is a novel, clinical decision support tool that leverages clinical data from the Exactech Equinoxe shoulder clinical outcomes database, which is composed of >11,000 shoulder arthroplasty patients using one specific implant type from more than 30 different clinical sites using standardized forms. Predict+ utilizes multiple coordinated and locked supervised machine learning algorithms to make patient-specific predictions of 7 outcome measures at multiple postoperative timepoints (from 3 months to 7 years after surgery) using as few as 19 preoperative inputs. Predict+ algorithms predictive accuracy for the 7 clinical outcome measures for each of aTSA and rTSA were quantified using the mean absolute error and the area under the receiver operating curve (AUROC). Results. Predict+ was released in November 2020 and is currently in limited launch in the US and select international markets. Predict+ utilizes an interactive graphical user interface to facilitate efficient entry of the preoperative inputs to generate personalized predictions of 7 clinical outcome measures achieved with aTSA and rTSA. Predict+ outputs a simple, patient-friendly graphical overview of preoperative status and a personalized 2-year outcome summary of aTSA and rTSA predictions for all 7 outcome measures to aid in the preoperative patient consultation process. Additionally, Predict+ outputs a detailed line-graph view of a patient's preoperative status and their personalized aTSA, rTSA, and aTSA vs. rTSA predicted outcomes for the 7 outcome measures at 6 postoperative timepoints. For each line-graph, the minimal clinically important difference (MCID) and substantial clinical benefit (SCB) patient-satisfaction improvement thresholds are displayed to aid the surgeon in assessing improvement potential for aTSA and rTSA and also relative to an average age and gender matched patient. The initial clinical experience of Predict+ has been positive. Input of the preoperative patient data is efficient and generally completed in <5 minutes. However, continued workflow improvements are necessary to limit the occurrence of responder fatigue. The graphical user interface is intuitive and facilitated a rapid assessment of expected patient outcomes. We have not found the use of this tool to be disruptive of our clinic's workflow. Ultimately, this tool has positively shifted the preoperative consultation towards discussion of clinical outcomes data, and that has been helpful to guide a patient's understanding of what can be realistically achieved with shoulder arthroplasty. Discussion and Conclusions. Predict+ aims to improve a surgeon's ability to preoperatively counsel patients electing to undergo shoulder arthroplasty. We are hopeful this innovative tool will help align surgeon and patient expectations and ultimately improve patient satisfaction with this elective procedure. Future research is required, but our initial experience demonstrates the positive potential of this predictive tool


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 98 - 98
1 Jul 2020
Khan M Alolabi B Horner N Ayeni OR Bedi A Bhandari M
Full Access

Shoulder impingement is one of the most common non-traumatic upper limb causes of disability in adults. Often resulting in pain and disability, management remains highly debated. This meta-analysis of randomized trials aims to evaluate the efficacy of surgical intervention in the setting of shoulder impingement in comparison to non-operative or sham treatments. Two reviewers independently screened MEDLINE, EMBASE, PUBMED and Cochrane databases for randomized control trials published from 1946 through to May 19th, 2018. A risk of bias assessment was conducted for all included studies and outcomes were pooled using a random effects model. The primary outcome was improvement in pain up to two years. Secondary outcomes included functional outcome scores reported at the short term (/=2 years). Heterogeneity was assessed using the I2statistic. Functional outcome scores were presented along with minimal clinically important differences to provide clinical context to findings. Twelve RCT's (n=1062 patients) were included in this review. Eligible patients were a mean age of 48 (SD +/− 4) years with 45% being male gender. The pooled treatment effect of surgical intervention for shoulder impingement did not demonstrate any benefit to surgery with respect to pain relief (mean difference [MD] −0.07, 95% CI −0.40 to 0.26) or short-term functional outcomes (standardized mean difference [SMD] −0.09, 95% confidence interval [CI] −0.27 to 0.08). Surgical intervention did result in a small statistically significant but clinically unimportant improvement in long term functional outcomes (SMD 0.23, 95% CI 0.06 to 0.41). Evidence suggests surgical intervention has little, if any, benefit for impingement pathology in the middle-aged patient


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 72 - 72
1 Jul 2020
Kerslake S Tucker A Heard SM Buchko GM Hiemstra LA Lafave M
Full Access

The primary purpose of this study was to assess whether patients presenting with clinical graft laxity following primary anatomic anterior cruciate ligament (ACL) reconstruction using hamstring autograft reported a significant difference in disease-specific quality-of-life (QOL) as measured by the ACL-QOL questionnaire. Clinical ACL graft laxity was assessed in a cohort of 1134/1436 (79%) of eligible patients using the Lachman and Pivot-shift tests pre-operatively and at 12- and 24-months following ACL reconstruction. Post-operative ACL laxity was assessed by an orthopaedic surgeon and a physical therapist who were blinded to each other's examination. If there was a discrepancy between the clinical examination findings from these two assessors, then a third impartial examiner assessed the patient to ensure a grading consensus was reached. Patients completed the ACL-QOL questionnaire pre-operatively, and 12- and 24-months post-operatively. Descriptive statistics were used to assess patient demographics, rate of post-operative ACL graft laxity, surgical failures, and ACL-QOL scores. A Spearman rho correlation coefficient was utilised to assess the relationships between ACL-QOL scores and the Lachman and Pivot-shift tests at 24-months post-operative. An independent t-test was used to determine if there were differences in the ACL-QOL scores of subjects who sustained a graft failure compared to the intact graft group. ACL-QOL scores and post-operative laxity were assessed using a one-way analysis of variance (ANOVA). There were 70 graft failures (6.17%) in the 1134 patients assessed at 24-months. A total of 226 patients (19.9%) demonstrated 24-months post-operative ACL graft laxity. An isolated positive Lachman test was assessed in 146 patients (12.9%), an isolated positive Pivot-shift test was apparent in 14 patients (1.2%), and combined positive Lachman and Pivot-shift tests were assessed in 66 patients (5.8%) at 24-months post-operative. There was a statistically significant relationship between 24-month post-operative graft laxity and ACL-QOL scores (p < 0.001). Specifically, there was a significant correlation between the ACL-QOL and the Lachman test (rho = −0.20, p < 0.001) as well as the Pivot-shift test (rho = −0.22, p < 0.001). There was no significant difference between the scores collected from the graft failure group prior to failure occurring (mean = 74.38, SD = 18.61), and the intact graft group (mean = 73.97, SD = 21.51). At 24-months post-operative, the one-way ANOVA demonstrated a statistically significant difference between the ACL-QOL scores of the no laxity group (mean = 79.1, SD = 16.9) and the combined positive Lachman and Pivot-shift group (mean = 68.5, SD = 22.9), (p = 0, mean difference = 10.6). Two-years post ACL reconstruction, 19.9% of patients presented with clinical graft laxity. Post-operative graft laxity was significantly correlated with lower ACL-QOL scores. The difference in ACL-QOL scores for patients with an isolated positive Lachman or Pivot-shift test did not meet the threshold of a clinically meaningful difference. Patients with clinical laxity on both the Lachman and Pivot-shift tests demonstrated the lowest patient-reported ACL-QOL scores, and these results exceeded the minimal clinically important difference


Young, active patients with end-stage medial osteoarthritis (OA) secondary to anterior cruciate ligament (ACL) deficiency present a treatment challenge for surgeons. Current surgical treatment options include high tibial osteotomy (HTO) with or without ACL reconstruction, unicompartmental knee arthroplasty (UKA) with ACL reconstruction, and total knee arthroplasty (TKA). A recent systematic review reported a much higher rate of complications in HTO combined with ACL reconstruction than with UKA-ACL (21.1% vs 2.8%), while survivorship between the two procedures was similar. UKA offers several advantages over TKA, namely faster recovery, lower blood loss, lower rate of postoperative complications, better range of motion, and better knee kinematics. However, UKA has classically been contraindicated in the presence of ACL deficiency due to reported concerns over increased incidence aseptic loosening tibia. However, as a majority of patients presenting with this pathology are young and active, concerns about implant longevity with TKRA and loss of bone stock have arisen. As a result, several authors have described combining ACL reconstruction with medial UKA to decrease the tibiofemoral translation-related stress on the tibial component, thereby decreasing aseptic loosening-related failures. The purpose of this study was to compare the functional outcomes and survivorship of combined medial UKA and ACL reconstruction (UKA-ACL) with those of a matched TKA cohort. We hypothesized that UKA-ACL patients would have better functional outcomes than TKA patients while maintaining similar survivorship. Material and Methods. We conducted a case-control study establishing UKA-ACL as the study group and TKA as the control group by a single senior surgeon between October 2005 and January 2015. We excluded patients who were over the age of 55 at the time of surgery and those who had less than two-year follow-up. A total of 21 patients (23 knees) were ultimately included in each group. Propensity matching was for age-, sex-, and body mass index (BMI)-matched control group of TKA cases. Surgical technique. UKA-ACL. This patient's had an arthroscopy to allow for tunnel preparation in the standard fashion and then the graft was passed and fixed on the femoral side. An MIS medial incision was then made to allow for insertion of the Oxford mobile-bearing unicompartmental prosthesis (Zimmer Biomet, Warsaw, IN). Primary choice of ACL graft was autogenous ipsilateral semitendinosus and gracilis tendons, which was available I and 6 of the cases were revision from previous Gore-Tex synthetic ligament reconstruction. Results. Preoperatively, baseline questionnaires demonstrated that the TKA group had scored significantly lower on the symptom subscore of the KOOS. There was no difference between the groups in the rest of the KOOS subscores, (the UCLA, and the Tegner. All scores (UCLA, and Tegner – TBC post stats) improved significantly after surgery in both groups. Improvement in each subscore of the KOOS surpassed the minimal clinically important difference in both the UKA-ACL and TKA groups. At latest follow-up, there was no significant difference between the groups on the KOOS, UCLA or Tegner, showing that our UKA-ACL patients fared as our TKA patients. This confirms that UKA-ACL is an important tool in dealing with young patients with end-stage medial OA and ACL deficiency and offers an option that leads to less bone loss and potentially easier future revision. For any figures or tables, please contact authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 137 - 137
1 Jul 2020
Tynedal J Heard SM Hiemstra LA Buchko GM Kerslake S
Full Access

The purpose of this study was to compare intra-operative, clinical, functional, and patient-reported outcomes following revision anterior cruciate ligament reconstruction (ACL-R) with a matched cohort of primary isolated ACL-R. A secondary purpose was to compare patient-reported outcomes within revision ACL-R based on intra-operative cartilage pathology. Between January 2010 and August 2017, 396 patients underwent revision ACL-R, and were matched to primary isolated ACL-R patients using sex, age, body mass index (BMI), and Beighton score. Intra-operative assessments including meniscal and chondral pathology, and graft diameter were recorded. Lachman and pivot shift tests were completed independently on each patient at two-years post-operative by a physiotherapist and orthopaedic surgeon. A battery of functional tests was assssed including single-leg Bosu balance, and four single-leg hop tests. The Anterior Cruciate Ligament-Quality of Life Questionnaire (ACL-QOL) was completed pre-operatively and two-years post-operatively. Descriptive statistics including means (M) and standard deviations (SD), and as appropriate paired t-tests were used to compare between-groups demographics, the degree and frequency of meniscal and chondral pathology, graft diameter, rate of post-operative ACL graft laxity, the surgical failure rate, and ACL-QOL scores. Comparative assessment of operative to non-operative limb performance on the functional tests was used to assess limb symmetry indices (LSI). Revision ACL-R patients were 52.3% male, mean age 30.7 years (SD=10.2), mean BMI 25.3 kg/m2 (SD=3.79), and mean Beighton score 3.52 (SD=2.51). In the revision group, meniscal (83%) and chondral pathology (57.5%) was significantly more frequent than in the primary group (68.2% and 32.1%) respectively, (p < 0 .05). Mean graft diameter (mm) in the revision ACL-R group for hamstring (M=7.89, SD=0.99), allograft (M=8.42, SD=0.82), and patellar or quadriceps tendon (M=9.56, SD=0.69) was larger than in the primary ACL-R group (M=7.54, SD=0.76, M=8.06, SD=0.55, M=9, SD=1) respectively. The presence of combined positive Lachman and pivot shift tests was significantly more frequent in the revision (21.5%) than primary group (4.89%), (p < 0 .05). Surgical failure rate was higher in the revision (10.3%) than primary group (5.9%). Seventy-three percent of revision patients completed functional testing. No significant LSI differences were demonstrated between the revision and primary ACL-R groups on any of the functional tests. No statistically significant differences were demonstrated in mean preoperative ACL-QOL scores between the revision (M=28.5/100, SD=13.5) and primary groups (M=28.5/100, SD=14.4). Mean two-year scores demonstrated statistically significant and minimally clinically important differences between the revision (M=61.1/100, SD=20.4) and primary groups (M=76.0/100, SD=18.9), (p < 0 .05). Mean two-year scores for revision patients with repair of the medial (M=59.4/100, SD=21.7) or lateral meniscus (M=59.4/100, SD=23.6), partial medial meniscectomy (M=59.7/100, SD=20), grade three or four osteoarthritis (M=55.9/100, SD=19.5), and medial femoral condyle osteoarthritis (M=59.1/100, SD=18) were lower compared with partial lateral meniscectomy (M=67.1/100, SD=19.1), grade one or two osteoarthritis (M=63.8/100, SD=18.9), and lateral femoral condyle osteoarthritis (M=62, SD=21). Revision ACL-R patients demonstrated a greater amount of meniscal and chondral pathology at the time of surgery. Two-years post-operative these patients demonstrated higher rates of graft laxity and lower ACL-QOL scores compared with the primary ACL-R group. Higher grade and medial sided osteoarthritis was associated with inferior ACL-QOL scores in revision ACL-R


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 73 - 73
1 Nov 2016
Zarrabian M Aleem I Duncan J Ahmed A Eck J Rhee J Currier B Nassr A
Full Access

Although patient-reported outcomes (PROs) have become increasingly important in the evaluation of spine surgery patients, interpretability may be limited by a patient's ability to recall pre-intervention impairment. The accuracy of patient recall of preoperative back pain, leg pain, and disability after spine surgery remains unknown. We sought to characterise the accuracy of patient recall of preoperative symptoms in a cohort of lumbar spine surgery patients. We analysed consecutive patients undergoing lumbar decompression or decompression and fusion for lumbar radiculopathy by a single surgeon over a four-year period. Using standardised questionnaires, we recorded back and leg numeric pain scores (NPS) and Oswestry Disability Indices (ODI) preoperatively and asked patients to recall their preoperative status at a minimum of one-year following surgery. We then statistically compared and characterised patient recall of their pre-operative status and their actual pre-operative status. Patients with incomplete follow up or diagnoses other than degenerative lumbar stenosis were excluded. Sixty-seven patients with a mean age of 66.1 years (55% female) were included in the final analysis. All cases were either posterior or combined anterior/ posterior procedures. Mean levels of surgery was 1.7 and 93.8% of all cases were instrumented. Mean duration of preoperative symptoms was 44.5 months (3.7 years). Preoperative vs postoperative PROs improved with regards to NPS back (5.2 vs 2.2, p= to 2 point difference), exceeding the minimal clinical important difference (MCID) for NPS. This pattern was maintained across age, gender, and duration of preoperative symptoms. We also observed cases of symptom minimisation recall bias, and cases in which back and leg pain predominance were switched in severity during recall bias. Significant recall bias of preoperative symptoms exists in patients undergoing spine surgery, potentially limiting accurate assessment and interpretation of PROs. An understanding of PROs and their limitations is essential to assess treatment efficacy of spinal procedures


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 99 - 99
1 Dec 2016
Berend K
Full Access

For as long as surgeons have been performing total and partial knee arthroplasty, surgeons have debated the efficacy, safety, and requirement of a pneumatic tourniquet. Advocates claim that blood loss is less, visualization is improved, and the cement technique is better with the use of a tourniquet. Others would argue that the use of the tourniquet or limited tourniquet use is safer, does not increase blood loss, and does not compromise visualization and cementing technique. Multiple meta-analyses have been performed that provide very little true evidence of superiority. One such study from Yi et al, concludes that the use of the tourniquet reduces surgical time, intraoperative and total blood loss, but increases postoperative total blood loss. They also conclude that DVT and SSI are “relatively augmented” with use. There may be issues with the timing of tourniquet release in these pooled studies, with others stating that releasing the tourniquet prior to wound closure, supposedly for hemostasis, significantly increases the total and calculated blood loss. Huang et al report that with proper control in the amount of pressure, a debatable topic in and of itself, and shorter duration of inflation, release after closure can reduce blood loss without increased complications. One additional issue is patellar tracking, and the need to lateral release. The tourniquet significantly affects assessment of tracking and the need for lateral release, potentially causing the surgeon to unnecessarily perform a lateral release with the tourniquet inflated. Lastly, research has suggested that using a tourniquet may affect recovery of lower extremity strength and function. Dennis et al compared quadriceps strength and found that use of the tourniquet resulted in “slightly” lower strength postoperatively out to 3 months. The fatal flaw in this study and others is that there is no accepted minimal clinically important difference for quad function, and thus they powered their study to detect a difference of 12 Nm, and the actual difference, while statistically significant, did not even meet their arbitrary power set point. Thus, while strength may be slightly impaired by the use of a tourniquet, it was not different enough to meet their criteria. Additionally, in their study, 64% of the “no-tourniquet” knees actually had a tourniquet used for cementation to “minimise blood at the bone-cement interface and maximise fixation”. Clearly, even these authors are concerned with the results of not using a tourniquet. These authors utilise a pneumatic tourniquet in all cases of primary TKA and release the tourniquet prior to closure to ensure hemostasis and accurately assess patellar tracking. In doing so, we use the methodology of limb occlusion pressure to minimise the pressure to that necessary for ensuring a clear field. Additionally, these authors emphasise the ultimate in surgical efficiency allowing for extremely short tourniquet times, even in the most difficult cases. As an example, in 1300 consecutive obese patients with BMI equal or greater than 35, the average tourniquet time for primary TKA was 49 minutes. These short times, with the minimum pressure allow for the best of both worlds and little to no downside


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 90 - 90
1 Sep 2012
Gandhi R Alzahrani K Beer JD Petrucelli D Mahomed NN
Full Access

Purpose. Although total knee replacement (TKR) has a high reported success rate, the pain relief and functional improvement after surgery varies. We asked what is the prevalence of patients showing no clinically significant improvement 1-year after TKR, and what are the patient level factors that may predict this outcome. Method. We reviewed primary TKR registry data that were collected from two academic hospitals: the Toronto Western Hospital (TWH) and the Henderson Hospital(HH) in Ontario. Relevant covariates including demographic data, body mass index, and comorbidity were recorded. Knee joint pain and functional status were assessed at baseline and at 1-year follow-up with the Western Ontario McMaster University Osteoarthritis Index (WOMAC) and Oxford knee score (OKS) to measure the change using the minimal clinically important difference (MCID). Logistic regression modeling was used to identify the predictors of interest. Results. Overall, 11.7% (373/3177) of patients reported no clinically significant improvement 1-year after surgery. Logistic regression modeling showed that a greater patient age independently predicted no clinically significant improvement on the WOMAC scale 1-year after surgery (p=0.0003), while male gender independently predicted no clinically significant improvement on the OKS 1-year after surgery (p=0.008). Conclusion. Awareness of the prevalence of patients who may show no clinically significant improvement and factors that predict this outcome will help patients and surgeons to set realistic expectations of surgery


Bone & Joint Open
Vol. 1, Issue 9 | Pages 549 - 555
11 Sep 2020
Sonntag J Landale K Brorson S Harris IA

Aims

The aim of this study was to investigate surgeons’ reported change of treatment preference in response to the results and conclusion from a randomized contolled trial (RCT) and to study patterns of change between subspecialties and nationalities.

Methods

Two questionnaires were developed through the Delphi process for this cross-sectional survey of surgical preference. The first questionnaire was sent out before the publication of a RCT and the second questionnaire was sent out after publication. The RCT investigated repair or non-repair of the pronator quadratus (PQ) muscle during volar locked plating of distal radial fractures (DRFs). Overall, 380 orthopaedic surgeons were invited to participate in the first questionnaire, of whom 115 replied. One hundred surgeons were invited to participate in the second questionnaire. The primary outcome was the proportion of surgeons for whom a treatment change was warranted, who then reported a change of treatment preference following the RCT. Secondary outcomes included the reasons for repair or non-repair, reasons for and against following the RCT results, and difference of preferred treatment of the PQ muscle between surgeons of different nationalities, qualifications, years of training, and number of procedures performed per year.