Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 35 - 35
1 Mar 2021
Ng G Bankes M Daou HE Beaulé P Cobb J Jeffers J
Full Access

Abstract. OBJECTIVES. Although surgical periacetabular osteotomy (PAO) for hip dysplasia aims to optimise acetabular coverage and restore hip function, it is unclear how surgery affects capsular mechanics and joint stability. The purpose was to examine how the reoriented acetabular coverage affects capsular mechanics and joint stability in dysplastic hips. METHODS. Twelve cadaveric dysplastic hips (n = 12) were denuded to the capsule and mounted onto a robotic tester. The robot positioned each hip in multiple flexion angles (Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°) and performed internal-external rotations and abduction-adduction to 5 Nm in each rotational or planar direction. Each hip underwent a PAO, preserving the capsule, and was retested postoperatively in the robot. Paired sample t-tests compared the range of motion before and after PAO surgery (CI = 95%). RESULTS. Pre-operatively, the dysplastic hips demonstrated large ranges of internal-external rotations and abduction-adduction motions throughout all flexion positions. Post-operatively, the PAO slackenend the anterosuperior capsule and tightened the inferior capsule. This increased external rotation in Flexion 60° and Flexion 90° (∆. ER. = +16 and +23%) but provided lateral coverage to decrease internal rotation at Flexion 90° (∆. IR. = –15%). The PAO also reduced abduction throughout, but increased adduction in Neutral 0°, Flexion 30°, and Flexion 60° (∆. ADD. = +34, +30%, +29% respectively). CONCLUSIONS. The PAO provided crucial osseous structural coverage to the femoral head, decreasing hypermobility and adverse loading at extreme hip flexion-extension. However, it also slackened the anterosuperior capsule and increased adduction and external rotation, which may lead to ischiofemoral impingement and adductor irritations. Capsular instability may be secondary to acetabular undercoverage, thus capsular alteration may be warranted for larger corrections or rotational osteotomies. To preserve native hip and delay joint degeneration, it is crucial to preserve capsule and elucidate amount of reorientation needed without causing iatrogenic instability. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 18 - 18
1 Mar 2021
Ng G Bankes M Grammatopoulos G Jeffers J Cobb J
Full Access

Abstract. OBJECTIVES. Cam femoroacetabular impingement (FAI – femoral head-neck deformity) and developmental dysplasia of the hip (DDH – insufficient acetabular coverage) constitute a large portion of adverse hip loading and early degeneration. Spinopelvic anatomy may play a role in hip stability thus we examined which anatomical relationships can best predict range of motion (ROM). METHODS. Twenty-four cadaveric hips with cam FAI or DDH (12:12) were CT imaged and measured for multiple femoral (alpha angles, head-neck offset, neck angles, version), acetabular (centre-edge angle, inclination, version), and spinopelvic features (pelvic incidence). The hips were denuded to the capsule and mounted onto a robotic tester. The robot positioned each hip in multiple flexion angles (Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°); and performed internal-external rotations to 5 Nm in each position. Independent t-tests compared the anatomical parameters and ROM between FAI and DDH (CI = 95%). Multiple linear regressions determined which anatomical parameters could predict ROM. RESULTS. The FAI group demonstrated restricted ROM in deep hip flexion, with DDH showing higher ROM in Flexion 30° (+20%, p = 0.03), 60° (+31%, p = 0.001), and 90° (+36%, p = 0.001). In Neutral 0° and Flexion 30°, femoral neck and version angles together predicted ROM (R. 2. = 60%, 58% respectively); whereas in Flexion 60°, pelvic incidence and femoral neck angle predicted ROM (R. 2. = 77%). In Flexion 90°, pelvic incidence and radial alpha angle together predicted ROM (R. 2. = 81%), where pelvic incidence alone accounted for 63% of this variance. CONCLUSIONS. Pelvic incidence is essential to predict hip ROM. Although a cam deformity or acetabular undercoverage can elevate risks of labral tears and progressive joint degeneration, they may not be primary indicators of restrictive hip impingement or dysplastic instability. Better delineating additional spinopelvic characteristics can formulate early diagnostic tools and improve opportunities for nonsurgical management. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project