Advertisement for orthosearch.org.uk
Results 1 - 20 of 691
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 77 - 77
1 Apr 2019
Sawada N Yabuno K Ikeda S Kanazawa M
Full Access

INTRODUCTION. In gap balancing technique, we decided the femoral component rotation according to the ligament balance in flexion. Component and limb alignment are important considerations during TKA. Three-dimensional positioning of TKA implants and exact mechanical axis has an effect on implant loosening, polyethylene stresses, and gait. According to the recent report, the navigation system made it possible to achieve aligned implants more than conventional TKA. Hybrid Navigation technique which is our procedure is combination of navigation system and modified gap technique. In other words, exact mechanical axis is gained by navigation system, stable stability of knee joint is gained by modified gap technique. PURPOSE. The purpose of this study is to carry out clinical evaluation and image evaluation of the patients who underwent hybrid navigation technique TKA. METHODS. We performed TKA using the hybrid navigation technique in 100 knees from April 2012 to April 2015. We evaluated hybrid navigation TKA which we were able to follow up more than five years. 33 knees were available for follow up. We investigated the mid-term results of TKA after a mean follow up period of 5 years and 8 months. We evaluated range of motion(ROM), Japan Orthopaedic Association (JOA)score, complications, revision rate as clinical evaluations. And we evaluated radiolucent line(RLL), loosening in X-ray, implantation accuracy in computed tomography(CT) as image evaluations. Surgical technique was that the knees were exposed using a medial parapatellar approach without patella turnover, and the anterior and posterior cruciate ligaments were resected. And next osteotomy distal femur and proximal tibia using CT-free Navigation, step-wise medial soft tissue release was performed to make the rectangular extension joint gap using gap tensor space (off set balancer) at 40 pounds of distraction force. Flextion gap was made at the same distraction force, thereby we determined external rotation angle of femur osteotomy in a patella reduction position. CT of the whole leg was taken preoperation and postoperation the first postoperative week in all cases. RESULTS. In CT evaluation, coronal and sagittal alignments of femoral componet were mean 90.92° and mean flex 3.02°. These alignment of tibial componet were 90.54° and mean posterior slope 3.0°. Outliers(>3°)of coronal aligment were 6% (2 knees)in femoral componet, and 6%(2 knees) in tibial componet. In clinical evaluation, mean preoperative ROM(flex) was 105 degrees which improved 122 degrees at final follow up. Mean preoperative JOA score was 46.3 which improved 85.8 at final follow up. In image evaluation, there were no incidence of component loosening(RLL>2mm). We experienced two complications(1 deep infection and 1 intraoperative fracture), but there were no postoperative fracture and DVT/PE. The revision arte was 3%(1 knee) due to deep infection. DISCUSSION AND CONCLUSION. Mid-term postoperative results has shown a good prognosis. We will not understand that we do not observe long-term results in future, neverthless we believe that this technique should be considered as an alternative means of conducting TKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 53 - 53
1 Feb 2017
Kawamoto T Iida S Suzuki C
Full Access

Background. Variability in component alignment continues to be a major in total knee arthroplasty(TKA). In the long term, coronal plane malalignment has been associated with an increased risk of loosening, insatability, and wear. Recently portable navigation system(PNS) in TKA have been introduced. The goal of PNS are to improve the accuracy of post operative alignment and eliminate outlier cases. The aim of this study is to evaluate clinical results and quantify the coronal plane alignment between a group of patients who underwent TKA using PNS versus CT-free large-console navigation system. Patients and Method. An unselected consecutive series of ninety-four patients undergoing primary TKA using the cruciate retaining cemented total knee system between April 2012 and August 2015 were studied. Patients were included only if they were deemed to be candidates for a Cruciate retaining TKA. Patients were excluded if they had a flexion contracture greater than 40°, or severe valgus or varus deformity. Forty eight knees was operated a TKA with CT-free large-console navigation system(The OrthoPilot system; Aesculap, Tuttlingen, Germany). Subsequently forty six knees was received a TKA using portable navigation system (KneeAlign2. TM. ). Postoperatively standing AP hip-to-ankle radiographs were obtained, from which the lower extremity mechanical axis, component angle were measured. The alignment goals were a neutral mechanical axis defined as a hip-to-ankle angle of 0°with the femoral and tibial components aligned perpendicular to the mechanical axis. The total operating time were quantified utilising an operating room database. The total operating time between TKAs performed with CT-free navigation system and those performed with portable navigation system was compared in each group. All patients postoperatively was evaluated of clinical results the Japan Orthopedics Association(JOA) Knee scores. Results. The mechanical axis angle in PNS group was 0.8°, while the CT-free navigation system group was 1.6°and there was no statistical significance. The number of outliers for mechanical axis angle was PNS group 39.1%, the large-console navigation group 22.9%, between the two groups there was statistical significance. The operative time in PNS was 130.0 minutes and significantly less compared to the time of the large-console group 150.4 minutes. The JOA Knee score of navigation group was 83.9 points, and the score of PNS group was 81.0 points., there was no statistical significance between the two groups on the clinical score. Conclusion. portable navigation system improved operative time in TKA, this study demonstrates portable navigation system to obtain same angle of overall mechanical axis angle as large-console group navigation system


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 17 - 17
1 May 2016
Sawada N Yabuno K Kanazawa M
Full Access

INTRODUCTION. Soft-tissue balancing of the knee is fundamental to the success of total knee arthroplasty(TKA). Preparing rectangular extension and flexion joint gaps in the most important goal in TKA, because it facilitates functional stability of the knee. In gap balancing technique, we decided the femoral component rotation according to the ligament balance in flexion. Component and limb alignment are important considerations during TKA. Three-dimensional positioning of TKA implants and exact mechanical axis has an effect on implant loosening, polyethylene stresses, and gait. According to the recent reports, the navigation system made it possible to achieve aligned implants more than conventional TKA. Hybrid Navigation technique which is our procedure is combination of navigation system and modified gap technique. In other words, exact mechanical axis is gained by navigation system, stable stability of knee joint is gained by modified gap technique. PURPOSE. The purpose of this study is to carry out clinical evaluation and image assenssment using computed tomography (CT) of the patients who underwent hybrid navigation technique TKA. METHODS. We performed TKA using the hybrid navigation technique in 100 knees from April 2012. Surgical technique was that the knees were exposed using a medial parapatellar approach without patella turnover, and the anterior and posterior cruciate ligaments were resected. And next osteotomy distal femur and proximal tibia using CT-free Navigation, step-wise medial soft tissue release was performed to make the rectangular extension joint gap using gap tensor space(off set balancer) at 40 pounds of distraction force. Flextion gap was made at the same distraction force, thereby we determined external rotation angle of femur osteotomy in a patella reduction position. See Figure 1. CT of the whole leg was taken preoperation and postoperation in all cases. RESULTS. Coronal and sagittal alignments of femoral componet angle were mean 91.05° and mean flex anglewere 2.98°. These alignment of tibial componet angle were 91.08° and mean posterior slope angle were 3.38°. Outliers(>3°)of coronal aligment were 9% in femoral componet, and 8% in tibial componet. Mean operation times(skin incision to skin closure) were 108 minutes. We experienced two complications(1 deep infection and 1 peroneal nerve palsy), but there were no intraoperative fracture, postoperative fracture and DVT/PE. DISCUSSION AND CONCLUSION. 100 patients underwent hybrid navigation TKA which has advantage of both navigation and gap technique. CT assessment of components has shown good results. (outlier>3°femoral component: 9%, tibial component 8%) Short-term postoperative results has shown a good prognosis. We will not understand that we do not observe long-term results in future, neverthless we believe that this technique should be considered as an alternative means of conducting TKA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 105 - 105
10 Feb 2023
Xu J Veltman W Chai Y Walter W
Full Access

Navigation in total hip arthroplasty has been shown to improve acetabular positioning and can decrease the incidence of mal-positioned acetabular components. The aim of this study was to assess two surgical guidance systems by comparing intra-operative measurements of acetabular component inclination and anteversion with a post-operative CT scan. We prospectively collected intra-operative navigation data from 102 hips receiving conventional THA or hip resurfacing arthroplasty through either a direct anterior or posterior approach. Two guidance systems were used simultaneously: an inertial navigation system (INS) and optical navigation system (ONS). Acetabular component anteversion and inclination was measured on a post-operative CT. The average age of the patients was 64 years (range: 24-92) and average BMI was 27 kg/m. 2. (range 19-38). 52% had hip surgery through an anterior approach. 98% of the INS measurements and 88% of the ONS measurements were within 10° of the CT measurements. The mean (and standard deviation) of the absolute difference between the post-operative CT and the intra-operative measurements for inclination and anteversion were 3.0° (2.8) and 4.5° (3.2) respectively for the ONS, along with 2.1° (2.3) and 2.4° (2.1) respectively for the INS. There was significantly lower mean absolute difference to CT for the INS when compared to ONS in both anteversion (p<0.001) and inclination (p=0.02). Both types of navigation produced reliable and reproducible acetabular cup positioning. It is important that patient-specific planning and navigation are used together to ensure that surgeons are targeting the optimal acetabular cup position. This assistance with cup positioning can provide benefits over free-hand techniques, especially in patients with an altered acetabular structure or extensive acetabular bone loss. In conclusion, both ONS and INS allowed for adequate acetabular positioning as measured on postoperative CT, and thus provide reliable intraoperative feedback for optimal acetabular component placement


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 339 - 339
1 Mar 2013
Nam D Weeks D Reinhardt K Nawabi DH Cross MB Mayman DJ Su E
Full Access

Introduction. Computer assisted surgery (CAS) systems have been shown to improve alignment accuracy in total knee arthroplasty (TKA), yet concerns regarding increased costs, operative times, pin sites, and the learning curve associated with CAS techniques have limited its widespread acceptance. The purpose of this study was to compare the alignment accuracy of an accelerometer-based, portable navigation device (KneeAlignÒ 2) to a large console, imageless CAS system (AchieveCAS). Our hypothesis is that no significant difference in alignment accuracy will be appreciated between the portable, accelerometer-based system, and the large-console, imageless navigation system. Methods. 62 consecutive patients, and a total of 80 knees, received a posterior cruciate substituting TKA using the Achieve CAS computer navigation system. Subsequently, 65 consecutive patients, and a total of 80 knees, received a posterior cruciate substituting TKA using the KneeAlignÒ 2 to perform both the distal femoral and proximal tibial resections (femoral guide seen in Figure 1, and tibial guide seen in Figure 2). Postoperatively, standing AP hip-to-ankle radiographs were obtained for each patient, from which the lower extremity mechanical axis, tibial component varus/valgus mechanical alignment, and femoral component varus/valgus mechanical alignment were digitally measured. Each measurement was performed by two, blinded independent observers, and interclass correlation for each measurement was calculated. All procedures were performed using a thigh pneumatic tourniquet, and the total tourniquet time for each procedure was recorded. Results. In the KneeAlignÒ 2 cohort, 92.5% of patients had an alignment within 3° of a neutral mechanical axis (vs. 86.3% with AchieveCAS, p<0.01), 96.2% had a tibial component alignment within 2° of perpendicular to the tibial mechanical axis (vs. 97.5% with AchieveCAS, p=0.8), and 94.9% had a femoral component alignment within 2° of perpendicular to the femoral mechanical axis (vs. 92.5% with AchieveCAS, p<0.01). The mean tourniquet time in the KneeAlignÒ 2 cohort was 48.1 + 10.2 minutes, versus 54.1 + 10.5 in the AchieveCAS cohort (p<0.01). The interclass correlation coefficient for measurement of the postoperative tibial alignment was 0.92, for femoral alignment was 0.85, and for overall lower extremity alignment was 0.94. Conclusion. Accelerometer-based, portable navigation can provide the same degree of alignment accuracy as large console, imageless CAS system in TKA, while also decreasing operative times. The KneeAlignÒ 2 successfully combines the benefits and accuracy of large-console, CAS systems, while avoiding the use of extra pin sites, decreasing operative times, and providing a level of familiarity with conventional alignment methods


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 64 - 64
10 Feb 2023
Lourens E Kurmis A Harries D de Steiger RN
Full Access

Total hip arthroplasty (THA) is an effective treatment for symptomatic hip osteoarthritis (OA). While computer-navigation technologies in total knee arthroplasty show survivorship advantages and are widely used, comparable applications within THA show far lower utilisation. Using national registry data, this study compared patient reported outcome measures (PROMs) in patients who underwent THA with and without computer navigation. Data from Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) PROMs program included all primary THA procedures performed for OA up to 31 December 2020. Procedures using the Intellijoint HIP® navigation system were identified and compared to procedures using other computer navigation systems or conventional instrumentation only. Changes in PROM scores between pre-operative and 6-month post-operative time points were analysed using multiple regression model, adjusting for pre-operative score, patient age, gender, ASA score, BMI, surgical approach, and hospital type. There were 65 primary THA procedures that used the Intellijoint HIP® system, 90 procedures used other types of computer navigation, and the remaining 5,284 primary THA procedures used conventional instrumentation. The estimated mean changes in the EuroQol visual analogue scale (EQ VAS) score and Oxford Hip score did not differ significantly when Intellijoint® was compared to conventional instruments (estimated differences of 2.4, 95% CI [-1.7, 6.5], p = 0.245, and −0.5, 95% CI [-2.5, 1.4], p = 0.592, respectively). The proportion of patients who were satisfied with their procedure was also similar when Intellijoint® was compared to conventional instruments (rate ratio 1.06, 95% CI [0.97, 1.16], p = 0.227). The preliminary data demonstrate no significant difference in PROMs when comparing the Intellijoint HIP® THA navigation system with both other navigation systems and conventional instrumentation for primary THAs performed for OA. Level of evidence: III (National registry analysis)


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 5 - 5
1 Jun 2021
Muir J Dundon J Paprosky W Schwarzkopf R Barlow B Vigdorchik J
Full Access

Introduction. Re-revision due to instability and dislocation can occur in up to 1 in 4 cases following revision total hip arthroplasty (THA). Optimal placement of components during revision surgery is thus critical in avoiding re-revision. Computer-assisted navigation has been shown to improve the accuracy and precision of component placement in primary THA; however, its role in revision surgery is less well documented. The purpose of our study was to evaluate the effect of computer-assisted navigation on component placement in revision total hip arthroplasty, as compared with conventional surgery. Methods. To examine the effect of navigation on acetabular component placement in revision THA, we retrospectively reviewed data from a multi-centre cohort of 128 patients having undergone revision THA between March 2017 and January 2019. An imageless computer navigation device (Intellijoint HIP®, Intellijoint Surgical, Kitchener, ON, Canada) was utilized in 69 surgeries and conventional methods were used in 59 surgeries. Acetabular component placement (anteversion, inclination) and the proportion of acetabular components placed in a functional safe zone (40° inclination/20° anteversion) were compared between navigation assisted and conventional THA groups. Results. Mean inclination decreased post-operatively versus baseline in both the navigation (44.9°±12.1° vs. 43.0°±6.8°, p=0.65) and control (45.8°±19.4° vs. 42.8°±7.1°, p=0.08) groups. Mean anteversion increased in both study groups, with a significant increase noted in the navigation group (18.6°±8.5° vs. 21.6°±7.8°, p=0.04) but not in the control group (19.4°±9.6° vs. 21.2°±9.8°, p=0.33). Post-operatively, a greater proportion of acetabular components were within ±10° of a functional target (40° inclination, 20° anteversion) in the navigation group (inclination: 59/67 (88%), anteversion: 56/67 (84%)) than in the control group (49/59 (83%) and 41/59, (69%), respectively). Acetabular component precision in both study groups improved post-operatively versus baseline. Variance in inclination improved significantly in both control (50.6° vs. 112.4°, p=0.002) and navigation (46.2° vs. 141.1°, p<0.001) groups. Anteversion variance worsened in the control group (96.3° vs. 87.6°, p=0.36) but the navigation group showed improvement (61.2° vs. 72.7°, p=0.25). Post-operative variance amongst cup orientations in the navigation group (IN: 46.2°; AV: 61.2°) indicated significantly better precision than that observed in the control group (IN: 50.6°, p=0.36; AV: 96.3°, p=0.04). Discussion. Re-revision is required in up to 25% of revision THA cases, of which 36% are caused by instability. This places a significant burden on the health care system and highlights the importance of accurate component placement. Our data indicate that the use of imageless navigation in revision THA – by minimizing the likelihood of outliers – may contribute to lower rates of re-revision by improving component orientation in revision THA. Conclusion. Utilizing imageless navigation in revision THAs results in more consistent placement of the acetabular component as compared to non-navigated revision surgeries


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 4 - 4
1 Jun 2021
Jenny J Banks S Baldairon F
Full Access

INTRODUCTION. The restoration of physiological kinematics is one of the goals of a total knee arthroplasty (TKA). Navigation systems have been developed to allow an accurate and precise placement of the implants. But its application to the intraoperative measurement of knee kinematics has not been validated. The hypothesis of this study was that the measurement of the knee axis, femoral rotation, femoral translation with respect to the tibia, and medial and lateral femorotibial gaps during continuous passive knee flexion by the navigation system would be different from that by fluoroscopy taken as reference. MATERIAL – METHODS. Five pairs of knees of preserved specimens were used. The e.Motion FP ® TKA (B-Braun Aesculap, Tuttlingen, Germany) was implanted using the OrthoPilot TKA 4.3 version and Kobe version navigation system (B-Braun Aesculap, Tuttlingen, Germany). Kinematic recording by the navigation system was performed simultaneously with fluoroscopic recording during a continuous passive flexion-extension movement of the prosthetic knee. Kinematic parameters were extracted from the fluoroscopic recordings by image processing using JointTrack Auto ® software (University of Florida, Gainesville, USA). The main criteria were the axis of the knee measured by the angle between the center of the femoral head, the center of the knee and the center of the ankle (HKA), femoral rotation, femoral translation with respect to the tibia, and medial and lateral femorotibial gaps. The data analysis was performed by a Kappa correlation test. The agreement of the measurements was assessed using the intraclass correlation coefficient (ICC) and its 95% confidence interval. RESULTS. The respective CCIs were as follows: HKA angle 0.839 [0.820; 0.856]; femoral translation 0.560 [0.517; 0.600]; femoral rotation 0.652 [0.616; 0.686]; medial femorotibial gap 0.905 [0.894; 0.916]; lateral femorotibial gap 0.767 [0.740; 0.791]. DISCUSSION. Measurements of TKA kinematics by the navigation system and by fluoroscopy were consistent for HKA angle and medial and lateral femorotibial gaps, but not for femoral translation and femoral rotation. These differences can be explained by a methodological bias. At the end of this work, the specific navigation system cannot be considered as a reliable instrument for measuring the kinematics of a TKA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 34 - 34
10 Feb 2023
Farey J Chai Y Xu J Sadeghpour A Marsden-Jones D Baker N Vigdorchik J Walter W
Full Access

Imageless computer navigation systems have the potential to improve acetabular cup position in total hip arthroplasty (THA), thereby reducing the risk of revision surgery. This study aimed to evaluate the accuracy of three alternate registration planes in the supine surgical position generated using imageless navigation for patients undergoing THA via the direct anterior approach (DAA). Fifty-one participants who underwent a primary THA for osteoarthritis were assessed in the supine position using both optical and inertial sensor imageless navigation systems. Three registration planes were recorded: the anterior pelvic plane (APP) method, the anterior superior iliac spines (ASIS) functional method, and the Table Tilt (TT) functional method. Post-operative acetabular cup position was assessed using CT scans and converted to radiographic inclination and anteversion. Two repeated measures analysis of variance (ANOVA) and Bland-Altman plots were used to assess errors and agreement of the final cup position. For inclination, the mean absolute error was lower using the TT functional method (2.4°±1.7°) than the ASIS functional method (2.8°±1.7°, ρ = .17), and the ASIS anatomic method (3.7°±2.1, ρ < .001). For anteversion, the mean absolute error was significantly lower for the TT functional method (2.4°±1.8°) than the ASIS functional method (3.9°±3.2°, ρ = .005), and the ASIS anatomic method (9.1°±6.2°, ρ < .001). All measurements were within ± 10° for the TT method, but not the ASIS functional or APP methods. A functional registration plane is preferable to an anatomic reference plane to measure intra-operative acetabular cup inclination and anteversion accurately. Accuracy may be further improved by registering patient location using their position on the operating table rather than anatomic landmarks, particularly if a tighter target window of ± 5° is desired


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 63 - 63
10 Feb 2023
Lourens E Kurmis A Holder C de Steiger RN
Full Access

Total hip arthroplasty (THA) is an effective treatment for symptomatic hip osteoarthritis (OA). Computer-navigation technologies in total knee arthroplasty show evidence-supported survivorship advantages and are used widely. The aim of this study was to determine the revision outcome of hip commercially available navigation technologies. Data from the Australian Orthopaedic Association National Joint Replacement Registry from January 2016 to December 2020 included all primary THA procedures performed for osteoarthritis (OA). Procedures using the Intellijoint HIP® navigation were identified and compared to procedures inserted using ‘other’ computer navigation systems and to all non-navigated procedures. The cumulative percent revision (CPR) was compared between the three groups using Kaplan-Meier estimates of survivorship and hazard ratios (HR) from Cox proportional hazards models, adjusted for age and gender. A prosthesis specific analysis was also performed. There were 1911 procedures that used the Intellijoint® system, 4081 used ‘other’ computer navigation, and 160,661 were non-navigated. The all-cause 2-year CPR rate for the Intellijoint HIP® system was 1.8% (95% CI 1.2, 2.6), compared to 2.2% (95% CI 1.8, 2.8) for other navigated and 2.2% (95% CI 2.1, 2.3) for non-navigated cases. A prosthesis specific analysis identified the Paragon/Acetabular Shell THAs combined with the Intellijoint HIP® system as having a higher (3.4%) rate of revision than non-navigated THAs (HR = 2.00 (1.01, 4.00), p=0.048). When this outlier combination was excluded, the Intellijoint® system group demonstrated a two-year CPR of 1.3%. There was no statistical difference in the CPR between the three groups before or after excluding Paragon/Acetabular Shell system. The preliminary data presented demonstrate no statistical difference in all cause revision rates when comparing the Intellijoint HIP® THA navigation system with ‘other’ navigation systems and ‘non-navigated’ approaches for primary THAs performed for OA. The current sample size remains too small to permit meaningful subgroup statistical comparisons


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 17 - 17
1 Jun 2021
Lane P Murphy W Harris S Murphy S
Full Access

Problem. Total hip replacement (THA) is among the most common and highest total spend elective operations in the United States. However, up to 7% of patients have 90-day complications after surgery, most frequently joint dislocation that is related to poor acetabular component positioning. These complications lead to patient morbidity and mortality, as well as significant cost to the health system. As such, surgeons and hospitals value navigation technology, but existing solutions including robotics and optical navigation are costly, time-consuming, and complex to learn, resulting in limited uptake globally. Solution. Augmented reality represents a navigation solution that is rapid, accurate, intuitive, easy to learn, and does not require large and costly equipment in the operating room. In addition to providing cutting edge technology to specialty orthopedic centers, augmented reality is a very attractive solution for lower volume and smaller operative settings such as ambulatory surgery centers that cannot justify purchases of large capital equipment navigation systems. Product. HipInsight™ is an augmented reality solution for navigation of the acetabular component in THA. HipInsight is a navigation solution that includes preoperative, cloud based surgical planning based on patient imaging and surgeon preference of implants as well as intraoperative guidance for placement of the acetabular component. Once the patient specific surgical plan is generated on the cloud-based planning system, holograms showing the optimal planned position of the acetabular component are exported in holographic format to a Microsoft HoloLens 2™, which the surgeon wears during placement of the acetabular component in total hip arthroplasty. The pelvis is registered using the HipXpert™ mechanical registration device, which takes 2–3 minutes to dock in the operating room. The surgeon then is able to view the patient's anatomy and optimal placement of the acetabular component under the skin in augmented reality. The surgeon then aligns the real cup impactor with the augmented reality projection of the cup impactor resulting in precise placement of the cup. Timescales. HipInsight was FDA cleared on January 28, 2021 for intraoperative use for placement of the acetabular component in total hip arthroplasty. The first case was performed in February 2021, and the product was launched to a select group of orthopedic surgeons in March 2021. Funding. HipInsight has been self-funded to date, and is beginning to engage in discussions to raise capital for a rapidly scaling commercial launch


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 84 - 84
1 Apr 2019
Saravanja D Roger G
Full Access

Image guided surgery (IGS), or “Navigation,” is now widely used in many areas of surgery including arthroplasty. However, the options for establishing, in real time, the veracity of the navigation information are limited. Manufacturers recommend registering with a “prominent anatomical feature” to confirm accurate navigation is being presented. In their fine print, they warrant the accuracy proximate to the navigation array attached to the body. In multi-level spine surgery where it is most sorely needed, this limits the warrants to the vertebra of reference array attachment. In arthroplasty surgery, the accuracy of the system can be erroneous through technical errors and a delay may occur prior to verification of such innacuracy. In response to this situation surgeons have taken to using K-wires, FaxMax screws and a variety of other “Fiducial Markers”, but these were not specifically designed for this purpose and in many ways are inadequate for the task of verification of navigation accuracy. We have developed a fiducial marker that is designed to address these unmet needs. The Precision Screw is clearly visible on imaging modalities and the central registration point is identifiable at any angle of viewing, with accuracy of fractions of a millimeter. It does not interfere with surgery, being low profile and securely fixed to bone. Finally, in use, it is secure in capturing the navigation probe so that the surgeon does not need to focus on keeping the probe located while reviewing the navigation data. We believe these features make this a useful and worthwhile addition to IGS


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 96 - 96
1 May 2019
Su E
Full Access

Acetabular implant position is important for the stability, function, and long-term wear properties of a total hip arthroplasty (THA). Prior studies of acetabular implant positioning have demonstrated a high percentage of outliers, even in experienced hip surgeons, when conventional instruments are used. Computer navigation is an attractive tool for use in (THA, as it has been shown to improve the precision of acetabular component placement and reduce the incidence of outliers. However, computer navigation with imageless, large-console systems is costly and often interrupts the surgeon's workflow, and thus, has not been widely adopted. Another method to improve acetabular component positioning during THA is the use of fluoroscopy with the direct anterior approach. Studies have demonstrated that the supine position of the patient during surgery facilitates the use of fluoroscopic guidance, thus improving acetabular component position. A handheld, accelerometer based navigation unit for use in total hip replacement has recently become available to assist the surgeon in positioning the acetabular component during anterior approach THA, potentially reducing the need for intraoperative fluoroscopic studies. We sought to compare the radiographic results of direct anterior THA performed with conventional instrumentation vs. handheld navigation to determine the accuracy of the navigation unit, and to see whether or not there was a reduction in the fluoroscopic time used during surgery. Furthermore, we timed the use of the navigation unit to see whether or not it required a substantial addition to surgical time. Our results demonstrate that a handheld navigation unit used during anterior approach THA had no difference with regard to acetabular cup positioning when compared to fluoroscopically assisted THA, but led to a reduction in the use of intraoperative fluoroscopy time


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 55 - 55
1 Jun 2018
Su E
Full Access

Acetabular implant position is important for the stability, function, and long-term wear properties of a total hip arthroplasty (THA). Prior studies of acetabular implant positioning have demonstrated a high percentage of outliers, even in experienced hip surgeons, when conventional instruments are used. Computer navigation is an attractive tool for use in THA, as it has been shown to improve the precision of acetabular component placement and reduce the incidence of outliers. However, computer navigation with imageless, large-console systems is costly and often interrupts the surgeon's workflow, and thus, has not been widely adopted. Another method to improve acetabular component positioning during THA is the use of fluoroscopy with the direct anterior approach. Studies have demonstrated that the supine position of the patient during surgery facilitates the use of fluoroscopic guidance, thus improving acetabular component position. A handheld, accelerometer-based navigation unit for use in total hip replacement has recently become available to assist the surgeon in positioning the acetabular component during anterior approach THA, potentially reducing the need for intra-operative fluoroscopic studies. We sought to compare the radiographic results of direct anterior THA performed with conventional instrumentation vs. handheld navigation to determine the accuracy of the navigation unit, and to see whether or not there was a reduction in the fluoroscopic time used during surgery. Furthermore, we timed the use of the navigation unit to see whether or not it required a substantial addition to surgical time. Our results demonstrate that a handheld navigation unit used during anterior approach THA had no difference with regard to acetabular cup positioning when compared to fluoroscopically assisted THA, but led to a reduction in the use of intra-operative fluoroscopy time


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 40 - 40
1 Apr 2019
Vigdorchik J Cizmic Z Elbuluk A Jerabek SA Paprosky W Sculco PK Meere P Schwarzkopf R Mayman DJ
Full Access

Introduction. Computer-assisted hip navigation offers the potential for more accurate placement of hip components, which is important in avoiding dislocation, impingement, and edge-loading. The purpose of this study was to determine if the use of computer-assisted hip navigation reduced the rate of dislocation in patients undergoing revision THA. Methods and Materials. We retrospectively reviewed 72 patients who underwent computer-navigated revision THA [Fig. 1] between January 2015 and December 2016. Demographic variables, indication for revision, type of procedure, and postoperative complications were collected for all patients. Clinical follow-up was performed at 3 months, 1 year, and 2 years. Dislocations were defined as any episode that required closed or open reduction or a revision arthroplasty. Data are presented as percentages and was analyzed using appropriate comparative statistical tests (z-tests and independent samples t- tests). Results. All 72 patients (48% female; 52% male) were included in the final analysis [Fig. 2]. Mean age of patients undergoing revision THA was 70.4 ± 11.2 years. Mean BMI was 26.4 ± 5.2 kg/m. 2. The most common indications for revision THA were instability (31%), aseptic loosening (29%), osteolysis/eccentric wear (18%), infection (11%), and miscellaneous (11%). During revision procedure, polyethylene component was most commonly changed (46%), followed by femoral head (39%), and acetabular component (15%). At 3 months, 1 year, and final follow-up, there were no dislocations among all study patients (0%). Compared to preoperative dislocation values, there was a significant reduction in the rate of dislocation with the use of computer-assisted hip navigation (31% vs. 0%; p<0.05). Discussion. Our study demonstrates a significant reduction in the rate of dislocation following revision THA with the use of computer navigation. Although the cause of postoperative dislocation is often multifactorial, the use of computer-assisted surgery may help to curtail femoral and acetabular malalignment in revision THA


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 99 - 99
1 Apr 2019
Wahrburg J Gieseler O Roth H
Full Access

Total hip replacement procedures are among the most frequent surgical interventions in all industrialized countries. Although it is a routine operationliterature reports that important parameters regarding for example cup orientation and leg length discrepancy often turn out to be not satisfying after surgery. This paper presents a novel concept to improve the reproducibility and accuracy for implantation of cup and stem prosthesis at exactly the desired locations. Existing computer- based commercial products either offer software solutions for just pre-operative planning, or imageless navigation systems that are only used during surgery in the operating theatre. The innovation of our approach is based on an integrated computer-assisted solution that combines pre-operative planning and intra-operative navigation to support THR procedures. The software for pre-operative planning can process both, 3D CT images and standard 2D x-ray images. A custom-built navigation system using optical 3D localizing technology has been developed to transfer planning results to the OR. The main objective of our approach is to implant the artificial joint in a way to restore the natural anatomy of the joint before surgery as close as possible, or with exactly planned modifications. In particular, cup inclination, cumulative anteversion of cup and stem, CCD angle and lateral offset, centre of rotation, leg length discrepancy, and joint range of motion are considered. It is not necessary to determine numerical values for all of these parameters because our approach uses a unique procedure to record the natural anatomical situation by combining pre-operative planning and intra-operative navigation, and subsequently supports implantation of the prosthesis components by surgical navigation in order to restore this situation. In case planar 2D x-ray images are used for pre-operative planning accurate scaling of these images is a prerequisite for exact determination of relevant parameters. The patient-specific scaling factor depends on the distance of the hip joint rotation centre from the x-ray detector or film. We have designed a low-cost localization system to be mounted close to the x-ray apparatus. It localizes the 3D position of the rotation centre by small motions of the leg and eliminates uncertainties of conventional methods that are caused by improper positioning of a calibration body. Easy and robust setup and application have been key objectives for the development of our custom-built navigation system. Acquisition of intraoperative parameters for example includes the determination of the acetabular centre axis by localizing selected landmarks at the acetabular rim. Intra-operative parameters are combined with pre-operative parameters without needing sophisticated matching procedures with the pre-operative images. A preliminary surgical workflow that will be detailed in the conference presentation has been designed for evaluation of the concept using sawbones models. Based on the promising results of our laboratory tests we have started to prepare first clinical experiments in close cooperation with surgeons


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 111 - 111
1 Aug 2017
Su E
Full Access

Acetabular implant position is important for the stability, function, and long-term wear properties of a total hip arthroplasty (THA). Prior studies of acetabular implant positioning have demonstrated a high percentage of outliers, even for experienced hip surgeons, when conventional instruments are used. Computer navigation is an attractive tool for use in THA, as it has been shown to improve the precision of acetabular component placement and reduce the incidence of outliers. However, computer navigation with imageless, large-console systems is costly and often interrupts the surgeon's workflow, and thus has not been widely adopted. Another method to improve acetabular component positioning during THA is the use of fluoroscopy with the direct anterior approach. Studies have demonstrated that the supine position of the patient during surgery facilitates the use of fluoroscopic guidance, thus improving acetabular component position. A handheld, accelerometer based navigation unit for use in total hip replacement has recently become available to assist the surgeon in positioning the acetabular component during anterior approach THA, potentially reducing the need for intra-operative fluoroscopic studies. We sought to compare the radiographic results of direct anterior THA performed with conventional instrumentation vs. handheld navigation to determine the accuracy of the navigation unit, and to see whether or not there was a reduction in the fluoroscopic time used during surgery. Furthermore, we timed the use of the navigation unit to see whether or not it required a substantial addition to surgical time. Our results demonstrate that a handheld navigation unit used during anterior approach THA had no difference with regard to acetabular cup positioning when compared to fluoroscopically assisted THA, but led to a reduction in the use of intra-operative fluoroscopy time


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 40 - 40
1 Feb 2020
Tarallo L Porcellini G Giorgini A Pellegrini A Catani F
Full Access

Introduction. Total shoulder replacement is a successful treatment for gleno-humeral osteoarthritis. However, components loosening and painful prostheses, related to components wrong positioning, are still a problem for those patients who underwent this kind of surgery. CT-based intraoperative navigation system is a suitable option to improve accuracy and precision of the implants as previously described in literature for others district. Method. Eleven reverse shoulder prostheses were performed at Modena Polyclinic from October 2018 to April 2019 using GPS CT-based intraoperative navigation system (Exactech, Gainsville, Florida). In the preoperative planning, Walch classification was used to assess glenoid type. The choice of inclination of the glenoid component, the screw length, as well as the inclination of the reamer was study and recorded using specific software using the CT scan of shoulder of each patient (Fig.1, Fig.2). Intraoperative and perioperative complications were recorded. Three patients were male, eight were female. Mean age was 72 years old (range 58=84). Three glenoid were type B2, six cases were B1, two case were type C1. Results. In all cases treated by reverse shoulder prostheses we had obtain good functional results at preliminary follow up. Eight degree posterior augment was used in seven case. Planned version was 0° in eight case, an anti-version of 3° was planned in the other three cases. Final reaming was as preoperatively planned in all cases except one. Mean surgical time was 71 minutes (range 51–82). One case of coracoid rupture has been reported. In all cases the system worked in proper manner without failures, no case of infection was reported. Discussion. It is well known as the more accurate placement of the glenoid led to enhanced long-term survivorship of the implant and decrease complication rates in RSTA. Our first experience with GPS navigation system has been satisfied. Good components’ positioning has been reached in all cases, without deviation from the preoperative planning. Pre-operative preparation using software has been always respected except in one case in which we decided to ream 1mm less to avoid excessive bone loss. In 3 case we decide to increase glenoid anti-version to allow a good cage containment in the scapula. No failure of the system has been recorded, with a little increase in the surgical time respect to traditional surgeries performed in our institute. The first case performed reported coracoid fracture, probably due to lack of experience in coracoid tracker positioning. It is very important to set the surgical theatre and the position of the patient in order to make the coracoid tracker visible for the computer. Screw positioning and length is decisively improved with GPS system compared with traditional implant. The most important advantage is to avoid the malposition of the glenoid component, solving problems like loosening or restriction in shoulder range of motion. We believe that a final cross check between preoperative planning and final control of the prostheses implanted, should be used in the future, but by now the GPS navigation system is a useful way to improve our surgery, especially in difficult cases. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 23 - 23
1 Oct 2014
Taki N Mitsugi N Mochida Y Aratake M Ota H Shinohara K Saito T
Full Access

Imageless navigation is useful in acetabular cup orientation during total hip arthroplasty (THA). There is a limitation of accuracy in the imageless navigation system because of the registration method, that is, to palpate bony landmarks over the skin. To improve this limitation, ultrasound-based navigation was introduced for more precise registration of bony landmarks. We evaluated the accuracy of placement of the implant, which was measured by CT in 66 patients. 22 patients underwent THA with imageless navigation, and 44 patients underwent THA with ultrasound-based navigation. The accuracy was evaluated by comparison of the navigation values obtained during surgery with the CT measured values. For the 44 patients with ultrasound-based navigation system, the mean CIA was 39.6+4.1 degrees (mean+SD) and the CAA was 18.5+6.1 degrees with CT evaluation. Ultrasound-based navigation showed 39.0+3.2 degrees in CIA and 18.8+5.9 degrees in CAA during surgery. The mean absolute difference in cup inclination angle (CIA) between ultrasound-based navigation and CT was 2.4+2.1 degrees (range 0.1–9.2 degrees). The mean absolute difference in cup anteversion angle (CAA) between navigation and CT was 2.2+2.7 degrees (0.04–12.2 degrees). The rasp ante-torsion angle was 28.6+10.0 degrees in the ultrasound-based navigation system. The mean SAA was 28.8+9.3 degrees in CT. Strong correlation was found between the rasp ante-torsion angle and SAA (r=0.858). The mean absolute difference between the rasp ante-torsion angle and SAA was 4.3+3.6 degrees (0.2-17.2 degrees). For the 22 patients with imageless navigation system, the mean absolute difference between imageless navigation and CT in CIA, CAA, and SAA were 2.5+1.8 degrees (0.1–5.8 degrees), 5.4+3.8 degrees (0.1–17.2 degrees), and 5.2+3.0 degrees (1.1-12 degrees) respectively. The thickness of subcutaneous tissue at the pubic symphysis was correlated to the difference in CAA between the imageless navigation and CT (r=0.456). Ultrasound-based navigation showed higher accuracy in CAA compare to imageless navigation. Moreover, ultrasound-based navigation showed almost the same accuracy of placement of the implant compare to the reported accuracy with CT-based navigation. Ultrasound-based navigation system improved the limitation of accuracy in the imageless navigation system


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 93 - 93
1 Feb 2020
Cipparone N Robinson M Chen J Muir J Shah R
Full Access

Acetabular cup positioning remains a real challenge and component malpositioning after total hip arthroplasty (THA) can lead to increased rates of dislocation and wear. It is a common cause for revision THA. A novel 3D imageless mini-optical navigation system was used during THA to provide accurate, intraoperative, real-time, and non-fluoroscopic data including component positioning to the surgeon. This retrospective comparative single surgeon and single approach study examined acetabular component positioning between traditional mini-posterolateral THA and mini-posterolateral THA using the 3D mini-optical navigation system. A retrospective chart review was conducted of 157 consecutive (78 3D mini-optical navigation and 79 traditional non-navigation methods) THAs performed by the senior author using a mini-posterolateral approach at an ambulatory surgery center and hospital setting. Two independent reviewers analyzed postoperative radiographs in a standardized fashion to measure acetabular component positioning. Demographic, clinical, surgical, and radiographic data were analyzed. These groups were found to have no statistical difference in age, gender, and BMI (Table I). There was no difference between groups in acetabular components in the Lewinnek safe zone, 31.2% vs 26.6% (p = 0.53). Cup anteversion within the safe zone did not differ, 35.1% vs 40.5% (p = 0.48); while cup inclination within the safe zone differed, with more in the navigation group, 77.9% vs 51.9% (p < 0.01). Change in leg length was significantly different with the navigation group's leg length at 1.9 ± 6.3, less than the traditional at 5.4 ± 7.0 (p < 0.01). There was no difference in mean change in offset between groups (4.5 ± 5.9 vs 6.2 ± 7.9, p = 0.12); navigation, traditional) (Table II). The 3D mini-optical navigation group did have significantly longer operative time (98.4 ± 17.5 vs 89.3 ± 15.5 p < 0.01). Use of the novel 3D Mini-optical Navigation System significantly improved cup inclination compared to traditional methods while increasing operative time. For any figures or tables, please contact the authors directly