Summary. Anatomical variations in hip joint anatomy are associated with both the presence and location of tibiofemoral osteoarthritis (OA). Introduction. Variations in hip joint anatomy can alter the moment-generating capacity of the hip abductor muscles, possibly leading to changes in the magnitude and direction of ground reaction force and altered loading at the knee. Through analysis of full-limb anteroposterior radiographs, this study explored the hypothesis that knees with lateral and medial knee OA demonstrate hip geometry that differs from that of control knees without OA. Patients and Methods. This cross-sectional study is an ancillary to the Multicenter Osteoarthritis Study (MOST), an observational cohort study of incident and progressive knee OA in community-dwelling men and women, ages 50–79 years. We report on 160 knees with lateral OA (LOA), 168 knees with medial OA (MOA), and 336 controls. All participants with LOA at the baseline MOST visit were included. An equal number of knees with MOA, and twice the number of control knees were then randomly selected. In participants with bilateral eligibility, a single knee was randomly selected so that all participants contributed only one case or one control knee to the analysis. Case knees were identified as having Kellgren/Lawrence (K/L) ≥ 2 with joint space narrowing (JSN) ≥ 1 in the specified compartment with no JSN in the adjoining compartment. Controls had no radiographic OA (K/L=0 or 1 and JSN=0) in either compartment. Hip joint anatomy parameters were assessed from full-limb standing radiographs using custom OsiriX software by an author (AB) blinded to knee OA status, and unreadable radiographs (N = 8) were discarded prior to unblinding. We measured parameters that influence the abductor moment arm of the hip, including: abductor lever arm, femoral offset, femoral neck length, femoral
In order to evaluate the relationship between acetabular and proximal femoral alignment in the initiation and evolution of osteoarthritis of the dysplastic hip, the acetabular and femoral angles were calculated geometrically from radiographs of 62 patients with pre-arthrosis and early osteoarthritis. The sum of the lateral opening angle of the acetabulum and the
The morphology of the proximal part of the humerus varies largely. Morphometric features characterizing the three-dimensional geometry of the proximal humerus have revealed a wide difference within individuals. These parameters include head size, radius of curvature, inclination angle, retroversion angle, offsets and
The aim of our study was to investigate whether placing of the femoral component of a hip resurfacing in valgus protected against spontaneous fracture of the femoral neck. We performed a hip resurfacing in 20 pairs of embalmed femora. The femoral component was implanted at the natural
There is continued concern over complication rates (20–30% of cases) in locked proximal humeral plating. The most common sequelae of this is screw penetration of the humeral head. This is associated with natural settling of the fracture, malreducition in varus, insufficent medial support of the fracture. The proximity of the screws to the articular surface can also be influential on outcome if collapse occurs. Our operative technique is to establish the rotation of the humeral head where the drill appears closest to the articular margin (by sequential xray screening) and subtract from this to avoid intra-articular penetration of the humeral head. 55 Consecutive patients of average age 56.4 years (14.7–86.1), 17 male and 38 females, who underwent PHILOS plating were identified using Bluespier database. Xrays were analysed for fracture pattern, restoration of
A total of 20 pairs of fresh-frozen cadaver femurs were assigned to four alignment groups consisting of relative varus (10° and 20°) and relative valgus (10° and 20°), 75 composite femurs of two neck geometries were also used. In both the cadaver and the composite femurs, placing the component in 20° of valgus resulted in a significant increase in load to failure. Placing the component in 10° of valgus had no appreciable effect on increasing the load to failure except in the composite femurs with varus native femoral necks. Specimens in 10° of varus were significantly weaker than the neutrally-aligned specimens. The results suggest that retention of the intact proximal femoral strength occurs at an implant angulation of ≥ 142°. However, the benefit of extreme valgus alignment may be outweighed in clinical practice by the risk of superior femoral neck notching, which was avoided in this study.
A cadaver study using six pairs of lower limbs was conducted to investigate the accuracy of computer navigation and standard instrumentation for the placement of the Birmingham Hip Resurfacing femoral component. The aim was to place all the femoral components with a stem-shaft angle of 135°. The mean stem-shaft angle obtained in the standard instrumentation group was 127.7° (120° to 132°), compared with 133.3° (131° to 139°) in the computer navigation group (p = 0.03). The scatter obtained with computer-assisted navigation was approximately half that found using the conventional jig. Computer navigation was more accurate and more consistent in its placement of the femoral component than standard instrumentation. We suggest that image-free computer-assisted navigation may have an application in aligning the femoral component during hip resurfacing.