Advertisement for orthosearch.org.uk
Results 1 - 20 of 82
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 72 - 72
1 Jul 2014
Trieb K Pass G Hofstaetter S
Full Access

Summary Statement. Treatment of non-union is a highly demanding field with respect to bone healing. BMP 7 is a useful, wide-ranged tool in treating non-union of the foot and benign bone tumors. It represents a low-risk procedure with a high level of reliability. Introduction. Treatment of non-union is a highly demanding field with respect to bone healing. Treatment of tibial fracture non-union with the bone morphogenetic protein 7 (BMP-7) has been successfully reported. BMP 7 is a recombinant human protein produced in ovary cells of the Chinese hamster. It is responsible for the differentiation of mesenchymal stem cells from the periost, muscle and sponious bone and stimulates bone formation. It is the aim of our study to investigate the use of BMP 7 for other locations than the tibia, such as the foot and benign bone tumors. We strive for union or revision in each medical case. Patients & Methods. At our clinic we applied BMP-7 to 13 patients (9 patients with non-union, 4 patients with benign bone cysts). 9 patients with non-union of the foot (4 forefoot, 1 midfoot, 3 hindfoot, 1 tibia) were surgically treated by resection, stabilisation, and application of BMP 7. The study included 5 men and 4 women at an average age of 58,4 years (range 33 – 80), 13 previous surgeries had been carried out. The period of follow up was on average 16.3 months (5 – 40 months). The indication for using BMP-7 instead of autologous bone graft was poor local blood supply, poor local soft tissue because of previous interventions and risk factors like smoking and diabetes. Following an indicated open biopsy, the 4 cases of benign bone tumors (1 juvenile bone cyst of the talus, 1 osteofibrose dysplasia of the proximal tibia and 2 juvenile bone cysts of the proximal humerus) were all treated with resection, followed by an application of BMP-7 and external or internal fixation. In addition two received bone grafting and two received cortisone. The average age of the tumor group was 16,75 years (11–24 years, 2 male, 2 female). Results. At follow-up all patients were satisfied with respect to pain and function, no operative complications had occurred and bone fusion had finished in 7 patients after 3 months. One ankle joint had a fibrous fusion but was free of pain. One arthrodesis of the first metatarsophalangeal joint was turned into a resection arthroplasty, today the patient is free of pain and uses a normal shoe. Both bone cysts have the radiological evidence of rehabilitation. At one humeruscyst we removed the TENS-nails without complications. We had no complications like heterotopic ossification, local erythema or pressure sensitivity. Discussion/Conclusion. These results show that BMP 7 is a useful, wide-ranged tool in treating non-union of the foot and benign bone tumors. It represents a low-risk procedure with a high level of reliability


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 240 - 240
1 Jul 2014
Bhattacharjee A Kuiper J Harrison P Roberts S Richardson J
Full Access

Summary. Randomised controlled study evaluating new bone formation in vivo in fracture non-unions by bone marrow derived stromal cells (BMSC). These cells do not show statistically significant new bone formation. Age of the patient during fracture, diabetes and doubling time had been observed to be correlated with fracture healing. Introduction. Regenerating new bone by cell therapy could provide therapeutic options in many conditions such as fracture non-unions and osteo-chondral defect regeneration in advance OA. In this randomised controlled study we evaluated the efficacy of new bone formation by bone marrow derived stromal cells (BMSC) in patients with non-union. Methods. An ethically approved and adequately powered single centre randomised control trial recruited 35 patients for treatment of non-unions with BMSC. Bone marrow was harvested and autologous BMSC were culture expanded in autologous serum at our local MHRA-licensed facility (Oscell, Oswestry, UK). Following selection by adherence and in vitro culture expansion using autologous serum, cells in serum and serum alone was randomised for insertion at one of the two fracture sides by StratOs® computer software. Patients and the operating surgeon were blinded to the side of cell insertion. Such method of randomisation created internal controls at the fracture sites- one side receiving the cell (‘test side’) and other, not (‘control’). Serial radiographs extending up to an average of twelve months were evaluated by four independent assessors blinded to side of cell insertion. Callus formation and bridging of fracture was compared for ‘test’ and ‘control’ side. Radiological and clinical outcome at final follow-up was also noted. Results. Thirty five patients were recruited (21 males, 14 females; mean age 51.2±13.2SD). The mean duration of non-union was 3±2SD years, with a mean 3.5 (range 1–12) surgical interventions prior to BMSC insertion. Five patients had diabetes. New callus formation and fracture bridging was slow, with no significant difference between the cell-insertion and control side although a substantial improvement in fracture bridging/formation of new callus was noted at 9–12 months. Fracture union was achieved in 21 patients at final follow-up with failure to progress to union in 14 patients. Age at accident, having diabetes and cell doubling time during culture predicted union (r2=0.63, p=0.017). There was no reported adverse effects from the trial. Conclusion. The study concluded that patient biology predicts the final outcome in cases with non-union of fracture. Slower doubling time during in vitro expansion can be significantly correlated with failure to unite in addition to diabetes and age of the patient. BMSC's are safe option for cell therapy in a setting of non-union although it failed to show statistically significant difference of new bone formation or fracture bridging for up to one year


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 81 - 81
2 Jan 2024
van Griensven M
Full Access

Bone regeneration is pivotal for the healing of fractures. In case this process is disturbed a non-union can occur. This can be induced by environmental factors such as smoking, overloading etc. Co-morbidities such as diabetes, osteoporosis etc. may be more intrinsic factors besides other disturbances in the process. Those pathways negatively influence the bone regeneration process. Several intrinsic signal transduction pathways (WNT, BMP etc.) can be affected. Furthermore, on the transcriptional level, important mRNA expression can be obstructed by deregulated miRNA levels. For instance, several miRNAs have been shown to be upregulated during osteoporotic fractures. They are detrimental for osteogenesis as they block bone formation and accelerate bone resorption. Modulating those miRNAs may revert the physiological homeostasis. Indeed, physiological fracture healing has a typical miRNA signature. Besides using molecular pathways for possible treatment of non-union fractures, providing osteogenic cells is another solution. In 5 clinical cases with non-union fractures with defects larger than 10 cm, successful administration of a 3D printed PCL-TCP scaffold with autologous bone marrow aspirate concentrate and a modulator of the pathogenetic pathway has been achieved. All patients recovered well and showed a complete union of their fractures within one year after start of the regenerative treatment. Thus, non-union fractures are a diverse entity. Nevertheless, there seem to be common pathogenetic disturbances. Those can be counteracted at several levels from molecular to cell. Compositions of those may be the best option for future therapies. They can also be used in a more personalized fashion in case more specific measurements such as miRNA signature and stem cell activity are applied


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 119 - 119
4 Apr 2023
Jalal M Wallace R Peault B Simpson H
Full Access

To test and evaluate the effectiveness of local injection of autologous fat-derived mesenchymal stem cells (MSCs) into fracture site to prevent non-union in a clinically relevant model. 5 male Wistar rats underwent the same surgical procedure of inducing non-union. A mid-shaft tibial osteotomy was made with 1mm non-critical gap. Periosteum was stripped around the two fracture ends. Then, the fracture was fixed by ante-grade intramedullary nail. The non-critical gap was maintained by a spacer with minimal effect on the healing surface area. At the same surgical time, subcutaneous fat was collected from the ipsilateral inguinal region and stem cells were isolated and cultured in vitro. Within three weeks postoperatively, the number of expanded stem cells reached 5×10. 6. and were injected into the fracture site. Healing was followed up for 8 weeks and the quality was measured by serial x-rays, microCT, mechanical testing and histologically. Quality of healing was compared with that of previously published allogenic, xenogeneic MSCs and Purified Buffered Saline (PBS) controls. All the five fractures united fully after 8 weeks. There was a progressive increase in the callus radiopacity during the eight-week duration, the average radiopacity in the autologous fat-MSC injected group was significantly higher than that of the allogeneic MSCs, xenogeneic MSCs and the control group, P < 0.0001 for treatment, time after injection, and treatment-time interaction (two-way repeated measure ANOVA). MicroCT, mechanical testing and histology confirmed radiological findings. The autologous fat-MSCs are effective in prevention of atrophic non-union by stimulation of the healing process leading to a solid union. The quality and speed of repair are higher than those of the other types of cell transplantation tested


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 60 - 60
11 Apr 2023
Chalak A Kale S Mehra S Gunjotikar A Singh S Sawant R
Full Access

Osteomyelitis is an inflammatory condition accompanied by the destruction of bone and caused by an infecting microorganism. Open contaminated fractures can lead to the development of osteomyelitis of the fractured bone in 3-25% of cases, depending on fracture type, degree of soft-tissue injury, degree of microbial contamination, and whether systemic and/or local antimicrobial therapies have been administered. Untreated, infection will ultimately lead to non-union, chronic osteomyelitis, or amputation. We report a case series of 10 patients that presented with post-operative infected non-union of the distal femur with or without prior surgery. The cases were performed at Padmashree Dr. D. Y. Patil Hospital, Nerul, Navi Mumbai, India. All the patients’ consents were taken for the study which was carried out in accordance with the Helsinki Declaration. The methodology involved patients undergoing a two-stage procedure in case of no prior implant or a three-stage procedure in case of a previous implant. Firstly, debridement and implant removal were done. The second was a definitive procedure in form of knee arthrodesis with ring fixator and finally followed by limb lengthening surgery. Arthrodesis was planned in view of infection, non-union, severe arthritic, subluxated knee, stiff knee, non-salvage knee joint, and financial constraints. After all the patients demonstrated wound healing in 3 months along with good radiographic osteogenesis at the knee arthrodesis site, limb lengthening surgeries by tibial osteotomy were done to overcome the limb length discrepancy. Distraction was started and followed up for 5 months. All 10 patients showed results with sound knee arthrodesis and good osteogenesis at the osteotomy site followed by achieving the limb length just 1-inch short from the normal side to achieve ground clearance while walking. Our case series is unique and distinctive as it shows that when patients with infected nonunion of distal femur come with the stiff and non-salvage knee with severe arthritic changes and financial constraints, we should consider knee arthrodesis with Ilizarov ring fixator followed by limb lengthening surgery


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 94 - 94
1 Mar 2021
Harrison A
Full Access

Abstract. Objectives. Review the evidence of low intensity pulsed ultrasound (LIPUS) for fracture non-union treatment and the potential to treat fractures in patients with co-morbidities at risk of fracture non-union. Methods. Data was gathered from both animal and human studies of fracture repair to provide an overview of the LIPUS in bone healing applications to provide in-depth evidence to substantiate the use in treatment of non-union fractures and to propose a scientific rational to develop a clinical development programme. Results. LIPUS is an effective method for treating fracture non-union, with most studies showing heal rates in the mid 80%. In the UK NICE has published MTG-12 guidance for non-union treatment, which demonstrates that LIPUS is an effective and cost effective method as an alternative to surgery to treat non-union fractures. Basic science studies and evaluation of clinical trial data has led to the understanding that LIPUS can mitigate co-morbidities related to failure of bone healing such as diabetes, advancing age and tobacco use. Future clinical trials will evaluate the use of LIPUS in acute fractures in patients with high risk of low bone healing capacity to prevent the development of a non-union. As with all medical treatments, LIPUS for fracture repair needs to be used appropriately, with poorly fixed fractures or large fracture gaps, being unsuitable for LIPUS treatment. In addition, considerations such as targeting the fracture site in deep-seated bones and clinician / patient engagement to ensure good compliant usage are vital factors to ensure good clinical outcomes. Conclusion. Using basic science research, a thorough knowledge of the mechanism of action has been established, which has elucidated that co-morbidities related to the development of fracture non-union can be mitigated by the LIPUS technology. A pragmatic clinical trial in the United States is currently ongoing to test these hypothesises clinically. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 65 - 65
11 Apr 2023
Siverino C Arens D Zeiter S Richards G Moriarty F
Full Access

In chronically infected fracture non-unions, treatment requires extensive debridement to remove necrotic and infected bone, often resulting in large defects requiring elaborate and prolonged bone reconstruction. One approach includes the induced membrane technique (IMT), although the differences in outcome between infected and non-infectious aetiologies remain unclear. Here we present a new rabbit humerus model for IMT secondary to infection, and, furthermore, we compare bone healing in rabbits with a chronically infected non-union compared to non-infected equivalents. A 5 mm defect was created in the humerus and filled with a polymethylmethacrylate (PMMA) spacer or left empty (n=6 per group). After 3 weeks, the PMMA spacer was replaced with a beta-tricalcium phosphate (chronOs, Synthes) scaffold, which was placed within the induced membrane and observed for a further 10 weeks. The same protocol was followed for the infected group, except that four week prior to treatment, the wound was inoculated with Staphylococcus aureus (4×10. 6. CFU/animal) and the PMMA spacer was loaded with gentamicin, and systemic therapy was applied for 4 weeks prior to chronOs application. All the animals from the infected group were culture positive during the first revision surgery (mean 3×10. 5. CFU/animal, n= 12), while at the second revision, after antibiotic therapy, all the animals were culture negative. The differences in bone healing between the non-infected and infected groups were evaluated by radiography and histology. The initially infected animals showed impaired bone healing at euthanasia, and some remnants of bacteria in histology. The non-infected animals reached bone bridging in both empty and chronOs conditions. We developed a preclinical in vivo model to investigate how bacterial infection influence bone healing in large defects with the future aim to explore new treatment concepts of infected non-union


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 134 - 134
11 Apr 2023
Wong K Koh S Tay X Toh R Mohan P Png M Howe T
Full Access

A painful “dreaded black line” (DBL) has been associated with progression to complete fractures in atypical femur fractures (AFF). Adjacent sclerosis, an unrecognized radiological finding, has been observed in relation to the DBL. We document its incidence, associated features, demographics and clinical progression. We reviewed plain radiographs of 109 incomplete AFFs between November 2006 and June 2021 for the presence of sclerosis adjacent to a DBL. Radiographs were reviewed for location of lesions, and presence of focal endosteal or periosteal thickening. We collected demographical data, type and duration of bisphosphonate therapy, and progression to fracture or need for prophylactic stabilization, with a 100% follow up of 72 months (8 – 184 months). 109 femurs in 86 patients were reviewed. Seventeen sclerotic DBLs were observed in 14 patients (3 bilateral), involving 15.6% of all femora and 29.8% of femora with DBLs. Location was mainly subtrochanteric (41.2%), proximal diaphyseal (35.3%) and mid-diaphyseal (23.5%), and were associated with endosteal or periosteal thickening. All patients were female, mostly Chinese (92.9%), with a mean age of 69 years. 12 patients (85.7%) had a history of alendronate therapy, and the remaining 2 patients had zoledronate and denosumab therapy respectively. Mean duration of bisphosphonate therapy was 62 months. 4 femora (23.5%) progressed to complete fractures that were surgically managed, whilst 6 femora (35.3%) required prophylactic fixation. Peri-lesional sclerosis in DBL is a new radiological finding in AFFs, predominantly found in the proximal half of the femur, at times bilateral, and are always associated with endosteal or periosteal thickening. As a high proportion of patients required surgical intervention, these lesions could suggest non-union of AFFs, similar to the sclerotic margins commonly seen in fractures with non-union. The recognition of and further research into this new feature could shed more light on the pathophysiological progression of AFFs


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 104 - 104
2 Jan 2024
der Broeck L Geurts J Qiu S Poeze M Blokhuis T
Full Access

The optimal treatment strategy for post-traumatic long bone non-unions is subject of an ongoing discussion. At the Maastricht University Medical Center (MUMC+) the induced membrane technique is used to treat post-traumatic long bone non-unions. This technique uses a multimodal treatment algorithm involving bone marrow aspirate concentrate (BMAC), the reamer-irrigator-aspirator (RIA) and P-15 bioactive peptide (iFactor, Cerapedics). Bioactive glass (S53P4 BAG, Bonalive) is added when infection is suspected. This study aims to objectify the effect of this treatment algorithm on the health-related quality of life (HRQoL) of patients with post-traumatic long bone non-unions. We hypothesized that HRQoL would improve after treatment. From January 2020 to March 2023, consecutive patients who were referred to a multidisciplinary (trauma, orthopaedic and plastic surgery) non-union clinic at the MUMC+, The Netherlands, were evaluated using the Non-Union Scoring System (NUSS). The EQ-5D-5L questionnaire and the Lower Extremity Functional Scale (LEFS) were employed to obtain HRQoL outcomes both prior to and subsequent to surgery, with a follow-up at 6, 18 and 35 weeks. Seventy-six patients were assessed at baseline (T0), with a mean NUSS of 40 (± 13 SD). Thirty-eight patients had their first follow-up, six weeks after surgery (T1). Thirty-one patients had a second follow-up at 18 weeks (T2), and twenty patients had the third follow-up at 35 weeks (T3). The EQ-5D index mean at baseline was 0.480, followed by an index of 0.618 at T1, 0.636 at T2, and 0.702 at T3. A significant difference was found in the HRQoL score between T0 and T1, as well as T2 and T3 (p<0.001; p=0.011). The mean LEFS significantly increased from 26 before intervention to 34, 39, and 43 after treatment (p<0.001; p=0.033; p=0.016). This study demonstrated a significant improvement in the health-related quality of life of patients with post-traumatic long bone non-unions after the standardized treatment algorithm following the induced membrane technique


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 116 - 116
4 Apr 2023
Zhang J Zhu J Zhou A Thahir A Krkovic M
Full Access

Treatment of tibial osteomyelitis can be challenging and lengthy, with numerous complications possible during rehabilitation. We report on the usage of the Taylor Spatial Frame (TSF) for a large cohort of patients, and analyse factors that affect outcomes. Between 2015-2020, 51 patients were treated with TSF for osteomyelitis at a major trauma centre. Demographic, infection and treatment factors of: age, smoking status, diabetes, and BMI, acute (<6 weeks post injury) or chronic (>6 weeks) osteomyelitis, bacteria isolated, time to debridement, therapy/surgery number of TSF, time TSF was in, antibiotic treatment period, time to partial weight bear (PWB) and full weight bear (FWB) prescriptions, were collected. Outcomes of complications and time to union were obtained. Radiological union was achieved at mean 11.0 months. Mean follow up was 24.1 months. Six and three patients were further treated with fusion and amputation respectively. Mean treatment time with TSF was 12.1 months. 78% had some complications, with pin site infection, malunion, and non-union being most prevalent. Univariate factor analysis, multicollinearity diagnostics, then multivariate model construction were performed. Staphylococcus Epidermidis in bone debridement microbiology was significantly negatively associated with pin site infection (OR 0.093, 95% CI 0.011-0.828) and malunion (OR 0.698, 95% CI 0.573-0.849), and enterococcus with non-union (OR 0.775, 95% CI 0.656-0.916), during the treatment period. Time to union was significantly positively associated with time from admission to debridement (p=0.035), time TSF was in (p=0.021), presence of complications (p=0.045), bone loss complication(p=0.037), time to FWB prescription(p=0.001). We have analysed the effectiveness of TSF in the treatment of tibial osteomyelitis, and elucidated important injury, treatment and rehabilitation factors that affect outcome. The negative bacterial-complication cross associations could be due to successful eradication as culture specific antibiotics were used postoperatively. Earlier patient full weight bearing could enhance callous formation leading to faster union


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 2 - 2
4 Apr 2023
Zhou A Jou E Bhatti F Modi N Lu V Zhang J Krkovic M
Full Access

Open talus fracture are notoriously difficult to manage and they are commonly associated with a high level of complications including non-union, avascular necrosis and infection. Currently, the management of such injuries is based upon BOAST 4 guidelines although there is no suggested definitive management, thus definitive management is based upon surgeon preference. The key principles of open talus fracture management which do not vary between surgeons, however, there is much debate over whether the talus should be preserved or removed after open talus fracture/dislocation and proceeded to tibiocalcaneal fusion. A review of electronic hospital records for open talus fractures from 2014-2021 returned foureen patients with fifteen open talus fractures. Seven cases were initially managed with ORIF, five cases were definitively managed with FUSION, while the others were managed with alternative methods. We collected patient's age, gender, surgical complications, surgical risk factors and post-treatment functional ability and pain and compliance with BOAST guidelines. The average follow-up of the cohort was four years and one month. EQ-5D-5L and FAAM-ADL/Sports score was used as a patient reported outcome measure. Data was analysed using the software PRISM. Comparison between FUSION and ORIF groups showed no statistically significant difference in EQ-5D-5L score (P = 0.13), FAAM-ADL (P = 0.20), FAAM-Sport (P = 0.34), infection rate (P = 0.55), surgical times (P = 0.91) and time to weight bearing (P = 0.39), despite a higher proportion of polytrauma and Hawkins III and IV fractures in the FUSION group. FUSION is typically used as second line to ORIF or failed ORIF. However, there are a lack of studies that directly compared outcome in open talus fracture patients definitively managed with FUSION or ORIF. Our results demonstrate for the first time, that FUSION may not be inferior to ORIF in terms of patient functional outcome, infection rate, and quality-of-life, in the management of patients with open talus fracture patients. Of note, as open talus fractures have increased risks of complications such as osteonecrosis and non-union, FUSION should be considered as a viable option to mitigate these potential complications in these patients


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 132 - 132
1 Nov 2021
Chalak A Singh P Singh S Mehra S Samant PD Shetty S Kale S
Full Access

Introduction and Objective. Management of gap non-union of the tibia, the major weight bearing bone of the leg remains controversial. The different internal fixation techniques are often weighed down by relatively high complication rates that include fractures which fail to heal (non-union). Minimally invasive techniques with ring fixators and bone transport (distraction osteogenesis) have come into picture as an alternative allowing alignment and stabilization, avoiding a graduated approach. This study was focused on fractures that result in a gap non-union of > 6 cm. Ilizarov technique was employed for management of such non-unions in this case series. The Ilizarov apparatus consists of rings, rods and kirschner wires that encloses the limb as a cylinder and uses kirschner wires to create tension allowing early weight bearing and stimulating bone growth. Ilizarov technique works on the principle of distraction osteogenesis, that is, pulling apart of bone to stimulate new bone growth. Usually, 4–5 rings are used in the setup depending on fracture site and pattern for stable fixation. In this study, we demonstrate effective bone transport and formation of gap non-union more than 6 cm in 10 patients using only 3 rings construct Ilizarov apparatus. Materials and Methods. This case study was conducted at Dr. D. Y. Patil Medical Hospital, Navi Mumbai, Maharashtra, India. The study involved 10 patients with a non-union or gap > 6 cm after tibial fracture. 3 rings were used in the setup for the treatment of all the patients. Wires were passed percutaneously through the bone using a drill and the projecting ends of the wires were attached to the metal rings and tensioned to increase stability. The outcome of the study was measured using the Oxford Knee scoring system, Functional Mobility Scale, the American Foot and Ankle Score and Visual Analog Scale. Further, follow up of patients was done upto 2 years. Results. All the patients demonstrated good fixation as was assessed clinically and radiologically. 9 patients had a clinical score of > 65 which implied fair to excellent clinical rating. The patients showed good range of motion and were highly satisfied with the treatment as measured by different scoring parameters. Conclusions. In this case study, we demonstrate that the Ilizarov technique using 3 rings is equally effective in treating non-unions > 6 cm as when using 4–5 rings. Obtaining good clinical outcome and low complication rate in all 10 patients shows that this modified technique can be employed for patients with such difficulties in the future


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 100 - 100
4 Apr 2023
Lu V Zhang J Zhou A Thahir A Krkovic M
Full Access

Fracture related infections (FRI) are debilitating complications of musculoskeletal trauma surgery that can result in permanent functional loss or amputation. This study aims to determine risk factors associated with FRI treatment failure, allowing clinicians to optimise them prior to treatment and identify patients at higher risk. A major trauma centre database was retrospectively reviewed over a six-year period. Of the 102 patients identified with a FRI (66 male, 36 female), 29.4% (n=30) had acute infections (onset <6 weeks post-injury), 34.3% (n=35) had an open fracture. Open fractures were classified using Gustilo-Anderson (GA) classification (type 2:n=6, type 3A:n=16, type 3B:n=10, type 3C:n=3). Patients with periprosthetic infections of the hip and knee joint, those without prior fracture fixation, soft tissue infections, diabetic foot ulcers, pressure sore infections, patients who died within one month of injury, <12 months follow-up were excluded. FRI treatment failure was defined as either infection recurrence, non-union, or amputation. Lifestyle, clinical, and intra-operative data were documented via retrospective review of medical records. Factors with a P-value of p<0.05 in univariate analysis were included in a stepwise multivariate logistic regression model. FRI treatment failure was encountered in 35.3% (n=36). The most common FRI site was the femoral shaft (16.7%; n=17), and 15.7% (n=16) presented with signs of systemic sepsis. 20.6% (n=21) had recurrent infection, 9.8% (n=10) had non-union, and 4.9% (n=5) required an amputation. The mean age at injury was 49.71 years old. Regarding cardiovascular risk factors, 37 patients were current smokers (36.3%), 31 patients were diabetics (30.4%), and 32 patients (31.4%) were obese (BMI≥30.0). Average follow-up time was 2.37 (range: 1.04-5.14) years. Risk factors for FRI treatment failure were BMI>30, GA type 3c, and implant retention. Given that FRI treatment in 35.3% (36/102) ended up in failure, clinicians need to take into account the predictive variables analysed in this study, and implement a multidisciplinary team approach to optimise these factors. This study could aid clinicians to redirect efforts to improve high risk patient management, and prompt future studies to trial adjuvant technologies for patients at higher risk of failure


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 55 - 55
2 Jan 2024
Wehrle E
Full Access

Despite the major advances in osteosynthesis after trauma, there remains a small proportion of patients (<10%) who exhibit delayed healing and/or eventual progression to non-union. While known risk factors exist, e.g. advanced age or diabetes, the exact molecular mechanism underlying the impaired healing is largely unknown and identifying which specific patient will develop healing complications is still not possible in clinical practice. The talk will cover our novel multimodal approaches in small animals, which have the potential to precisely capture and understand biological changes during fracture healing on an individual basis. Via combining emerging omics technologies with our recently developed femur defect loading equipment in mice, we provide a platform to precisely link mechanical and molecular analyses during fracture healing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 85 - 85
2 Jan 2024
Zwingenberger S
Full Access

Spinal diseases such as unstable fractures, infections, primary or secondary tumors or deformities require surgical stabilization with implants. The long-term success of this treatment is only ensured by a solid bony fusion. The size of the bony defect, the often poor bone quality and metabolic diseases increase the risk of non-union and make the case a great burden for the patient and a challenge for the surgeon. The goal of spinal fusion can only be achieved if the implants used offer sufficient mechanical stability and the local biological regeneration potential is large enough to form sufficient bone. The lecture will present challenging clinical cases. In addition, implant materials and new surgical techniques are discussed. Local therapeutic effects are achieved through the release of osteopromotive or anti-resorbtive drugs, growth factors and antibiotics. By influencing biological pathways, basic orthopedic research has strong potential to further positively change future spinal surgery


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 31 - 31
1 Dec 2021
Lu V Zhang J Thahir A Krkovic M
Full Access

Abstract. Objectives. Current literature on pilon fracture includes a range of different management strategies, however there is no universal treatment algorithm. We aim to determine clinical outcomes in patients with open and closed pilon fractures, managed using a treatment algorithm applied consistently over the span of this study. Methods. 135 patients over a 6-year period were included. Primary outcome was AOFAS score at 3, 6, 12-months post-injury. Secondary outcomes include time to partial weight-bear (PWB), full weight-bear (FWB), bone union time, follow-up time. AO/OTA classification was used (43A: n=23, 43B: n=30, 43C: n=82). Treatment algorithm consisted of fine wire fixator (FWF) for severely comminuted closed fractures (AO/OTA type 43C3), or open fractures with severe soft tissue injury (GA type 3). Otherwise, open reduction internal fixation (ORIF) was performed. When required, minimally invasive osteosynthesis was performed in combination with FWF to improve joint congruency. Results. Mean AOFAS score 3, 6, and 12 months post-treatment for open and closed fracture patients were 44.12 and 53.99 (p=0.007), 62.38 and 67.68 (p=0.203), 78.44 and 84.06 (p=0.256), respectively. 119 of 141 fractures healed without further intervention (84.4%). Average time to union was 51.46 and 36.48 weeks for open and closed fractures, respectively (p=0.019). On average, open, and closed fracture patients took 12.29 and 10.76 weeks to PWB (p=0.361); 24.04 and 20.31 weeks to FWB (p=0.235), respectively. Common complications for open fractures were non-union (24%), post-traumatic arthritis (16%); for closed fractures they were post-traumatic arthritis (25%), superficial infection (22%). Open fracture was a risk factor for non-union (p=0.042;OR=2.558,95% CI 1.016–6.441), bone defect (p=0.001;OR=5.973,95% CI 1.986–17.967), and superficial infection (p<0.001;OR=4.167,95% CI 1.978–8.781). Conclusions. FWF with minimally invasive osteosynthesis, where required for severely comminuted closed fractures, and FWF for open fractures with severe soft tissue injury, are safe methods achieving low complication rates and good functional recovery


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 130 - 130
4 Apr 2023
Shi Y Deganello D Xia Z
Full Access

Bone defects require implantable graft substitutes, especially porous and biodegradable biomaterial for tissue regeneration. The aim of this study was to fabricate and assess a 3D-printed biodegradable hydroxyapatite/calcium carbonate scaffold for bone regeneration. Materials and methods:. A 3D-printed biodegradable biomaterial containing calcium phosphate and aragonite (calcium carbonate) was fabricated using a Bioplotter. The physicochemical properties of the material were characterised. The materials were assessed in vitro for cytotoxicity and ostegenic potential and in vivo in rat intercondylar Φ3mm bone defect model for 3 months and Φ5mm of mini pig femoral bone defects for 6 months. The results showed that the materials contained hydroxyapatite and calcium carbonate, with the compression strength of 2.49± 0.2 MPa, pore size of 300.00 ± 41mm, and porosity of 40.±3%. The hydroxyapatite/aragonite was not cytotoxic and it promoted osteogenic differentiation of human umbilical cord matrix mesenchymal stem cells in vitro. After implantation, the bone defects were healed in the treatment group whereas the defect of controlled group with gelatin sponge implantation remained non-union. hydroxyapatite/aragonite fully integrated with host bone tissue and bridged the defects in 2 months, and significant biodegradation was followed by host new bone formation. After implantation into Φ5mm femoral defects in mini pigs hydroxyapatite/aragonite were completed degraded in 6 months and fully replaced by host bone formation, which matched the healing and degradation of porcine allogenic bone graft. In conclusion, hydroxyapatite/aragonite is a suitable new scaffold for bone regeneration. The calcium carbonate in the materials may have played an important role in osteogenesis and material biodegradation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 19 - 19
17 Apr 2023
Niessen L Wendlandt R Schulz A
Full Access

A promising application of Mesenchymal stem cells (MSCs) is the treatment of non-unions. Substituting bone grafts, MSCs are directly injected into the fracture gap. High cell viability seems to be a prerequisite for therapeutic success. Administration of the MSCs via injection creates shear stresses possibly damaging or destroying the cells. Aim of this study was to investigate the effect of the injection process on cell viability. MSCs were isolated and cultivated from femoral tissue of five subjects undergoing arthroplasty. Prior to injection, the cells were identified as MSCs. After dissolving to a concentration of 1 Million cells/ml, 1 ml of the suspension was injected through a cannula of 200 mm length and 2 mm diameter (14 G) with flow rates of 38 and 100 ml/min. The viability of the MSCs at different flow rates was evaluated by staining to detect the healthy cell fraction. It was analyzed statistically against a control group via the Kruskal-Wallis-test and for equivalence via the TOST procedure. Significance level was set to 5 %, equivalence margin to 20 %. The healthy cell fraction of the control group was 85.88 ± 2.98 %, 86.04 ± 2.53 % at 38 ml/min and 85.48 ± 1.64 % at 100 ml/min. There was no significant difference between the fraction of healthy cells (p = 0.99) for different volume flows, but a significant equivalence between the control group and the two volume flows (38 ml/min: p = 0.002, 100 ml/min: p = 0.001). When injecting MSC solutions, e.g. into a non-union, the viability of the injected cells does not deterioriate significant. The injecting technique is therefore feasible


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 5 - 5
4 Apr 2023
Vicary-Watts R McLauchlan G
Full Access

Cannulated hip screws are frequently used in the management of hip fractures. There have been concerns over the failure rate of the technique and the outcomes of those that subsequently require conversion to total hip replacement (THR). This study utilised a database of over 600 cannulated hip screw (CHS) fixations performed over a 14-year period and followed up for a minimum of one year (1-14). We identified 57 cases where a conversion to THR took place (40 females, 17 males, mean age: 71.2 years). Patient demographics, original mechanism of injury, fracture classification, reason for fixation failure, time until arthroplasty, implant type and post-arthroplasty complications were recorded. Clinical outcomes were measured using the Oxford Hip Score. The failure rate of cannulated screw treatment was 9.4% and the mean time from initial fixation to arthroplasty was 15.4 (16.5) months. Thirty six fractures were initially undisplaced and 21 were displaced. As one might expect the displaced cases tended to be younger but this didn't reach statistical significance [66.5(14.3) vs 72.7(13.1), p=0.1]. The commonest causes of failure were non-union (25 cases, 44%) and avascular necrosis (17 cases, 30%). Complications after THR consisted of one leg length discrepancy and one peri-prosthetic fracture. The mean Oxford score pre-arthroplasty was 12.2 (8.4), improving to 38.4 (11.1) at one-year. Although the pre op Oxford scores tended to be lower in patients with undisplaced fractures and higher ASA scores, the improvement was the same whatever the pre-op situation. The one-year Oxford score and the improvement in score are comparable to those seen in the literature for THR in general. In conclusion, CHS has a high success rate and where salvage arthroplasty is required it can provide good clinical outcomes with low complication rates


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 30 - 30
11 Apr 2023
Guex A Krattiger L Carrara B Alini M Ehrbar M Serra T
Full Access

Successful application of patient derived cells to engineer vascularized bone grafts is often hampered by low cell numbers and lengthy in vitro expansion. With sound induced morphogenesis (SIM), local cell density enhancement was shown to improve microvasculature formation at lower cell concentration than conventional methods [1]. SIM takes advantage of hydrodynamic forces that act on cells to arrange them within a hydrogel. Following, we are evaluating the potential of cell-hydrogel biografts with high local cell density to improve the therapeutic efficacy in clinical scenarios such as anastomosis or bone formation within non-union fractures. To assess anastomosis, human umbilical vein endothelial cells (HUVEC) and human mesenchymal stromal cells (MSC) were mixed at a 1:1 ratio in PEG-based or Dextran-based hydrogels at a final concentration of 2×10. 6. cells×mL. -1. For ectopic bone formation, MSC were resuspended in PEG-based hydrogels at 2×10. 6. or 5×10. 6. cells×mL. -1. , with or without BMP-2. Cells were assembled into distinct patterns at a frequency of 60 Hz. Four biografts of 4 × 9 mm. 2. were implanted at the back of nude mice (total of 7 animals) and harvested after 2 or 8 weeks. Explants were fixed and imaged as whole constructs or embedded in paraffin for histological analysis. Upon explantation, microscopic evaluation indicated that HUVEC were retained within the PEG-hydrogel after 2 weeks and formed a pre-vascular network. In the second study, ectopic bone formation was more pronounced in areas of higher local cell density based on visual inspection. Ongoing experiments are further characterizing bone formation by micro-CT and histological evaluation. Our results indicate that local cell density enhancement by sound requires a lower initial cell concentration than conventional, static seeding methods to achieve comparable microvasculature structures or local osteogenesis