We previously reported that osteoblasts at the curve apex in adolescent idiopathic scoliosis (AIS) exhibit a differential phenotype, compared to non-curve osteoblasts(1). However, the Hueter-Volkmann principle on vertebral body growth in spinal deformities (2) suggests this could be secondary to altered biomechanics. This study examined whether non-curve osteoblasts subjected to mechanical strain resemble the transcriptomic phenotype of curve apex osteoblasts. Facet spinal tissue was collected perioperatively from three sites, (i) the concave and (ii) convex side at the curve apex and (iii) from outside the curve (non-curve) from six AIS female patients (age 13–18 years; NRES 19/WM/0083). Non-curve osteoblasts were subjected to strain using a 4-point bending device. Osteoblast phenotype was determined by RNA sequencing and bioinformatic pathway analysis. RNAseq revealed that curve apex osteoblasts exhibited a differential transcriptome, with 1014 and 1301 differentially expressed genes (DEGs; p<0.05, fold-change >1.5) between convex/non-curve and concave/non-curve sites respectively. Non-curve osteoblasts subjected to strain showed increased protein expression of the mechanoresponsive biomarkers COX2 and C-Fos. Comparing unstimulated vs strain-induced non-curve osteoblasts, 423 DEGs were identified (p<0.05, fold-change >1.5). Of these DEGs, only 5% and 6% were common to the DEGs found at either side of the curve apex, compared to non-curve cells. Bioinformatic analysis of these strain-induced DEGs revealed a different array of canonical signalling pathways and cellular processes, to those significantly affected in cells at the curve apex. Mechanical strain of AIS osteoblasts in vitro did not induce the differential transcriptomic phenotype of AIS osteoblasts at the curve apex.
To determine whether spinal facet osteoblasts at the curve apex display a different phenotype to osteoblasts from outside the curve in patients with adolescent idiopathic scoliosis (AIS). Intrinsic differences in the phenotype of spinal facet bone tissue and in spinal osteoblasts have been implicated in the pathogenesis of AIS. However, no study has compared the phenotype of facet osteoblasts at the curve apex with the facet osteoblasts from outside the curve in patients with AIS. Facet bone tissue was collected from three sites, the concave and convex side at the curve apex and from outside the curve from three female patients with AIS (aged 13–16 years). Micro-CT analysis was used to determine the density and trabecular structure.
Introduction. From the many human studies that attempt to identify genes for adolescent idiopathic scoliosis (AIS), the view emerging is that AIS is a complex genetic disorder with many predisposing genes exhibiting complex phenotypes through environmental interactions. Although advancements in genomic technology are transforming how we undertake genetic and genomic studies, only some success has been reached in deciphering complex diseases such as AIS. Moreover, the present challenge in AIS research is to understand the causative and correlative effects of discovered genetic perturbations. An important limitation to such investigations has been the absence of a method that can easily stratify patients with AIS. To overcome these challenges, we have developed a functional test that allows us to stratify patients with AIS into three functional subgroups, representing specific endophenotypes. Interestingly, in families with multiple cases of AIS, a specific endophenotype is shared among the affected family members, indicating that such a transmission is inherited. Moreover, increased vulnerability to AIS could be attributable to sustained exposure to osteopontin (OPN), a multifunctional cytokine that appears to be at the origin of the Gi-coupled receptor signalling dysfunction discovered in AIS. We examined the molecular expression profiles of patients with AIS and their response to OPN. Methods.