Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 242 - 242
1 Jul 2014
Govil A Thompson N
Full Access

Summary

The BMP-2 content and bone forming potential of 2 leading allograft products (OsteoAMP® and Osteocel® Plus) was tested across 3 commercially available lots. Surprisingly, there was no BMP-2 content associated with the cells contained within Osteocel® Plus. OsteoAMP® contained greater than 1000 times the overall BMP-2 content than Osteocel® Plus. Correspondingly, Osteocel® Plus did not form new bone at any timepoint in the 12 week in vivo study while OsteoAMP® had increasing new bone formation at each sequential timepoint. Interestingly, the highest cellularity of Osteocel® Plus was just prior to implant at t0, decreasing at each timepoint, decreasing further at the terminal endpoint of the study at 12 weeks (82% of cells had died or migrated). Conversely, the cellularity of OsteoAMP® increased at each timepoint.

Introduction

Implants containing living cells are often characterised by the orthobiologics industry as ‘osteogenic’. The positive function and ultimate fate of these cells has been assumed with little to no proof of efficacy. In this study we compare the bone forming ability of the market leading stem cell product claiming osteoinductivity as well as osteogenicity, Osteocel® Plus, against the market leading allograft derived growth factor product, OsteoAMP® which claims osteoinductivity but contains no viable cells. The goal of the study is to determine if a cellular product will form new bone or produce a false positive when evaluated histomorphometrically using an osteoinductive control over time in vivo. Additionally, the osteoinductive potential from each product will be quantified by in vitro by measurement of BMP-2 content via ELISA.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 82 - 82
1 Jan 2017
Dozza B Lesci I Della Bella E Martini L Fini M Lucarelli E Donati D
Full Access

Demineralized bone matrix (DBM) is a natural, collagen-based, well-established osteoinductive biomaterial. Nevertheless, there are conflicting reports on the efficacy of this product. The purpose of this study was to evaluate whether DBM collagen structure is affected by particle size and can influence DBM osteoinductivity.

Sheep cortical bone was ground and particles were divided in three fractions with different sizes, defined as large (L, 1–2 mm), medium (M, 0.5–1 mm), and small (S, < 0.5 mm). After demineralization, the three DBM samples were characterized by DTA analysis, XRD, ICP-OES, and FTIR. Data clearly showed a particle size-dependent alteration in collagen structure, with DBM-M being altered but not as much as DBM-S. The in vivo study showed that only DBM-M was able to induce new bone formation in a subcutaneous ectopic mouse model. When sheep MSC were seeded onto DBM particles before implantation, all DBM particles were able to induce new bone formation with the best incidence for DBM-M and DBM-S. Gene expression analysis performed on recovered implants supports the histological results and underlines the supportive role of MSC in DBM osteoinduction through the regulation of host cells. In conclusion, our results show a relation between DBM particle size, structural modification of the collagen and in vivo osteoinductivity. The medium particles represent a good compromise between no modification (largest particles) and excessive modification (smallest particles) of collagen structure, yielding highest osteoinduction. We believe that these results can guide researchers to use DBM particles of 0.5–1 mm size range in applications aimed at inducing new bone formation, obtaining results more comparable and reliable among different research groups. Furthermore, we suggest to carefully analyze the structure of the collagen when a collagen-based biomaterial is used alone or in association with cells to induce new bone formation.