Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 31 - 31
10 Feb 2023
Minasian B Hope N
Full Access

Surfing has rapidly grown in popularity as the sport made its debut at the Tokyo 2020 Olympic Games. Surfing injuries are becoming more relevant with the globalisation and increasing risks of the sport, but despite this, little is known about surfing injuries or prevention strategies in either the competitive or recreational surfer. We reviewed the literature for the incidence, anatomical distribution, type and underlying mechanism of acute and overuse injuries, and discuss current preventative measures. Four online databases, including MEDLINE, PubMed, EMBASE and Cochrane Library were searched from inception to March 2020. This review finds that skin injuries represent the highest proportion of total injuries. Acute injuries most frequently affect the head, neck and face, followed by the lower limbs. Being struck by one's own board is the most common mechanism of injury. Surfers are injured at a frequency of 0.30–6.60 injuries per 1000 hours of surfing. Most prior studies are limited by small sample sizes, poor data collection methodology and geographical constraints. The scientific literature on surfing injuries under-represents overuse musculoskeletal injuries and the efficacy of prevention strategies for surfing-related overuse musculoskeletal injuries has not been studied. Injuries to the head and neck pose greater risks to a surfer's morbidity and mortality, yet there is no consensus on the management protocol of spinal injuries that occur in open water. Non-contact acute ligament injuries have increased as surfing manoeuvres have become more acrobatic, and overuse musculoskeletal injuries are highly correlated with paddling. Further research is needed to establish preventative measures for both acute and overuse surfing injuries and to ensure the increasing popularity of surfing is met with an improved understanding of sport risks and safety. Specifically, we recommend research be prioritised regarding the efficacy of training programmes to prevent surfing-related overuse musculoskeletal injuries


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_14 | Pages 84 - 84
1 Mar 2013
Morkel D Dillon E Muller C Barnard J
Full Access

Purpose of study. To study the effect of different shoes and orthotics have on patellar tendon tensile forces. Patellar tendinopathy is an overuse injury that affects tennis players and in high impact sports like basketball, volleyball and running has an incidence of 20%. The tensile forces in the patellar tendon can be reliably measured with an intratendinously placed fibre optic tube and wireless transmission device allows for dynamic testing. The biggest strain differentials have been confirmed in jumps from 30cm height. Tennis is played on 3 major different court surfaces and there is a variety of commercially designed tennis shoes on the market. Materials and methods. 6 male tennis players, ages 18–49 were enrolled for this study. A fibre optic cannula was placed in the middle of the proximal pole of patella tendon from lateral to medial direction in the dominant knee. The patellar tendon tensile forces deform the fibre optic cannula in turn modulating the light signal passing through the optic cannula. The drag in the fibre optic sensor signal was used to measure the tensile forces in the patellar tendon. MLTS 700 goniometer were utilized to measure and record the amount of flexion with each jump to standardize results for different shoes and orthotics. Results. The results of patellar tendon tensile forces measurements for different players, different shoes and orthotics showed no trend or statistical difference for any particular shoe or orthotic. Conclusions. Fibre optic measurements of the effect of different shoes on patellar tendon tensile forces did not show a distinct advantage for any shoe above another. 1 DISCLOSURE


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 137 - 137
1 May 2012
Zheng M
Full Access

Autologous cell therapy using stem cells and progenitor cells is considered to be a popular approach in regenerative medicine for the repair and regeneration of tissue and organs. In orthopaedic practice, autologous cell therapy has become a major focus, particularly, as a feasible treatment for tendon injury. Tendons are dense connective tissue that bridge bone to muscle and transmit forces between muscle and bone to maintain mechanical movement. Tendons are poorly vascularised and have very little capacity to self-regenerate. Degeneration of tendon is often caused by injury. The pathogenesis of tendon injury, commonly known as tendinosis, is not an inflammatory condition but is secondary to degenerative changes, including disruption of the collagen matrix, calcification, vascularisation and adipogenesis. The aetiology of tendinosis is considered to be multifactorial and the pathogenesis is still unclear. Intrinsic factors such as a lack of blood and nutrition supply and extrinsic factors such as acute trauma and overuse injury caused by repetitive strain, have been implicated as contributors to the pathogenesis of tendinosis. More recent studies suggest that programmed tendon cell death (tenocyte apoptosis) may play a major role in the development of tendinosis. Such cellular abnormalities may influence the capacity of tendon to maintain its integrity. Traditional treatments such as anti-inflammatory drugs, steroid injections and physiotherapy are aimed at symptom relief and do not address the underlying pathological changes of degeneration. Here, we propose that autologous cell therapy may be an innovative and promising treatment for tendon injury. We will present evidence that suggest that autologous tendon cell therapy may be feasible to repair and regenerate tendon. We will also present data summarising the preclinical evaluation of autologous tendon cell therapy in animal models and the safety and tolerability of autologous tendon cell therapy in humans in studies, which are currently conducted at the Centre for Orthopaedic Research at the University of Western Australia


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 56 - 56
1 Sep 2012
Yeo A Kendall N Jayaraman S
Full Access

Introduction. Chronic Achilles tendinopathy is a common overuse injury. There are several modalities of treatment, reflecting difficulties in its management. In particular, due to the well-recognised morbidity associated with surgical decompression, treatment has steered towards a less invasive route. Dry needling has been efficacious in managing other tendinopathies. This study therefore assessed dry needling and percutaneous hydrostatic decompression of the Achilles tendon as a novel treatment for this condition. Methods. Twenty-two patients with 27 sonographically-confirmed chronic Achilles tendinopathy were prospectively enrolled. All were symptomatic for >6 months and have failed alternative conservative treatments. Ultrasound-guided dry needling of neovascular areas and paratenon hydrostatic decompression was performed by a dedicated musculoskeletal radiologist on a 6-weekly basis until symptomatic resolution or no improvement was evident. Sonographic assessment of the tendon's thickness and neovascularity was undertaken. Following treatment, a standardized physiotherapy regime was adopted. At baseline and 6 weeks post-final procedure, visual analogue scores (VAS) at rest and during activity were obtained. Telephonic interviews were carried out 12 and 24 months post-treatment. Results. 24 tendons (in 19 patients) were successfully treated - 1 patient had spontaneous symptomatic resolution and 2 progressed to surgical intervention. The mean number of treatment sessions was 2. There was no significant change in neovascularity or tendon thickness after treatment. Therapeutic intervention led to a significant improvement in VAS at rest (42 v 18.4, p=0.0005) and during activity (74 v 33.7, p< 0.0001). At 12 months, 77% of patients were >80% satisfied with their outcome of the procedure, with 85% of patients able to return to their sporting interests. At 24 months, 90% of patients were >80% satisfied with their outcome, with nearly half having complete symptomatic resolution. Conclusion. Dry needling and percutaneous paratenon decompression under ultrasound guidance shows promise as an alternative treatment for this chronic condition


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 569 - 573
1 May 2014
Sullivan MP McHale KJ Parvizi J Mehta S

Nanotechnology is the study, production and controlled manipulation of materials with a grain size < 100 nm. At this level, the laws of classical mechanics fall away and those of quantum mechanics take over, resulting in unique behaviour of matter in terms of melting point, conductivity and reactivity. Additionally, and likely more significant, as grain size decreases, the ratio of surface area to volume drastically increases, allowing for greater interaction between implants and the surrounding cellular environment. This favourable increase in surface area plays an important role in mesenchymal cell differentiation and ultimately bone–implant interactions.

Basic science and translational research have revealed important potential applications for nanotechnology in orthopaedic surgery, particularly with regard to improving the interaction between implants and host bone. Nanophase materials more closely match the architecture of native trabecular bone, thereby greatly improving the osseo-integration of orthopaedic implants. Nanophase-coated prostheses can also reduce bacterial adhesion more than conventionally surfaced prostheses. Nanophase selenium has shown great promise when used for tumour reconstructions, as has nanophase silver in the management of traumatic wounds. Nanophase silver may significantly improve healing of peripheral nerve injuries, and nanophase gold has powerful anti-inflammatory effects on tendon inflammation.

Considerable advances must be made in our understanding of the potential health risks of production, implantation and wear patterns of nanophase devices before they are approved for clinical use. Their potential, however, is considerable, and is likely to benefit us all in the future.

Cite this article: Bone Joint J 2014; 96-B: 569–73.