Femoroacetabular impingement (FAI) – enlarged, aspherical femoral head deformity (cam-type) or retroversion/overcoverage of the acetabulum (pincer-type) – is a leading cause for early hip osteoarthritis. Although anteverting/reverse periacetabular osteotomy (PAO) to address FAI aims to preserve the native hip and restore joint function, it is still unclear how it affects joint mobility and stability. This in vitro cadaveric study examined the effects of surgical anteverting
The Bernese periacetabular osteotomy (PAO) described by Ganz, et al. is a commonly used surgical intervention in hip dysplasia.
It has been reported that 60-85% of patients who undergo
The influence of patient age on functional outcomes after periacetabular osteotomy (PAO) for acetabular dysplasia remains unclear, with previous studies utilising scores developed for older, arthritic patients. The purpose of this study is to assess the influence of patient age on International Hip Outcome Tool (iHOT-12) scores, two years after
Abstract. Introduction. Recurrent groin pain following periacetabular osteotomy (PAO) is a challenging problem. The purpose of our study was to evaluate the position and dynamics of the psoas tendon as a potential cause for recurrent groin pain following
Higher levels of socioeconomic deprivation have been associated with worse health outcomes. The influence of socioeconomic deprivation on patients undergoing periacetabular osteotomy (PAO) has not previously been investigated. A total of 217 patients (171 female, 46 male; median age 23.4 years) who underwent
Introduction. We perform
Purpose. Periacetabular osteotomy (PAO) is a versatile acetabular reorienting procedure that is most commonly used to provide greater femoral head coverage in adolescent hip dysplasia. However,
During a periacetabular osteotomy (PAO), intra-operative assessment of correction of acetabular parameters is typically performed using fluoroscopy of the hip, a technique that has not been shown to produce predictable measurements. Furthermore, paralysing agents are used in order to facilitate dissection and fragment mobilization. The effect of paralysing agents on spino-pelvic posture is yet to be investigated. This study aims to: 1. Compare the reliability of intra-operative x-rays versus hip fluoroscopy in the assessment of acetabular fragment correction and 2. Evaluate the effect of changes in spino-pelvic alignment on the assessment of acetabular correction. An IRB approved, retrospective review of all patients who underwent a
Over the past fifteen years hip preservation surgery has rapidly evolved. Improved understanding of the pathomechanics and associated intra-articular degeneration of both hip instability and femoroacetabular impingement have led to improved surgical indications, refined surgical techniques and more effective joint preservation surgical procedures. The periacetabular osteotomy (PAO) was initially introduced by Ganz and colleagues and has become the preferred treatment in North America for pre-arthritic, symptomatic acetabular dysplasia. Both hip arthroscopy and safe surgical dislocation of the hip have been popularised for the treatment of symptomatic femoroacetabular impingement disorders. Hip arthroscopy is effective for focal and\or accessible impingement lesions while the surgical dislocation approach is reserved for nonfocal disease patterns as seen in complex FAI, and residual Perthes and SCFE deformities. Femoroacetabular impingement from major acetabular retroversion can be managed with the
Developmental dysplasia of the hip (DDH) is relatively a common condition that can lead to early arthritis of the hip. Although total hip arthroplasty is the surgical treatment of choice for these patients with end stage arthritis, some patients afflicted with DDH may present early. Acetabular osteotomy, in particular Bernese or periacetabular osteotomy (PAO as described by Professor Ganz and Jeff Mast back in 1980s) may be an option with patients with symptomatic DDH who have joint space available.
Introduction. Several reports demonstrated the overcoverage of the anterior acetabulum. Anterior CE angle over 46°may be a probable risk factor for pincer FAI syndrome after a rotational acetabular osteotomy. In addition, a highly anteverted femoral neck, reported as a risk factor for posterior impingement, has been found in DDH patients. These findings indicate proper acetabular reorientation is essential to avoid anterior or posterior impingement after periacetabular osteotomy (PAO). The aim of this study was to evaluate the relationship between acetabular three-dimensional (3D) alignment reorientation and clinical range of motion (ROM) after periacetabular osteotomy (PAO). Methods. A total of 53 patients who underwent curved
INTRODUCTION. The efficacy of tranexamic acid (TXA) to reduce blood loss in various surgical procedures has been proven. However, there is little data about the effect of TXA on blood loss, rate of blood transfusion and thromboembolic events during periacetabular osteotomy (PAO). The reduction of blood loss during
Introduction. The goal of this work is to develop a system for three-dimensional tracking of the acetabular fragment during periacetabular osteotomy (PAO) using x-ray images. For
Purpose. To validate a small, easy to use and cost-effective augmented marker-based hybrid navigation system for peri-acetabular osteotomy [PAO] surgery. Methods. A cadaver study including 3 pelvises (6 hip joints) undergoing navigated
90% of young patients that develop DJD of the hip have an underlying structural problem, most frequently hip dysplasia. The structural problem results in decreased contact area, increased contact stresses about the anterior and lateral acetabulum and femoral head and results in labral pathology, early cartilage damage and if left untreated leads to end stage hip arthritis. Despite the optimism of alternative bearing surfaces and highly cross linked polyethylene, THA should still be discouraged in young patients. Many patients with symptomatic hip dysplasia in the absence of arthritis will benefit from joint preservation. The goal of treatment should be restoration of anatomy as close to normal as possible. The Bernese
Background. Periacetabular osteotomy (PAO) is an effective treatment method for early or mild osteoarthritis caused by developmental dysplasia of the hip. Since the procedure is performed from late eighties of the past century it is still a very demanding procedure performed only by high skilled surgeons in high volume orthopaedic centres. The idea was to develop a custom-made surgical tool to improve the accuracy of the two osteotomies of the iliac bone and help us to avoid inadvertent intraarticular osteotomy of the acetabulum. Methods. Firstly CT scans of pelvises of two cadavers were performed. The DICOM format files were up-loaded into EBS software (Ekliptik d.o.o., Ljubljana, Slovenia), application for preoperative planning, constructing and designing different templates, where the three-dimensional (3D) model of each pelvis was created. On the virtual pelvis models the
Introduction. Acetabular retroversion is an accepted cause of Pincer-type femoroacetabular impingement. There is increasing evidence that acetabular retroversion is rather a rotational abnormality of the pelvis than an overgrowth of the acetabular wall or even a dysplasia of the posterior wall. Initially, patients with a retroverted acetabulum were treated with an open rim trimming through a surgical hip dislocation (SHD) based on the early understanding of the pathomorphology. Theoretically, the reduction of the anterior wall can decrease the already small joint contact area in retroverted hips to a critical size. Based on the most recent literature, anteverting periacetabular osteotomy (PAO) seems to be the more appropriate surgical treatment. With this technique, the anterior impingement conflict can be treated efficiently without compromising the joint contact area. However, it is unknown whether this theoretical advantage in turn results in better mid term results of treatment. Objectives. We asked if anteverting
There are three major diagnoses that have been associated with early hip degeneration and subsequent hip replacement in young patients: FAI, hip dysplasia and hip osteonecrosis. I will focus mainly on the first two. Both conditions, if diagnosed early in the symptomatic patient, can be surgically treated in order to try to prevent further hip degeneration. But, what is the natural history of these disorders?. Our recent paper published this year described the natural history of hip dysplasia in a group of patients with a contralateral THA. At an average of 20 years, 70% of hips that were diagnosed at Tönnis Grade 0, had progression in degenerative changes with 23% requiring a THA at 20 years. Once the hip degeneration progressed to Tönnis 1, then 60% of hips progressed and required a THA. This natural history study demonstrates that degeneration of a dysplastic hip will occur in over 2/3 of the hips despite the limitations of activity imposed by a contralateral THA. In this same study, we were unable to detect a significant difference in progression between FAI hips and those categorised as normal. FAI damage has been commonly considered to be “motion-induced” and as such, the limitations imposed by the THA, might have limited the progression in hip damage. Needless to say, progression was seen in about half of the hips at 10 years, but very few required a THA at final follow-up. We have recently presented data on a group of young asymptomatic teenagers with FAI. At 5 years of follow-up, the group of patients with limited ROM in flexion and internal rotation, cam deformity and increased alpha angles, depicting a more severe form of disease, showed MRI evidence of progression in hip damage and worst clinical scores than a control group. This data supports our initial impressions that FAI may truly lead to irreversible hip damage. Is surgery always the option? I indicate surgery when the patient is symptomatic and has a correctable structural problem that has failed non-operative management. The data suggests that few patients improve with physical therapy, but activity modification may be an option in patients with FAI as the hip damage is mainly activity related. This may not be the case with hip dysplasia. For hip dysplasia, my current recommendations are in the form of a periacetabular osteotomy (PAO) to correct the structural problem. The procedure leads to improvement in pain as it takes care of the 4 pain generators in the dysplastic hip: the labrum, cartilage, abductors, and resultant instability. The labrum and cartilage are off-loaded with the
Hip dysplasia has traditionally been classified based on the lateral centre edge angle (LCEA). A recent meta-analysis demonstrated no definite consensus and a significant heterogeneity in LCEA values used in various studies to define hip dysplasia and borderline dysplasia. To overcome the shortcomings of classifying hip dysplasia based on just LCEA, a comprehensive classification for adult acetabular dysplasia (CCAD) was proposed to classify symptomatic hips into three discrete prototypical patterns of hip instability, lateral/global, anterior, or posterior. The purpose of this study was to assess the reliability of this recently published CCAD. One thirty four consecutive hips that underwent a