Advertisement for orthosearch.org.uk
Results 1 - 20 of 79
Results per page:
Bone & Joint Open
Vol. 4, Issue 12 | Pages 948 - 956
15 Dec 2023
Vella-Baldacchino M Webb J Selvarajah B Chatha S Davies A Cobb JP Liddle AD

Aims. With up to 40% of patients having patellofemoral joint osteoarthritis (PFJ OA), the two arthroplasty options are to replace solely the patellofemoral joint via patellofemoral arthroplasty (PFA), or the entire knee via total knee arthroplasty (TKA). The aim of this study was to assess postoperative success of second-generation PFAs compared to TKAs for patients treated for PFJ OA using patient-reported outcome measures (PROMs) and domains deemed important by patients following a patient and public involvement meeting. Methods. MEDLINE, EMBASE via OVID, CINAHL, and EBSCO were searched from inception to January 2022. Any study addressing surgical treatment of primary patellofemoral joint OA using second generation PFA and TKA in patients aged above 18 years with follow-up data of 30 days were included. Studies relating to OA secondary to trauma were excluded. ROB-2 and ROBINS-I bias tools were used. Results. A total of nine studies were included, made up of four randomized controlled trials (domain 1) and five cohort studies (domain 2). PROMs and knee function specific scores developed for reporting TKA were unable to detect any difference between PFA and TKA. There was no significant difference in complications between PFA and TKA. PFAs were found to have a better postoperative range of motion. Conclusion. TKA and PFA are both viable options for patients with primary PFJ OA. Over time, we have seen an emphasis on patient satisfaction and better quality of life. Recommending sacrificing healthy medial and lateral compartments to treat patellofemoral joint arthritis should be given further thought. Cite this article: Bone Jt Open 2023;4(12):948–956


Aims. Classifying trochlear dysplasia (TD) is useful to determine the treatment options for patients suffering from patellofemoral instability (PFI). There is no consensus on which classification system is more reliable and reproducible for the purpose of guiding clinicians’ management of PFI. There are also concerns about the validity of the Dejour Classification (DJC), which is the most widely used classification for TD, having only a fair reliability score. The Oswestry-Bristol Classification (OBC) is a recently proposed system of classification of TD, and the authors report a fair-to-good interobserver agreement and good-to-excellent intraobserver agreement in the assessment of TD. The aim of this study was to compare the reliability and reproducibility of these two classifications. Methods. In all, six assessors (four consultants and two registrars) independently evaluated 100 axial MRIs of the patellofemoral joint (PFJ) for TD and classified them according to OBC and DJC. These assessments were again repeated by all raters after four weeks. The inter- and intraobserver reliability scores were calculated using Cohen’s kappa and Cronbach’s α. Results. Both classifications showed good to excellent interobserver reliability with high α scores. The OBC classification showed a substantial intraobserver agreement (mean kappa 0.628; p < 0.005) whereas the DJC showed a moderate agreement (mean kappa 0.572; p < 0.005). There was no significant difference in the kappa values when comparing the assessments by consultants with those by registrars, in either classification system. Conclusion. This large study from a non-founding institute shows both classification systems to be reliable for classifying TD based on axial MRIs of the PFJ, with the simple-to-use OBC having a higher intraobserver reliability score than that of the DJC. Cite this article: Bone Jt Open 2023;4(7):532–538


The Bone & Joint Journal
Vol. 105-B, Issue 12 | Pages 1235 - 1238
1 Dec 2023
Kader DF Jones S Haddad FS


The Bone & Joint Journal
Vol. 101-B, Issue 5 | Pages 552 - 558
1 May 2019
Clark D Stevens JM Tortonese D Whitehouse MR Simpson D Eldridge J

Aims. The aim of this study was to determine and compare the congruency of the articular surface contact area of the patellofemoral joint (PFJ) during both active and passive movement of the knee with the use of an MRI mapping technique in both the stable and unstable PFJ. Patients and Methods. A prospective case-control MRI imaging study of patients with a history of PFJ instability and a control group of volunteers without knee symptoms was performed. The PFJs were imaged with the use of an MRI scan during both passive and active movement from 0° through to 40° of flexion. The congruency through measurement of the contact surface area was mapped in 5-mm intervals on axial slices. In all, 40 patients were studied. The case group included 31 patients with symptomatic patellofemoral instability and the control group of nine asymptomatic volunteers. The ages were well matched between the case and control groups. The mean age was 25 years (16 to 42; . sd. 6.9) in the case group and 26 years (19 to 32; . sd. 5.1) in the control group. There were 19 female and 12 male patients in the case group. Results. The unstable PFJs were demonstrably less congruent than the stable PFJs throughout the range of knee movement. The greatest mean differences in congruency between unstable and stable PFJ’s were observed between 11° and 20° flexion (1.73 cm. 2. vs 4.00 cm. 2. ; p < 0.005). . Conclusion. The unstable PFJ is less congruent than the stable PFJ throughout the range of knee movement studied. This approach to mapping PFJ congruency produces a measurable outcome and will allow the assessment of pre- and postoperative results following surgical intervention. This may facilitate the design of new procedures for patients with PFJ instability. If a single axial series is to be obtained on MRI scan, the authors recommend 11° to 20° of tibiofemoral flexion, as this was shown to have the greatest difference in contact surface area between the case and control groups. Cite this article: Bone Joint J 2019;101-B:552–558


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 31 - 31
7 Aug 2023
Myatt D Marshall M Ankers T Robb C
Full Access

Abstract. Unicompartment knee replacement (UKR) has been an effective treatment of isolated medial compartment osteoarthritis (OA). There has been several studies which suggest that patellofemoral (PFJ) wear may not be a relative contraindication for UKR with no statistical difference in failure rates. There is currently conflicting evidence on the role of BMI. We will review if BMI and PFJ wear impacts on the post operative functional scores following UKR. A retrospective review of a prospectively collected database was performed. Data was collected between 26/6/2014 and 25/8/2022. 159 UKR procedures were identified. BMI and PFJ cartilage wear were collected. Oxford knee scores (OKS) were collected at > 2 years. PFJ wear was split into International Cartilage Research Society (ICRS) grades I&II and III&IV. 159 UKR procedures were identified, of these 115 had 2 year follow up. There were 77 who had OKS recorded at 2 years. For PFJ wear there was no statistical difference in the median OKS at 2 years 45 vs 43.5 (p=0.408). Assessing the BMI the median was 29kg/m. 2. , range 20–43kg/m. 2. Spearman's rank was performed to assess the correlation between BMI and >2 year OKS, this demonstrated a moderately negative correlation p(df)=−0.339 (CI 95% −0.538, −0.104) p=0.004. There is no statistically significant difference in >2 year OKS following UKR regardless of PFJ wear. There is a moderately negative correlation between BMI and >2 year OKS which was significant p=0.004. Therefore BMI is a more important consideration when counselling patients for UKR


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 632 - 639
1 May 2017
Hamilton TW Pandit HG Maurer DG Ostlere SJ Jenkins C Mellon SJ Dodd CAF Murray DW

Aims. It is not clear whether anterior knee pain and osteoarthritis (OA) of the patellofemoral joint (PFJ) are contraindications to medial unicompartmental knee arthroplasty (UKA). Our aim was to investigate the long-term outcome of a consecutive series of patients, some of whom had anterior knee pain and PFJ OA managed with UKA. Patients and Methods. We assessed the ten-year functional outcomes and 15-year implant survival of 805 knees (677 patients) following medial mobile-bearing UKA. The intra-operative status of the PFJ was documented and, with the exception of bone loss with grooving to the lateral side, neither the clinical or radiological state of the PFJ nor the presence of anterior knee pain were considered a contraindication. The impact of radiographic findings and anterior knee pain was studied in a subgroup of 100 knees (91 patients). Results. There was no relationship between functional outcomes, at a mean of ten years, or 15-year implant survival, and pre-operative anterior knee pain, or the presence or degree of cartilage loss documented intra-operatively at the medial patella or trochlea, or radiographic evidence of OA in the medial side of the PFJ. In 6% of cases there was full thickness cartilage loss on the lateral side of the patella. In these cases, the overall ten-year function and 15-year survival was similar to those without cartilage loss; however they had slightly more difficulty with descending stairs. Radiographic signs of OA seen in the lateral part of the PFJ were not associated with a definite compromise in functional outcome or implant survival. Conclusion. Severe damage to the lateral side of the PFJ with bone loss and grooving remains a contraindication to mobile-bearing UKA. Less severe damage to the lateral side of the PFJ and damage to the medial side, however severe, does not compromise the overall function or survival, so should not be considered to be a contraindication. However, if a patient does have full thickness cartilage loss on the lateral side of the PFJ they may have a slight compromise in their ability to descend stairs. Pre-operative anterior knee pain also does not compromise the functional outcome or survival and should not be considered to be a contraindication. Cite this article: Bone Joint J 2017;99-B:632–9


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 111 - 111
23 Feb 2023
Stevens J Eldridge J Tortonese D Whitehouse M Krishnan H Elsiwy Y Clark D
Full Access

In the unstable patellofemoral joint (PFJ), the patella will articulate in an abnormal manner, producing an uneven distribution of forces. It is hypothesised that incongruency of the PFJ, even without clinical instability, may lead to degenerative changes. The aim of this study was to record the change in joint contact area of the PFJ after stabilisation surgery using an established and validated MRI mapping technique. A prospective MRI imaging study of patients with a history of PFJ instability was performed. The patellofemoral joints were imaged with the use of an MRI scan during active movement from 0° through to 40° of flexion. The congruency through measurement of the contact surface area was mapped in 5-mm intervals on axial slices. Post-stabilisation surgery contact area was compared to the pre-surgery contact area. In all, 26 patients were studied. The cohort included 12 male and 14 female patients with a mean age of 26 (15–43). The greatest mean differences in congruency between pre- and post-stabilised PFJs were observed at 0–10 degrees of flexion (0.54 cm. 2. versus 1.18 cm. 2. , p = 0.04) and between 11° and 20° flexion (1.80 cm. 2. versus 3.45 cm. 2. ; p = 0.01). PFJ stabilisation procedures increase joint congruency. If a single axial series is to be obtained on MRI scan to compare the pre- and post-surgery joint congruity, the authors recommend 11° to 20° of tibiofemoral flexion as this was shown to have the greatest difference in contact surface area between pre- and post-operative congruency


Full Access

Abstract. INTRODUCTION. 10% of patients with knee osteoarthritis (OA) have disease confined to the patellofemoral joint (PFJ). The main surgical options are total knee replacement (TKR) and PFJ replacement (PFJR). PFJR has advantages over TKR, including being less invasive, bone preserving, allowing faster recovery and better function and more ‘straight forward’ revision surgery. We aim to compare the clinical results of revised PFJR with primary TKR taking into consideration the survival length of the PFJR. METHODOLOGY. Twenty-five patients (21 female) were retrospectively identified from our arthroplasty database who had undergone revision from PFJR to TKR (2006–2019). These patients were then matched with regards to their age at their primary procedure, sex and total arthroplasty life (primary PFJ survival + Revision PFJ time to follow up) up to point of follow-up with a group of primary TKRs implanted at the same point as the primary PFJR. RESULTS. Mean survival of the PFJs revised were 4.2 years. In the PFJR revision group (mean arthroplasty life 7.8 years) mean Oxford knee score (OKS) at latest follow up was 27.8. In the primary knee group (mean arthroplasty life 7.5 years) mean OKS was 32.4. This difference was not statistically significant. All PFJR revisions were performed using primary prostheses. CONCLUSION. PFJR provides comparable clinical outcome even after revision surgery to TKR as primary TKRs at midterm follow up and should be considered in all patients meeting the selection criteria. Given comparable proms and straight forward revisions, staged arthroplasty to preserve bone-stock is a reasonable choice


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 39 - 39
7 Aug 2023
Hainsworth L Lankester B
Full Access

Abstract. Introduction. Isolated patellofemoral osteoarthritis accounts for 10% of knee osteoarthritis. Many of these will not require arthroplasty solutions, but for those who are sufficiently symptomatic, patellofemoral joint (PFJ) replacement has been shown to be an effective procedure. The National Joint Registry (NJR) has shown a higher revision rate for this operation, particularly in younger patients (males <55 years 13.3% failure at 5 years, females 9.6%). The aim of this study is to report on the medium-term outcome of the Avon patellofemoral joint arthroplasty in patients under 55 from a non-design centre. There is no other published case series on this young patient cohort. Methodology. 50 Avon PFJ replacements (Stryker, Kalamazoo USA) were undertaken in 46 patients under 55 years old (range 35 – 54, mean 48.8) between 2010 and 2022 for end-stage isolated PFJ arthritis shown on Xray and MRI scan. The outcome measure was all-cause revision rate. This was assessed by review of clinical notes, imaging and NJR data. Results. The mean follow up was 5.8 years (range 6 months to 12.9 years). Only one patient had a revision procedure (for progressive osteoarthritis) which was 3 years after the primary procedure. This patient has had no further surgery. The implant survival rate was 97.2% at 5 years and 97.2% at 10 years. Conclusion. This study shows that patellofemoral joint replacement with the Avon prosthesis can give a satisfactory revision rate in the medium term in patients under 55 if carefully selected


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 51 - 51
1 May 2016
Iranpour F Auvinet E Harris S Cobb J
Full Access

Patellofemoral joint (PFJ) arthroplasty is traditionally performed using mechanical jigs to align the components, and it is hard to fine tune implant placement for the individual patient. These replacements have not had the same success rate as other forms of total or partial knee replacement surgery1. Our team have developed a computer assisted planning tool that allows alignment of the implant based on measurements of the patient's anatomy from MRI data with the aim of improving the success of patellofemoral joint arthroplasty. When planning a patellofemoral joint arthroplasty, one must start from the premise that the original joint is either damaged as a result of osteoarthritis, or is dysplastic in some way, deviating from a normal joint. The research aimed to plan PFJ arthroplasty using knowledge of the relationship between a normal PFJ (trochlear groove, trochlea axis and articular surfaces) and other aspects of the knee2, allowing the plan to be estimated from unaffected bone surfaces, within the constraints of the available trochlea. In order to establish a patient specific trochlea model a method was developed to automatically compute an average shape of the distal femur from normal distal femur STL files (Fig.1). For that MRI scans of 50 normal knees from osteoarthritis initiative (OAI) study were used. Mimics and 3-matic software (Materialise) packages were used for segmentation and analysis of 3D models. Spheres were fitted to the medial and lateral flexion facets for both average knee model and patient knee model. The average knee was rescaled and registered in order to match flexion facet axis (FFA) distance and FFA midpoint of the patient (Fig.2). The difference between the patient surface and the average knee surface allow to plan the patella groove alteration. The Patella cut is planned parallel to the plane fitted to the anterior surface of the patella. The patella width/thickness ratio (W/T=2) is used to predict the post reconstruction thickness3. The position of the patella component (and its orientation if a component with a median ridge is used) is also planned. The plan is next fine-tuned to achieve satisfactory PFJ kinematics4 (Fig.3). This will be complemented by intraoperative PFJ tracking which assists with soft tissue releases. PFJ kinematics is evaluated in terms of patella shift, tilt and deviation from the previously described circular path of the centre of the patella. The effect of preoperative planning on PFJ tracking and soft tissue releases is being examined. Additional study is needed to evaluate whether planning and intraoperative kinematic measurements improve the clinical outcome of PFJ arthroplasty


Purpose. The purpose of this study was to examine the progression of osteoarthritis (OA) on patella-femoral joint (PFJ) after open wedge high tibial osteotomy (OWHTO) and unicondylar knee arthroplasty (UKA) in correlation with pain and functional outcomes. Methods. We conducted a retrospective analysis of 101 knees (89 patients), which received an OWHTO in 42 knees and UKA in 59 knees between 2003 and 2008 with minimum 5-years follow-up. Preoperative and the last follow-up radiologic evaluations were performed on the specific radiographic parameters that reflect the patella and knee alignment. Progressions of OA on PFJ at pre-operation and the last follow up were assessed and compared with modified OA grading system. The patella-femoral (PF) pain and function score were recorded using modified PF scoring system at the last follow up. Results. Among the radiologic parameters, mechanical axis (MA) and lateral patella tilt (LPT) showed statistically significant differences between OWHTO and UKA. Most of cases showed no progression or just only 1 grade step-up progression on PFJ in both groups and the amount of progression showed no statistical significant between OWHTO and UKA. In comparison of the preoperative and the final follow-up OA grades, medial PFJ in UKA group showed statistically significant differences. The PF pain and function score were comparable in both groups at the final follow up which showed no statistical differences regardless of OA progression. Conclusions. Overall, 40 ∼ 70% of cases did not occurred the progression of OA in PFJ after OWHTO and UKA. Additionally, at last follow up, the most cases showed the grade 0 or 1 OA in PFJ of both groups. Compared with HTO group, in UKA group, there were tendency of more progression of PFJ compared with preoperative OA status. Finally the degree of OA progressions did not affect the PF pain and functional outcomes


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 94 - 94
1 Aug 2013
Belvedere C Ensini A Leardini A Dedda V Cenni F Feliciangeli A De La Barrera JM Giannini S
Full Access

INTRODUCTION. In computer-aided total knee arthroplasty (TKA), surgical navigation systems (SNS) allow accurate tibio-femoral joint (TFJ) prosthesis implantation only. Unfortunately, TKA alters also normal patello-femoral joint (PFJ) functioning. Particularly, without patellar resurfacing, PFJ kinematics is influenced by TFJ implantation; with resurfacing, this is further affected by patellar implantation. Patellar resurfacing is performed only by visual inspections and a simple calliper, i.e. without computer assistance. Patellar resurfacing and motion via patient-specific bone morphology had been assessed successfully in-vitro and in-vivo in pilot studies aimed at including these evaluations in traditional navigated TKA. The aim of this study was to report the current experiences in-vivo in two patient cohorts during TKA with patellar resurfacing. MATERIALS AND METHODS. Twenty patients with knee gonarthrosis were divided in two cohorts of ten subjects each and implanted with as many fixed-bearing posterior-stabilised prostheses (NRG® and Triathlon®, Stryker®-Orthopaedics, Mahwah, NJ-USA) with patellar resurfacing. Fifteen patients were implanted; five patients of the Triathlon cohort are awaiting hospital admission. TKAs were performed using two SNS (Stryker®-Leibinger, Freiburg-Germany). In addition to the traditional knee SNS (KSNS), the novel procedure implies the use of the patellar SNS (PSNS) equipped with a specially-designed patellar tracker. Standard navigated procedures for intact TFJ survey were performed using KSNS. These were performed also with PSNS together intact PFJ survey. Standard navigated procedures for TFJ implantation were performed using KSNS. During patellar resurfacing, the patellar cutting jig was fixed at the desired position with a plane probe into the saw-blade slot; PSNS captured tracker data to calculate bone cut level/orientation. After sawing, resection accuracy was assessed using a plane probe. TFJ/PFJ kinematics were captured with all three trial components in place for possible adjustments, and after final component cementing. A calliper and pre/post-TKA X-rays were used to check for patellar thickness/alignment. RESULTS. This protocol was performed successfully in TKAs, resulting in 30 min longer TKA. Final lower limb misalignment was within 0.5°, resurfaced patella was 0.4±1.2 mm thinner than the native, and patellar cut was 0.4°±4.1° laterally tilted. Final PFJ kinematics was taken within the reference normality in both series. PFJ flexion, tilt and medio-lateral shift range were 66.9°±8.5° (minimum÷maximum, 15.6°÷82.5°), 8.0°±3.1° (−5.3°÷2.8°), and 5.3±2.0 mm (−5.5÷0.2 mm), respectively. Significant (p<0.005) correlations were found between the internal/external rotation of the femoral component and PFJ tilt (R. 2. =0.41), and between the mechanical axis on the sagittal plane and PFJ flexion (R. 2. =0.44) and antero-posterior shift (R. 2. =0.45). Patellar implantation parameters were confirmed by X-ray inspections. Discrepancies in thickness up to 5 mm were observed between SNS- and calliper-based measurements. CONCLUSIONS. These results support relevance/efficacy of patellar tracking in in-vivo navigated TKA and may contribute to a more comprehensive assessment of the original whole knee, i.e. including also PFJ. Patellar preparation would be supported for suitable component positioning in case of resurfacing, but, conceptually, also in not-resurfacing if SNS does not reveal PFJ abnormalities., Using this procedure in the future, TFJ/PFJ abnormalities can be corrected intra-operatively by more cautious bone cut preparation and prosthetic positioning on the femur, tibia and patella


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 80 - 80
1 Mar 2012
Joshy S Verghese N White SP Robertson A Forster MC
Full Access

Involvement of Patellofemoral joint (PFJ) has significant bearing in the management of osteoarthritis of the knee. The aim of this study is to assess the relationship between skyline radiographs, MRI and arthroscopic findings in the patellofemoral joint. Data was collected prospectively from fifty-three patients who underwent arthroscopy. There were 36 males and 17 females in the group with mean age of 48 years (range 18-71). Arthroscopically PFJ arthritis was classified based on Outerbridge grading system. Patients with Outerbridge grade III and IV lesions were considered to have significant arthritis of the PFJ. Kellgren-Lawrence grading system was used to assess the skyline radiographs. Radiographically patients with grade III and IV Kelgren-Lawrence changes were considered to have significant osteoarthritis of the PFJ. MRI scans were also studied to assess involvement of PFJ. Thirty-two patients had MRI scan and 20 patients had skyline views done as part of preoperative work up. Arthroscopic findings were considered as gold standard. MRI scan had specificity of 75%, sensitivity of 81%, positive predictive value of (PPV) 77 and negative predictive value of (NPV) 80% in diagnosing significant PFJ arthritis. Skyline radiographs had specificity of 100%, sensitivity of 50%, PPV of 100% and NPV of 57%. The overall accuracy of skyline radiographs in predicting significant PFJ arthritis was 70% and for MRI was 78%. We conclude that skyline radiographs has some value in he diagnosis of PFJ arthritis, however the sensitivity and negative predictive value is very is poor


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 69 - 69
7 Aug 2023
Kumar A Stevens S Jonas S White S Agarwal S
Full Access

Abstract. Introduction. Isolated patellofemoral joint(PFJ) osteoarthritis affects approximately 10% of patients aged over 40 years and treatment remains controversial. Our aim was to evaluate long term functional and radiological outcomes following PFJ arthorplasty with the Femoro Patella Vialli (FPV) prosthesis as this evidence is lacking in literature. Methodology. A retrospective review of prospectively collected PROMS in patients undergoing Patellofemoral arthroplasty. Single centre trial. Between 2004 and 2008, 101 FPV patellofemoral arthroplasties were performed in 80 patients with isolated patellofemoral joint osteoarthritis. Data was collected as a part of routine follow-up for up to 6 years and additional long term data was collected at 16 years. Results. At 6 year follow up the mean OKS was 29 and by 16 year follow up it was 26 which was not a statistically significant drop. 22 patients (29 knees) had died, 32 (32%) had been revised, 25 to total knee replacement using primary arthroplasty components. Mean OKS in the revised group was 27 which was not a statistically significant difference when compared to the unrevised group. Mean time to revision was 4 years. The cumulative survival analysis of the FPV implant was 76% at 5 years, 64% at 10 years. Conclusion. Our findings suggest the FPV patellofemoral prosthesis provides good pain relief and clinical outcomes however, the survivorship for this particular implant maybe lower as compared to the available literature. Patient reported outcomes are maintained over the implant life and are no worse once revised implying a staged approach to arthroplasty is reasonable


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 66 - 66
1 Oct 2012
Belvedere C Ensini A De La Barrera JM Feliciangeli A Leardini A Catani F
Full Access

During total knee replacement (TKR), surgical navigation systems (SNS) allow accurate prosthesis component implantation by tracking the tibio-femoral joint (TFJ) kinematics in the original articulation at the beginning of the operation, after relevant trial components implantation, and, ultimately, after final component implantation and cementation. It is known that TKR also alters normal patello-femoral joint (PFJ) kinematics resulting frequently in PFJ disorders and TKR failure. More importantly, patellar tracking in case of resurfacing is further affected by patellar bone preparation and relevant component positioning. The traditional technique used to perform patellar resurfacing, even in navigated TKR, is based only on visual inspection of the patellar articular aspect for clamping patellar cutting jig and on a simple calliper to check for patellar thickness before and after bone cut, and, thus, without any computer assistance. Even though the inclusion in in-vivo navigated TKR of a procedure for supporting also patellar resurfacing based on patient-specific bone morphology seems fundamental, this have been completely disregarded till now, whose efficacy being assessed only in-vitro. This procedure has been developed, together with relevant software and surgical instrumentation, as an extension of current SNS, i.e. TKR is navigated, at the same time measuring the effects of every surgical action on PFJ kinematics. The aim of this study was to report on the first in-vivo experiences during TKR with patellar resurfacing. Four patients affected by primary gonarthrosis were implanted with a fixed bearing posterior-stabilised prosthesis (NRG, Stryker®-Orthopaedics, Mahwah, NJ-USA) with patellar resurfacing. All TKR were performed by means of two SNS (Stryker®-Leibinger, Freiburg, Germany) with the standard femoral/tibial trackers, the pointer, and a specially-designed patellar tracker. The novel procedure for patellar tracking was approved by the local ethical committee; the patients gave informed consent prior the surgery. This procedure implies the use of a second system, i.e. the patellar SNS (PSNS), with dedicated software for supporting patellar resurfacing and relative data processing/storing, in addition to the traditional knee SNS (KSNS). TFJ anatomical survey and kinematics data are shared between the two. Before surgery, both systems were initialised and the patellar tracker was assembled with a sterile procedure by shaping a metal grid mounted with three markers to be tracked by PSNS only. The additional patellar-resection-plane and patellar-cut-verification probes were instrumented with a standard tracker and a relevant reference frame was defined on these by digitisation with PSNS. Afterwards, the procedures for standard navigation were performed to calculate preoperative joint deformities and TFJ kinematics. The anatomical survey was performed also with PSNS, with relevant patellar anatomical reference frame definition and PFJ kinematics assessment according to a recent proposal. Standard procedures for femoral and tibial component implantation, and TFJ kinematics assessment were then performed by using relevant trial components. Afterwards, the procedure for patellar resection begun. Once the surgeon had arranged and fixed the patellar cutting jig at the desired position, the patellar-resection-plane probe was inserted into the slot for the saw blade. With this in place, the PSNS captured tracker data to calculate the planned level of patellar bone cut and the patellar cut orientation. Then the cut was executed, and the accuracy of this actual bone cut was assessed by means of the patellar-cut-verification probe. The trial patellar component was positioned, and, with all three trial components in place, TFJ and PFJ kinematics were assessed. Possible adjustments in component positioning could still be performed, until both kinematics were satisfactory. Finally, final components were implanted and cemented, and final TFJ and PFJ kinematics were acquired. A sterile calliper and pre- and post-implantation lower limb X-rays were used to check for the patellar thickness and final lower limb alignment. The novel surgical technique was performed successfully in all four cases without complication, resulting in 30 min longer TKR. The final lower limb alignment was within 0.5°, the resurfaced patella was 0.4±1.3 mm thinner than in the native, the patellar cut was 1.5°±3.0° laterally tilted. PFJ kinematics was taken within the reference normality. The patella implantation parameters were confirmed also by X-ray inspection; discrepancies in thickness up to 5 mm were observed between SNS- and calliper-based measurements. At the present experimental phase, a second separate PSNS was utilised not to affect the standard navigated TKR. The results reported support relevance, feasibility and efficacy of patellar tracking and PFJ kinematics assessment in in-vivo navigated TKR. The encouraging in-vivo results may lay ground for the design of a future clinical patella navigation system the surgeon could use to perform a more comprehensive assessment of the original whole knee anatomy and kinematics, i.e. including also PFJ. Patellar bone preparation would be supported for suitable patellar component positioning in case of resurfacing but, conceptually, also in not resurfacing if patellar anatomy and tracking assessment by SNS reveals no abnormality. After suitable adjustment and further tests, in the future if this procedure will be routinely applied during navigated TKR, abnormalities at both TFJ and PFJ can be corrected intra-operatively by more cautious bone cut preparation on the femur, tibia and also patella, in case of resurfacing, and by correct prosthetic component positioning


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIX | Pages 82 - 82
1 Jul 2012
Baker PN Gregg PJ Deehan DJ
Full Access

Purpose. Little information is available relating to patient demographics, reasons for failure and types of implants used at time of revision following failure of patellofemoral joint (PFJ) replacement. Methods and Results. Using data extracted from the NJR a series of 128 PFJ revisions in whom the index primary procedure was also recorded in the NJR were identified. This cohort therefore represents early failures of PFJ replacements revised over a 2 year period which were implanted after April 2003 and included revisions of 11 different brands of PFJ replacement from 6 different manufacturers. The median age at primary procedure was 59.0 (Range 21.1 to 83.2) of which 43 patients were <55 years old (31 males, 97 females). 19% of the revisions were performed in the first year after implantation, in the second year in 33 cases (26%), in the third year in 39 cases (31%) and between years 4 to 7 in 32 patients (25%). The commonest reasons for revision were pain (35%), aseptic loosening (18%), subluxation, dislocation or instability (11%), PE wear (7%) and component malalignment (6%). No reason for revision was stated in 30% and only 2 cases were revised for infection. Reason for revision differed according to year of failure but was consistent with respect to age at primary surgery. PFJ revision reason differed from those stated for revisions of primary UKR and TKR from the same period with pain being more prevalent and aseptic loosening and infection being less prevalent in the PFJ group. Single stage revision was performed in 124 cases and 118 underwent cemented revision. Conclusion. Limited data exists on the demographics and outcome for patellofemoral arthroplasty revision. This study is the first to identify reasons for failure in a large cohort and relate such to duration of primary component


The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1162 - 1167
1 Sep 2018
Metcalfe AJ Ahearn N Hassaballa MA Parsons N Ackroyd CE Murray JR Robinson JR Eldridge JD Porteous AJ

Aims. This study reports on the medium- to long-term implant survivorship and patient-reported outcomes for the Avon patellofemoral joint (PFJ) arthroplasty. Patients and Methods. A total of 558 Avon PFJ arthroplasties in 431 patients, with minimum two-year follow-up, were identified from a prospective database. Patient-reported outcomes and implant survivorship were analyzed, with follow-up of up to 18 years. Results. Outcomes were recorded for 483 implants (368 patients), representing an 86% follow-up rate. The median postoperative Oxford Knee Score (0 to 48 scale) was 35 (interquartile range (IQR) 25.5 to 43) and the median Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC, 0 to 100 scale) was 35 (IQR 25 to 53) at two years. There were 105 revisions, 61 (58%) for progression of osteoarthritis. All documented revisions were to primary knee systems without augmentation. The implant survival rate was 77.3% (95% confidence interval (CI) 72.4 to 81.7, number at risk 204) at ten years and 67.4% (95% CI 72.4 to 81.7 number at risk 45) at 15 years. Regression analysis of explanatory data variable showed that cases performed in the last nine years had improved survival compared with the first nine years of the cohort, but the individual operating surgeon had the strongest effect on survivorship. Conclusion. Satisfactory long-term results can be obtained with the Avon PFJ arthroplasty, with maintenance of patient-reported outcome measures (PROMs), satisfactory survival, and low rates of loosening and wear. Cite this article: Bone Joint J 2018;100-B:1162–7


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 74 - 74
1 Sep 2012
Innocenti B van Jonbergen H Labey L Verdonschot N
Full Access

INTRODUCTION. Patellofemoral joint (PFJ) replacement is a successful treatment option for isolated patellofemoral osteoarthritis. With this approach only the involved joint compartment is replaced and the femoro-tibial joint remains intact. Minimizing periprosthetic bone loss, which may occur due to the stress shielding effect of the femoral component, is important to insure long-term outcomes. The objective of this study was to investigate, using finite element analyses, the effects of patellofemoral replacement on the expected stress distribution of the distal femur eventually leading to changes in bone density. METHODS. MRI images of a healthy knee were acquired, segmented and reconstructed into a 3D physiological model of the bony and cartilaginous geometries of distal femur and patella with patellar tendon and insertion of the quadriceps tendon. This model was modified to include PFJ replacements with either a Journey PFJ or a Richards II PFJ prosthesis, and a Genesis II TKA (Smith&Nephew, Memphis, TN). The prosthetic components were incorporated in the intact model based on the manufacturer's instructions or previously described surgical techniques (Figure 1). Cortical bone was modeled with orthotropic properties, while homogeneous linear isotropic elasticity was assumed for trabecular bone, cartilage, cement and femoral components materials. The patellar tendon was given Neo-Hookean behavior. UHMWPE patellar buttons for all designs were assigned non-linear elasto-plastic material. The simulated motion consisted of a 10 second loaded squat, starting from 0° until a flexion angle of 120° matching experimental kinematics tests performed in previous in-vitro analysis on physiological cadaveric legs [1-2]. The patella model was constrained fixing the distal part of the patellar ligament and applying a quadriceps force distributed on the quadriceps insertion on the proximal surface of the patella. During the dynamic simulation the average Von Mises stress was calculated in two regions of interest (ROI) defined in the femoral bone: one anterior and one proximal. The location of the ROIs was defined to fit the same regions as used in a previous bone mineral density analysis following patellofemoral arthroplasty (height 1cm, length 1cm). RESULTS AND DISCUSSION. Overall, the average bone stresses in both ROIs increased with flexion angle. Maximal stresses during squat were reached at 90° flexion angle, (2.8–3.8 MPa for the anterior ROI and 1.4–1.6 MPa for the proximal ROI). Mean stresses in the proximal ROI were similar for both PFJ designs and the physiological model, and slightly lower for the TKA. Between 80° and 120°, anterior ROI bone stresses for Journey PFJ design were comparable to the physiological knee, while reduced by almost 25% for the other designs (Figure 1). These results suggest a different stress-shielding behavior depending on design geometry and material properties. CONCLUSIONS. This study evaluated periprosthetic bone stress distributions of different patellofemoral replacements. The numerical analyses of physiological and replaced knee models predicted a decrease in stress behind the anterior flange of the femoral component for some designs. This reduction was dependent on prosthesis design geometry and materials properties


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 267 - 267
1 Mar 2013
Boschert H de la Barrera JLM Belvedere C Ensini A Leardini A Giannini S
Full Access

INTRODUCTION. Despite a large percentage of total knee arthroplasty failures occurs for disorders at the patello-femoral joint (PFJ), current navigation systems report tibio-femoral (TFJ) kinematics only, and do not track the patella. Despite this tracking is made difficult by the small bone and by its full eversion during surgery, a new such technique has been developed, which includes a new tracker, new corresponding surgical instrumentation also for patellar resurfacing, and all relevant software. The aim of this study is to report an early experience in patients of these measurements, i.e. TFJ and PFJ kinematics. METHODS. These measurements were taken in the first ten patients, affected by primary gonarthrosis and implanted with a resurfacing posterior-stabilised prosthesis in the period July 2010 – May 2011. A standard knee navigation system was enhanced by a specially-designed patellar tracker, mounted with a cluster of three light emitting diodes. Standard procedures for femoral and tibial bone preparation were performed according to the navigation system, and the patellar was resurfaced. Relevant resection planes were taken by an instrumented verification probe. Final position of the three components and lower limb alignment were also acquired. Joint kinematics was deduced from the anatomical survey, which included anatomical landmarks on the patellar posterior aspect, and according to established recommendations and original proposals. RESULTS. In addition to the standard assessment of TFJ kinematics, patellar tracking was performed successfully in all cases without complications, resulting in a maximum of 30 min longer operations. PFJ kinematics (see figure) after replacement and resurfacing showed a mean (± standard deviation, over the patients) range of flexion, tilt and medio-lateral shift respectively of 66.9° ± 8.5° (mean of minimum flexion ÷ of maximum flexion, 15.6° ÷ 82.5°), 8.0° ± 3.1° (−5.3° ÷ 2.8°), and 5.3 ± 2.0 mm (−5.5 ÷ 0.2 mm). Statistically significant correlations were found between the internal/external rotation of the femoral component and the range of PFJ tilt (p=0.05; R=0.64); in three patients, medio-lateral PFJ shift seemed to be affected by the medio-lateral position of the femoral component. DISCUSSION AND CONCLUSIONS. Data obtained from our preliminary experience support the relevance, feasibility and efficacy of patellar tracking in navigated knee arthroplasty by means of a standard knee navigation system, suitably extended to track also the patellar motion. Patellar-based measurement provides for a more comprehensive assessment of the whole knee function, not only for the resurfacing but also for a best possible positioning of the femoral and tibial components


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 367 - 368
1 Oct 2006
Upadhyay N Vollans S Seedhom B Soames R
Full Access

Introduction: Anterior cruciate ligament (ACL) rupture impairs knee stability. Reconstruction of the ACL is therefore performed to restore knee stability and avert risk of subsequent ligament and meniscal injury. Bone-patellar tendon-bone autograft is the most commonly employed technique for ACL reconstruction and considered the “gold standard”. Although 10% postoperative patellar tendon shortening has been reported with this technique, there are no systematic studies assessing the effect of this shortening on patellofemoral joint (PFJ) biomechanics under loading conditions simulating normal physiologic activity. The purpose of this study was to determine if 10% shortening of the patellar tendon affected PFJ biomechanics. Methods: Patellofemoral contact characteristics were evaluated in cadaveric knees before and after patellar tendon shortening. Tendon shortening was performed using a specifically designed device that shortened the tendon without interfering with its anatomic and physiologic integrity. Conditions simulating light physical activity such as level walking were recreated by applying physiological quadriceps loads and corresponding angles of tibial rotation to the PFJ at 15°, 30° and 60° of knee flexion. PFJ contact areas were measured at each position of knee flexion before and after patellar tendon shortening using the silicone oil-carbon black powder suspension squeeze technique (3S technique, . Yao & Seedhom, . Proc Instn Mech Engrs. 1991. ;. 205. :. 69. –72. ). Differences were compared using the Wilcoxon signed rank t-test, with p< 0.05 required for statistical significance. Results: Twelve unembalmed cadaveric knees (median age 81.8 years, 8 female: 4 male) were available for study. Five knees had evidence of osteoarthritic changes, and were rejected. The remaining 7 knees were macroscopically intact and were considered adequate for the experimental procedure. The mean patellofemoral contact areas and stresses determined preoperatively were comparable to those reported in normal knees in previous studies. Following patellar tendon shortening, PFJ contact areas were displaced superiorly on the patellar articular surface and distally on the femoral articular surface. Although the PFJ contact area increased by 17% at 15° of knee flexion (p=0.04), no significant change occurred at 30° or 60° of knee flexion (p> 0.05). Patellofemoral contact stress did not differ before and after patellar tendon shortening (p> 0.05) at any angle of knee flexion. Conclusions: Our results suggest that with light activity such as level walking, a 10% postoperative shortening of the patellar tendon does not alter patellar tracking (in particular contact stresses) and therefore may not impact biomechanics of the patellofemoral joint. Extrapolating these results to the clinical scenario, deleterious consequences on the patellofemoral joint are unlikely after bone-patellar tendon-bone autograft reconstruction of the ACL despite the possibility of postoperative patellar tendon shortening