Background. Variability in component alignment continues to be a major in total knee arthroplasty(TKA). In the long term, coronal plane malalignment has been associated with an increased risk of loosening, insatability, and wear. Recently,
We have investigated the benefits of patient
specific instrument guides, applied to osteotomies around the knee. Single,
dual and triple planar osteotomies were performed on tibias or femurs
in 14 subjects. In all patients, a detailed pre-operative plan was
prepared based upon full leg standing radiographic and CT scan information.
The planned level of the osteotomy and open wedge resection was
relayed to the surgery by virtue of a
Patient-specific glenoid guides (PSGs) claim an improvement in
accuracy and reproducibility of the positioning of components in
total shoulder arthroplasty (TSA). The results have not yet been
confirmed in a prospective clinical trial. Our aim was to assess
whether the use of PSGs in patients with osteoarthritis of the shoulder
would allow accurate and reliable implantation of the glenoid component. A total of 17 patients (three men and 14 women) with a mean age
of 71 years (53 to 81) awaiting TSA were enrolled in the study.
Pre- and post-operative version and inclination of the glenoid were
measured on CT scans, using 3D planning automatic software. During
surgery, a congruent 3D-printed PSG was applied onto the glenoid
surface, thus determining the entry point and orientation of the
central guide wire used for reaming the glenoid and the introduction
of the component. Manual segmentation was performed on post-operative
CT scans to compare the planned and the actual position of the entry
point (mm) and orientation of the component (°).Aims
Patients and Methods
Abstract. Background. Distal femoral osteotomy is an established successful procedure which can delay the progression of arthritis and the need for knee arthroplasty. The surgery, however, is complex and lengthy and consequently it is generally the preserve of highly experienced specialists and thus not widely offered. Patient specific instrumentation is known to reduce procedural complexity, time, and surgeons’ anxiety levels. 1. in proximal tibial osteotomy procedures. This study evaluated a novel patient specific distal femoral osteotomy procedure (Orthoscape, Bath, UK) which aimed to use custom-made implants and instrumentation to provide a precision correction while also simplifying the procedure so that more surgeons would be comfortable offering the procedure. Presenting problem. Three patients (n=3) with early-stage knee arthritis presented with valgus malalignment, the source of which was predominantly located within the distal femur, rather than intraarticular. Using conventional techniques and instrumentation, distal femoral knee osteotomy cases typically require 1.5–2 hours surgery time. The use of bi-planar osteotomy cuts have been shown to improve intraoperative stability as well as bone healing times. 2. This normally also increases surgical complexity; however, multiple cutting slots can be easily incorporated into patient specific instrumentation. Clinical management. All three cases were treated at a high-volume tertiary referral centre (Istituto Ortopedico Rizzoli, Bologna) using medial closing wedge distal femoral knee osteotomies by a team experienced in using patient specific osteotomy systems. 3. Virtual surgical planning was conducted using CT-scans and long-leg weight-bearing x-rays (Orthoscape, Bath, UK).
We report on a cadaveric study and early experience using
Summary Statement. This is the first report of a new technique for unicompartmental to total knee arthroplasty revision surgery in which
Introduction & aims. Resurfacing of the patella is an important part of most TKA operations, usually using an onlay technique. One common practice is to medialise the patellar button and aim to recreate the patellar offset, but most systems do not well control alignment of the patella button. This study aimed to investigate for relationships between placement and outcomes and report on the accuracy of patella placement achieved with the aid of a patella
Introduction and Objective. After anterior cruciate ligament reconstruction one of the risk factors for graft (re-)rupture is an increased posterior tibial slope (PTS). The current treatment for PTS is a high tibial osteotomy (HTO). This is a free-hand method, with 1 degree of tibial slope correction considered to be equal to 1 or even 1.67 mm of the anterior wedge resection. Error rates in the frontal plane reported in literature vary from 1 – 8.6 degrees, and in the sagittal plane outcomes in a range of 2 – 8 degrees are reported when planned on PTSs of 3 – 5 degrees. Therefore, the free-hand method is considered to have limited accuracy. It is expected that HTO becomes more accurate with
PURPOSE. To validate the efficacy and accuracy of a novel
Introduction. Restoration of the femoral head centre during THR should theoretically improve muscle function and soft tissue tension. The aim of this study was to assess whether 3D planning and an accurately controlled neck osteotomy could help recreate hip anatomy. Methods. 100 consecutive THR patients received OPS. TM. 3D femoral planning. For each patient a 3D stem+head position was pre-operatively planned which restored the native head height, restored global offset after cup medialisation and reproduced anterior offset, in the superior-inferior, medial-lateral and anterior-posterior directions respectively. The femoral osteotomy was planned preoperatively and controlled intra-operatively with a
Alignment and soft tissue balance are two of the most important factors that influence early and long term outcome of total knee arthroplasty. Current clinical practice involves the use of plain radiographs for preoperative planning and conventional instrumentation for intra operative alignment. The aim of this study is to assess the Signature. TM. Personalised system using
Osteotomy is one of the oldest orthopaedic interventions and has evolved significantly over the years. The procedure is well established as a biomechanical solution in the treatment of arthritis and instability of the knee. The operation is technically demanding and carries risks of neurovascular injury, inadequate fixation and under- or overcorrection. These technical problems have given osteotomy significant headwind in the orthopaedic community. The relative success of knee arthroplasty (uni or total) in the past decade has fed the perception that this procedure is the only remaining treatment to be trusted for patients with knee arthritis. However, both registry data and single center studies often show disappointing results for knee arthroplasty in the young, active and demanding patient population. Osteotomy has a significant role for these patients, provided they have unicompartmental arthritis with constitutional malalignment. Also, more complex deformities as seen in the post-traumatic setting often need a biomechanical approach based upon osteotomy principles. Recently, technology was developed to allow the surgeon perform a three-dimensional evaluation of the deformity and prediction of postoperative alignment.
Introduction. Optimal orthopaedic implant placement is a major contributing factor to the long term success of all common joint arthroplasty procedures. Devices such as 3D printed bespoke guides and orthopaedic robots are extensively described in the literature and have been shown to enhance prosthesis placement accuracy. These technologies have significant drawbacks such as logistical and temporal inefficiency, high cost, cumbersome nature and difficult theatre integration. A radically new disruptive technology for the rapid intraoperative production of patient specific instrumentation that obviates all disadvantages of current technologies is presented. Methods. An ex-vivo validation and accuracy study was carried out using the example of placing the glenoid component in a shoulder arthroplasty procedure. The technology comprises a re-usable table side machine, bespoke software and a disposable element comprising a region of standard geometry and a body of mouldable material. Anatomical data from 10 human scapulae CT scans was collected and in each case the optimal glenoid guidewire position was digitally planned and recorded. The glenoids were isolated and concurrently 3D printed. In our control group, guide wires were manually inserted into 1 of each pair of unique glenoid models according to a surgeon's interpretation of the optimal position from the anatomy. The same surgeon used the guidance system and associated method to insert a guide wire into the second glenoid model of the pair. Achieved accuracy compared to the pre-operative bespoke plan was measured in all glenoids in both the conventional group and the guided group. Results. The technology was successfully able to intraoperatively produce sterile,
Patient specific instruments have been developed in response to the conundrum of limited accuracy of intramedullary and extramedullary alignment guides and chaos caused by computer assisted orthopaedic surgery. This technology facilitates preoperative planning by providing the surgeon with a three dimensional (3-D) anatomical reconstruction of the knee, thereby improving the surgeon's understanding of the preoperative pathology. Intramedullary canal penetration of the femur and tibia is unnecessary, and consequently, any potential for fat emboli is eliminated. Component position and alignment are improved with a decrease in the number of outliers. Patient specific instruments utilise detailed magnetic resonance imaging (MRI) or computed tomography (CT) scans of the patient's knee with additional images from the hip and ankle for determination of critical landmarks. From these studies a 3-D model of the patient's knee is created and with integration of rapid prototyping technology, guides are created to apply to the patient's native anatomy to direct the placement of the cutting jigs and ultimately the placement of the components. The steps in considering utilization of
Patients presenting with arthrosis following high tibial osteotomy (HTO) pose a technical challenge to the surgeon. Slight overcorrection during osteotomy sometimes results in persisting medial unicompartmental arthrosis, but with a valgus knee. A medial UKA is desirable, but will result in further valgus deformity, while a TKA in someone with deformity but intact cruciates may be a disappointment as it is technically challenging. The problem is similar to that of patients with a femoral malunion and arthrosis. The surgeon has to choose where to make the correction. An ‘all inside’ approach is perhaps the simplest. However, this often means extensive release of ligaments to enable ‘balancing’ of the joint, with significant compromise of the soft tissues and reduced range of motion as a consequence. As patients having HTO in the first place are relatively high demand, we have explored a more conservative option, based upon our experience with patient matched guides. We have been performing combined deformity correction and conservative arthroplasty for 5 years, using PSI developed in the MSk Lab. We have now adapted this approach to the failed HTO. By reversing the osteotomy, closing the opening wedge, or opening the closing wedge, we can restore the obliquity of the joint, and preserve the cruciate ligaments. Technique: CT based plans are used, combined with static imaging and on occasion gait data. Planning software is then used to undertake the arthroplasty, and corrective osteotomy. In the planning software, both tibial and femoral sides of the UKA are performed with minimal bone resection. The tibial osteotomy is then reversed to restore joint line obliquity. The placing of osteotomy, and the angling and positioning in relation to the tibial component are crucial. This is more important in the opening of a closing wedge, where the bone but is close to the keel cut. The tibial component is then readjusted to the final ‘Cartier’ angle. Patient guides are then made. These include a tibial cutting guide which locates both the osteotomy and the arthroplasty. At operation, the bone cuts for the arthroplasty are made first, so that these cuts are not performed on stressed bone. The cuts are not in the classical alignment as they are based upon deformed bone so the use of
3D printing and rapid prototyping in surgery is an expanding technology. It is often used for preoperative planning, procedure rehearsal and patient education. There have been recent advances in orthopaedic surgery for the development of
Achieving optimal acetabular cup orientation in Total Hip Replacement (THR) remains one of the most difficult challenges in THR surgery (AAOR 2013) but very little has been added to useful understanding since Lewinnek published recommendations in 1978. This is largely due to difficulties of analysis in functional positions. The pelvis is not a static reference but rotates especially in the sagittal plane depending upon the activity being performed. These dynamic changes in pelvic rotation have a substantial effect on the functional orientation of the acetabulum, not appreciated on standard radiographs [Fig1]. Studies of groups of individuals have found the mean pelvic rotation in the sagittal plane is small but large individual variations commonly occur. Posterior rotation, with sitting, increases the functional arc of the hip and is protective of a THR in regards to both edge loading and risk of dislocation. Conversely Anterior rotation, with sitting, is potentially hazardous. We developed a protocol using three functional positions – standing, supine and flexed seated (posture at “seat-off” from a standard chair). Lateral radiographs were used to define the pelvic tilt in the standing and flexed seated positions. Pelvic tilt was defined as the angle between a vertical reference line and the anterior pelvic plane (defined by the line joining both anterior superior iliac spines and the pubic symphysis). In the supine position pelvic tilt was defined as the angle between a horizontal reference line and the anterior pelvic plane. Supine pelvic tilt was measured from computed tomography. Proprietary software (Optimized Ortho, Sydney) based on Rigid Body Dynamics then modelled the patients’ dynamics through their functional range producing a patient-specific simulation which also calculates the magnitude and direction of the dynamic force at the hip and traces the contact area between prosthetic head/liner onto a polar plot of the articulating surface, Fig 2. Given prosthesis specific information edge-loading can then be predicted based on the measured distance of the contact patch to the edge of the acetabular liner. Delivery of desired orientation at surgery is facilitated by use of a solid 3D printed model of the acetabulum along with a
A prospective randomized trial on 128 patients with end-stage osteoarthritis was conducted to assess the accuracy of patient-specific guides. In cohort A (n = 64), patient- specific guides from four different manufacturers (Subgroup A1 Signature ®, A2 Trumatch ®, A3 Visionaire ® and A4 PSI ®) were used to guide the bone cuts. Surgical navigation was used as an intraoperative control for outliers. In cohort B (n = 64), conventional instrumentation was used. All patients of cohorts A and B underwent a postoperative full-leg standing X-ray and CT scan for measuring overall coronal alignment of the limb and three-planar alignment of the femoral and the tibial component. Three-planar alignment was the primary endpoint. Deviation of more than three degrees from the target in any plane, as measured with surgical navigation or radiologic imaging, was defined as an outlier. In 14 patients (22%) of cohort A, the use of the patient-specific guide was abandoned because of outliers in more than one plane. In 18 patients (28%), a correction of the position indicated by the guide, was made in at least one plane. A change in cranial-caudal position was most common. Cohort A and B showed a similar percentage of outliers in long-leg coronal alignment (24.6%, 28.1%, p = 0.69), femoral coronal alignment (6.6%, 14.1%, p = 0.24) and femoral axial alignment (23%, 17.2%, p = 0.50). Cohort A had more outliers in coronal tibial alignment (14.6%) and sagittal tibial alignment (21.3%) than cohort B (3.1%, p = 0.03 and 3.1%, p = 0.002, respectively). These data indicate that
Introduction. Appropriate acetabular cup orientation is an important factor in reducing instability and maximising the performance of the bearing after Total Hip Arthroplasty (THA). However, postoperative analyses of two large cohorts in the US have shown that more than half of cups are malorientated. In addition, there is no consensus as to what inclination and anteversion angles should be targeted, with contemporary literature suggesting that the orientation should be customised for each individual patient. The aim of this study was to measure the accuracy of a novel patient specific instrumentation system in a consecutive series of 22 acetabular cups, each with a customised orientation. Methodology. Twenty-two consecutive total hip replacement patients were sent for Trinity Optimized Positioning System (OPS) acetabular planning (Optimized Ortho, Sydney). The Trinity OPS planning is a preoperative, dynamic analysis of each patient performing a deep flexion and full extension activity. The software calculates the dynamic force at the hip to be replaced and plots the bearing contact patch as it traces across the articulating surface. The software modelled multiple cup orientations and the alignment which best centralised the load was chosen by the surgeon from the preoperative reports. Once the target orientations had been determined, a unique