Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:

Aims. Sagittal lumbar pelvic alignment alters with posterior pelvic tilt (PT) following total hip arthroplasty (THA) for developmental dysplasia of the hip (DDH). The individual value of pelvic sagittal inclination (PSI) following rebalancing of lumbar-pelvic alignment is unknown. In different populations, PT regresses in a linear relationship with pelvic incidence (PI). PSI and PT have a direct relationship to each other via a fixed individual angle ∠γ. This study aimed to investigate whether the new PI created by acetabular component positioning during THA also has a linear regression relationship with PT/PSI when lumbar-pelvic alignment rebalances postoperatively in patients with Crowe type III/IV DDH. Methods. Using SPINEPARA software, we measured the pelvic sagittal parameters including PI, PT, and PSI in 61 patients with Crowe III/IV DDH. Both PSI and PT represent the pelvic tilt state, and the difference between their values is ∠γ (PT = PSI + ∠γ). The regression equation between PI and PT at one year after THA was established. By substituting ∠γ, the relationship between PI and PSI was also established. The Bland-Altman method was used to evaluate the consistency between the PSI calculated by the linear regression equation (ePSI) and the actual PSI (aPSI) measured one year postoperatively. Results. The mean PT and PSI changed from preoperative values of 7.0° (SD 6.5°) and -8.0° (SD 6.7°), respectively, to 8.4° (SD 5.5°) and -4.5° (SD 5.9°) at one year postoperatively. This change shows that the pelvis tilted posteriorly following THA. In addition, when lumbar-pelvic alignment rebalanced, the linear regression equation between PI and PT was PT = 0.45 × PI - 10.5°, and PSI could be expressed as PSI = 0.45 × PI - 10.5° - ∠γ. The absolute difference between ePSI and aPSI was less than 5° in 55 of 61 patients (90.16%). Conclusion. The new PI created by the positioning of the acetabular component significantly affects the PSI when lumbar-pelvic alignment changes and rebalances after THA in patients with Crowe III/IV DDH. Cite this article: Bone Joint J 2025;107-B(2):149–156


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 56 - 56
1 Mar 2017
Uemura K Takao M Otake Y Koyama K Yokota F Hamada H Sakai T Sato Y Sugano N
Full Access

Background. Cup anteversion and inclination are important to avoid implant impingement and dislocation in total hip arthroplasty (THA). However, it is well known that functional cup anteversion and cup inclination also change as the pelvic sagittal inclination (PSI) changes, and many reports have been made to investigate the PSI in supine and standing positions. However, the maximum numbers of subjects studied are around 150 due to the requirement of considerable manual input in measuring the PSIs. Therefore, PSI in supine and standing positions were measured fully automatically with a computational method in a large cohort, and the factors which relate to the PSI change from supine to standing were analyzed in this study. Methods. A total of 422 patients who underwent THA from 2011 to 2015 were the subjects of this study. There were 83 patients with primary OA, 274 patients with DDH derived secondary OA (DDH-OA), 48 patients with osteonecrosis, and 17 patients with rapidly destructive coxopathy (RDC). The median age of the patient was 61 (range; 15–87). Preoperative PSI in supine and standing positions were measured and the number of cases in which PSI changed more than 10° posteriorly were calculated. PSI in supine was measured as the angle between the anterior pelvic plane (APP) and the horizontal line of the body on the sagittal plane of APP, and PSI in standing was measured as the angle between the APP and the line perpendicular to the horizontal surface on the sagittal plane of APP (Fig. 1). The value was set positive if the pelvis was tilted anteriorly and was set negative if the pelvis tilted posteriorly. Type of hip disease, sex, and age were analyzed with multiple logistic regression analysis if they were related to PSI change of more than 10°. For accuracy verification, PSI in supine and standing were measured manually with the previous manual method in 100 cases and were compared with the automated system used in this study. Results. The median PSI in the supine position was 5.1° (interquartile range [IQR]: 0.4 to 9.4°), and the median PSI in the standing position was −1.3° (IQR: −6.5 to 4.2°). There were 79 cases (19%) in which the PSI changed more than 10° posteriorly from supine to standing with a maximum change of 36.9° (Fig. 2). In the analysis of the factors, type of hip disease (p = 0.015) and age (p = 0.006, Odds Ratio [OR] = 1.035) were the significant factors. The OR of primary OA (p = 0.005, OR: 2.365) and RDC (p = 0.03, OR: 3.146) were significantly higher than DDH-OA. In accuracy verification, the automated PSI measurement showed ICC of 0.992 (95% CI: 0.988 to 0.955) for supine measurement and 0.978 (95% CI: 0.952 to 0.988) for standing measurement. Conclusions. PSI changed more than 10° posteriorly from supine to standing in 19% of the cases. Age and diagnosis of primary OA and RDC were related to having their pelvis recline more than 10° posteriorly. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 47 - 47
1 Jan 2016
Takao M Nishii T Sakai T Sugano N
Full Access

In total hip arthroplasty (THA), inappropriate cup alignment cause edge loading and prosthetic impingement, which lead to various mechanical problems including dislocation, excessive wear and breakage of bearing materials, and stem neck fracture. To find the optimal cup alignment, various computer simulation studies have been conducted. However there have been few studies focusing on pelvic coordinate system as a reference of cup positioning. Our hypothesis is that the functional pelvic coordinate system with pelvic sagittal inclination in the supine position is appropriate for a reference frame of cup alignment. To test the hypothesis, we have been investigating preoperative and postoperative kinematics of pelvis and hip of THA patients. In 25 % of the consecutive 163 patients, the difference in preoperative pelvic inclination angle between the supine and standing positions (positional change of pelvic inclination [PC]) was 10. o. or more. Patients’ age and age-related spinal disorders including compression fracture and lumbar spondylolisthesis were independent factors associated with large preoperative PC. This raises a concern that large PC might increase the risk of edge loading and posterior prosthetic impingement when cup was positioned referencing supine pelvic position, especially in elderly patients. We compared kinematics of the hip after THA in patients with a preoperative large PC (≥10°) with that in patients with a preoperative small PC (<10°), assuming that the supine position as a zero position of the pelvis. First, we compared intraoperative passive range of motion (ROM) after implantation of the 91 hips using navigation system. No significant differences in intraoperative hip ROM were observed between the both groups. Next, we compared postoperative ROM of the 50 hips during motion of daily livings using our 4-dimentional motion analysis system within two year after THA. No significant differences in postoperative hip flexion or extension angles were observed between the both groups. These results suggested that if cup was positioned referencing the supine pelvic position, the degree of preoperative PC does not matter early after primary THA. Regarding long-term change of pelvic inclination after THA, 49 % of 70 patients followed for 10 years showed the change more than 10. o. in the standing position, although only 9% showed the change more than 10. o. in the supine position. This means that aging after THA increase discrepancy of pelvic inclination between the preoperative supine position as the reference for preoperative planning and the postoperative standing positions in some patients. However we could not find any preoperative predictors of this long-term change of pelvic inclination in the standing position. Therefore, although it is unclear whether surgeons should change the reference pelvic plane for cup alignment taking the longitudinal change of pelvic inclination in the standing position, at least, strict cup alignment control at primary THA is considered to be important to minimize the risk of edge loading and prosthetic impingement due to longitudinal changes of pelvic inclination. In conclusion, our current recommendation of pelvic coordinate system as a reference of cup alignment is a functional pelvic coordinate system with pelvic sagittal inclination in supine position


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 37 - 37
1 Feb 2016
Hamada H Takao M Uemura K Sakai T Nishii T Sugano N
Full Access

Rotational acetabular osteotomy (RAO) for developmental dysplasia of the hip (DDH) may not restore normal hip range of motion (ROM) due to the inherent deformity of the hip and it may lead to femoro-acetabular impingement. The purpose of this study was to investigate morphological factors of the pelvis and femur influencing on simulated ROM after RAO with a fixed target for femoral head coverage. We retrospectively reviewed CT images of 52 DDHs with an average lateral centre edge angle (CEA) of 7.9° (−12° to 19°). After virtual RAO with 30° of lateral CEA and 55° of anterior CEA producing femoral head coverage similar to that of the normal hips, we measured simulated flexion ROM using pelvic and femoral computer models reconstructed from the CT images. Pelvic sagittal inclination, acetabular anteversion, lateral CEA, femoral neck anteversion, femoral neck shaft angle (FNSA), alpha angle and the position of the anterior inferior iliac spine (AIIS) were investigated as morphological factor. When the most prominent point of the AIIS existed more distally than the cranial tip of the acetabular joint line in a lateral view of the pelvis model in supine position, the subjects were defined as AIIS-Type1; the remaining subjects were defined as Type 2. There were 10 hips with Type 1 and 42 hips with Type 2 AIIS. The Kappa value of inter-observer reproducibility to classify AIIS was 0.82. Multiple regression analyses were performed to analyse the relationship between ROM and the morphological parameters. We also analysed the relationship between the probability of flexion ROM being less than 110° and the factors which influenced on flexion ROM. FNSA and AIIS-Type independently influenced on simulated flexion ROM after RAO (standard regression coefficient: −0.51 and 0.37, respectively. p&lt; 0.001). The multiple correlation coefficient was 0.68. Flexion ROM after RAO with a fixed femoral head coverage similar to that of the normal hips ranged from 95° to 141° with an average of 121°±8°. The probability of ROM being less than 110° was significantly higher in subjects with AIIS-Type 1 than in those with Type 2 (odds ratio: 13.3, p&lt;0.01). It was also significantly higher in subjects with more than 135° of FNSA than in those with less than 135° of FNSA (odds ratio: 9.5, p&lt;0.05). FNSA and the type of AIIS influenced on flexion ROM after RAO with approximately 40° of variation in spite of a fixed target for femoral head coverage. A large FNSA and a distal positioning of AIIS were independently associated with smaller flexion ROM after RAO


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care.

Cite this article: Bone Joint J 2024;106-B(11):1206–1215.


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 786 - 791
1 Jul 2022
Jenkinson MRJ Peeters W Hutt JRB Witt JD

Aims

Acetabular retroversion is a recognized cause of hip impingement and can be influenced by pelvic tilt (PT), which changes in different functional positions. Positional changes in PT have not previously been studied in patients with acetabular retroversion.

Methods

Supine and standing anteroposterior (AP) pelvic radiographs were retrospectively analyzed in 69 patients treated for symptomatic acetabular retroversion. Measurements were made for acetabular index (AI), lateral centre-edge angle (LCEA), crossover index, ischial spine sign, and posterior wall sign. The change in the angle of PT was measured both by the sacro-femoral-pubic (SFP) angle and the pubic symphysis to sacroiliac (PS-SI) index.


Bone & Joint 360
Vol. 9, Issue 4 | Pages 41 - 44
1 Aug 2020