Advertisement for orthosearch.org.uk
Results 1 - 20 of 39
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_1 | Pages 2 - 2
23 Jan 2023
Newton Ede M Pearson MJ Philp AM Cooke ME Nicholson T Grover LM Jones SW
Full Access

To determine whether spinal facet osteoblasts at the curve apex display a different phenotype to osteoblasts from outside the curve in patients with adolescent idiopathic scoliosis (AIS). Intrinsic differences in the phenotype of spinal facet bone tissue and in spinal osteoblasts have been implicated in the pathogenesis of AIS. However, no study has compared the phenotype of facet osteoblasts at the curve apex with the facet osteoblasts from outside the curve in patients with AIS. Facet bone tissue was collected from three sites, the concave and convex side at the curve apex and from outside the curve from three female patients with AIS (aged 13–16 years). Micro-CT analysis was used to determine the density and trabecular structure. Osteoblasts were then cultured from the sampled bone. Osteoblast phenotype was investigated by assessing cellular proliferation (MTS assay), cellular metabolism (alkaline phosphatase and Seahorse Analyser), bone nodule mineralisation (Alizarin red assay), and the mRNA expression of Wnt signalling genes (quantitative RT-PCR). Convex bone showed greater bone mineral density and trabecular thickness than did concave bone. The convex side of the curve apex exhibited a significantly higher proliferative and metabolic phenotype and a greater capacity to form mineralised bone nodules than did concave osteoblasts. mRNA expression of SKP2 was significantly greater in both concave and convex osteoblasts than in non-curve osteoblasts. The expression of SFRP1 was significantly downregulated in convex osteoblasts compared with either concave or non-curve. Intrinsic differences that affect osteoblast function are exhibited by spinal facet osteoblasts at the curve apex in patients with AIS


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 5 - 5
1 Oct 2022
Williams R Snuggs J Schmitz TC Janani R Basatvat S Sammon C Benz K Ito K Tryfonidou M Le Maitre C
Full Access

Objectives. Low back pain is strongly associated with degeneration of the intervertebral disc (IVD). During degeneration, altered matrix synthesis and increased matrix degradation, together with accompanied cell loss is seen particularly in the nucleus pulposus (NP). It has been proposed that notochordal (NC) cells, embryonic precursors for the cells within the NP, could be utilized for mediating IVD regeneration. However, injectable biomaterials are likely to be required to support their phenotype and viability within the degenerate IVD. Therefore, viability and phenotype of NC cells were analysed and compared within biomaterial carriers subjected to physiological oxygen conditions over a four-week period were investigated. Methodology. Porcine NC cells were incorporated into three injectable hydrogels: NPgel (a L-pNIPAM-co-DMAc hydrogel), NPgel with decellularized NC-matrix powder (dNCM) and Albugel (an albumin/ hyaluronan hydrogel). The NCs and biomaterials constructs were cultured for up to four weeks under 5% oxygen (n=3 biological repeats). Histological, immunohistochemical and glycosaminoglycans (GAG) analysis were performed to investigate NC viability, phenotype and extracellular matrix synthesis and deposition. Results. Histological analysis revealed that NCs survive in the biomaterials after four weeks and maintained cell clustering in NPgel, Albugel and dNCM/NPgel. NPgel and Albugel maintained NC cell markers and extracellular matrix. NC containing constructs excreted more GAGs over the four weeks than the acellular controls. Conclusion. NC cells maintain their phenotype and characteristic features in vitro when encapsulated into biomaterials. NC cells and biomaterial construct could potentially become a therapy to treat and regenerate the IVD. Conflicts of interest: No conflicts of interest. Sources of funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 825925


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 1 - 1
1 Aug 2022
Nicholson T Foster N Haj AE Ede MN Jones S
Full Access

We previously reported that osteoblasts at the curve apex in adolescent idiopathic scoliosis (AIS) exhibit a differential phenotype, compared to non-curve osteoblasts(1). However, the Hueter-Volkmann principle on vertebral body growth in spinal deformities (2) suggests this could be secondary to altered biomechanics. This study examined whether non-curve osteoblasts subjected to mechanical strain resemble the transcriptomic phenotype of curve apex osteoblasts. Facet spinal tissue was collected perioperatively from three sites, (i) the concave and (ii) convex side at the curve apex and (iii) from outside the curve (non-curve) from six AIS female patients (age 13–18 years; NRES 19/WM/0083). Non-curve osteoblasts were subjected to strain using a 4-point bending device. Osteoblast phenotype was determined by RNA sequencing and bioinformatic pathway analysis. RNAseq revealed that curve apex osteoblasts exhibited a differential transcriptome, with 1014 and 1301 differentially expressed genes (DEGs; p<0.05, fold-change >1.5) between convex/non-curve and concave/non-curve sites respectively. Non-curve osteoblasts subjected to strain showed increased protein expression of the mechanoresponsive biomarkers COX2 and C-Fos. Comparing unstimulated vs strain-induced non-curve osteoblasts, 423 DEGs were identified (p<0.05, fold-change >1.5). Of these DEGs, only 5% and 6% were common to the DEGs found at either side of the curve apex, compared to non-curve cells. Bioinformatic analysis of these strain-induced DEGs revealed a different array of canonical signalling pathways and cellular processes, to those significantly affected in cells at the curve apex. Mechanical strain of AIS osteoblasts in vitro did not induce the differential transcriptomic phenotype of AIS osteoblasts at the curve apex


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 33 - 33
1 Feb 2018
Richardson S Rodrigues-Pinto R Hoyland J
Full Access

Background. While the human embryonic, foetal and juvenile intervertebral disc (IVD) is composed of large vacuolated notochordal cells, these morphologically distinct cells are lost with skeletal maturity being replaced by smaller nucleus pulpous cells. Notochordal cells are thought to be fundamental in maintaining IVD homeostasis and, hence, their loss in humans may be a key initiator of degeneration, leading ultimately to back pain. Therefore, it is essential to understand the human notochordal cell phenotype to enable the development of novel biological/regenerative therapies. Methods. CD24+ notochordal cells and CD24- sclerotomal cells were sorted from enzymatically-digested human foetal spines (7.5–14 WPC, n=5) using FACS. Sorting accuracy was validated using qPCR for known notochordal markers and Affymetrix cDNA microarrays performed. Differential gene expression was confirmed (qPCR) and Interactive Pathway Analysis (IPA) performed. Results. CD24+ve notochordal cells (mean 10.4%) and CD24-ve sclerotomal cells (mean 60.9% CD24-) were successfully sorted. Higher expression of notochordal markers CD24 and brachyury was identified in CD24+ve cells. Hierarchical clustering and PCA mapping revealed distinct differences in the gene expression profile of CD24+ and CD24- cells. Top notochordal markers were CD24, STMN2. RTN1, PRPH and CXCL12. IPA identified IL-1 receptor antagonist (IL-1RN) and noggin as master regulators of notochordal cell phenotype. Conclusions. This study has, for the first time, defined human foetal notochordal cell phenotype and identified important pathways and upstream regulators. In particular, IL-1RN and noggin are of interest as master regulators of notochordal cell function, suggesting vital roles for these molecules in IVD development and homeostasis. Conflicts of interest. No conflicts of interest. Sources of funding. We would like to acknowledge UKRMP Acellular Hub, MRC, NIHR Musculoskeletal BRU and The Rosetrees Trust for funding this research


Bone & Joint Research
Vol. 2, Issue 8 | Pages 169 - 178
1 Aug 2013
Rodrigues-Pinto R Richardson SM Hoyland JA

Mesenchymal stem-cell based therapies have been proposed as novel treatments for intervertebral disc degeneration, a prevalent and disabling condition associated with back pain. The development of these treatment strategies, however, has been hindered by the incomplete understanding of the human nucleus pulposus phenotype and by an inaccurate interpretation and translation of animal to human research. This review summarises recent work characterising the nucleus pulposus phenotype in different animal models and in humans and integrates their findings with the anatomical and physiological differences between these species. Understanding this phenotype is paramount to guarantee that implanted cells restore the native functions of the intervertebral disc. Cite this article: Bone Joint Res 2013;2:169–78


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 35 - 35
1 Feb 2018
Richardson S Hodgkinson T Shen B Diwan A Hoyland J
Full Access

Background. Signalling by growth differentiation factor 6 (GDF6/BMP13) has been implicated in the development and maintenance of healthy NP cell phenotypes and GDF6 mutations are associated with defective vertebral segmentation in Klippel-Feil syndrome. GDF6 may thus represent a promising biologic for treatment of IVD degeneration. This study aimed to investigate the effect of GDF6 in human NP cells and critical signal transduction pathways involved. Methods. BMP receptor expression profile of non-degenerate and degenerate human NP cells was determined through western blot, immunofluorescence and qPCR. Phosphorylation statuses of Smad1/5/9 and non-canonical p38 MAPK and Erk1/2 were assessed in the presence/absence of pathway blockers. NP marker and matrix degrading enzyme gene expression was determined by qPCR following GDF6 stimulation. Glycosaminoglycan and collagen production were assessed through DMMB-assay and histochemical staining. Results. NP cells expressed all GDF6 receptor subunits, with receptor subunits BMPR-1A and BMPR2 displaying the highest expression and highest binding affinity. GDF6 stimulation significantly upregulated the expression of NP specific marker genes but had no significant effect on the expression of matrix degrading enzymes. Total glycosaminoglycan and collagen production was also significantly increased following GDF6 stimulation. Smad1/5/9, p38 MAPK and Erk1/2 pathways were phosphorylated following GDF6 stimulation and could be effectively blocked. Conclusions. These findings enhance our understanding of both the effects of GDF6 in NP cells and the mechanisms of GDF6 signal transduction that are critical to promote NP phenotype and cellular function. This knowledge is important for the effective use of GDF6 as a therapeutic molecule for treatment of IVD degeneration. Conflicts of interest. No conflicts of interest. Sources of funding. We would like to acknowledge UKRMP Acellular Hub, MRC, NIHR Musculoskeletal BRU and The Rosetrees Trust for funding this research


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 27 - 27
1 Jun 2012
Miller N Carry P Chan K Strain J Swindle K Rousie D
Full Access

Introduction

Studies of the vestibular system in patients with idiopathic scoliosis (IS) have shown abnormalities in the semicircular canals (SCC) and the basicranium. Rousie (2008) revealed a statistically increased incidence of structural anomalies in the SCCs with three-dimensional computer generated modelling. Some of these findings were replicated in a small population by Cheng (2010). The primary goals of this investigation are verification of SCC abnormalities of patients with IS versus controls with use of three-dimensional modelling with subsequent development of a unique phenotypical classification. Our long-term goal is to provide new direction for hypothesis directed identification and characterisation of genes causally related to IS.

Methods

20 patients with IS and 20 controls matched for age and sex will be identified through the clinic with approval from the institutional review board. Power analyses were done to detect the difference in distributions as the proportion of fisher tests with p values less than 0·05. A sample size of 20 per group gives 86–99% power to realise results under conservative assumptions. IS patients and controls undergo vestibular system examination via T2 MRI imaging. Extracted data are evaluated by a team including Dr Rousie, ENT, radiology, and orthopaedic surgery. DNA is extracted with Gentra Puregene kits from Qiagen (Valencia, CA, USA). Developmental genes related to SCC and axial somatogenesis are being identified through a bioinformatics approach, targeting known IS genomic loci. Custom single-nucleotide polymorphism panels, statistical linkage, and association will identify genes of significance for sequencing.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 20 - 20
7 Aug 2024
Snuggs J Ciccione C Vernengo A Tryfonidou M Grad S Vadala G Maitre CL
Full Access

Background. Chronic low back pain is strongly linked to degeneration of the intervertebral disc (IVD), which currently lacks any targeted treatments. This study explores NPgel, a biomaterial combined with notochordal cells (NC), developmental precursor cells, as a potential solution. NCs, known for anti-catabolic effects on IVD cells, present a promising avenue for regenerating damaged IVD tissue. Methods. Bovine IVDs underwent enzymatic degeneration before NPgel (+/- NC) injection. Degenerated bovine IVDs were cultured under biomechanical loading for 21 days. Histology and immunohistochemistry assessed NC survival, phenotype, and matrix production. Within an in vivo sheep pilot study, NPgel (+/- NC) was injected into degenerated IVDs, blood was taken, and immune cell activation was monitored via flow cytometry over three months post-injection. Results. Within the ex vivo model, IVDs injected with NPgel (+/- NC) exhibited increased matrix expression and deposition. Viable NCs were detected post-culture, indicating survival and matrix production. In the in vivo model, NPgel injection into sheep IVDs did not significantly increase activation of immune cells compared to controls, suggesting no systemic inflammatory effects. Conclusion. NPgel, combined with NCs, shows promise for IVD regeneration. Ex vivo findings indicate NPgel supports NC survival and matrix production. Moreover, in vivo results demonstrate the absence of systemic immunogenic responses post-NPgel injection. This suggests NPgel's potential as a carrier for NCs in IVD regeneration therapy. These findings underscore NPgel's candidacy for further investigation in addressing chronic low back pain associated with IVD degeneration. Subsequent research, including long-term efficacy and safety evaluations, is imperative for clinical translation. Conflicts of interest. There are no conflicts of interest. Sources of funding. iPSpine, grant # 825925, Horizon 2020


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 22 - 22
1 Oct 2022
Owen D Snuggs J Michael A Cole A Chiverton N Breakwell L Sammon C Le Maitre C
Full Access

Background. Current clinical treatment for spinal instability requires invasive spinal fusion with cages and screw instrumentation. We previously reported a novel injectable hydrogel (Bgel), which supports the delivery and differentiation of mesenchymal stem cells (MSCs) to bone forming cells and supports bone formation in vivo. Here, we investigated whether this system could be utilised to induce bone formation within intervertebral disc tissue as a potential injectable spinal fusion approach. Methodology. Bovine and Human Nucleus pulpous tissue explants were injected with Bgel with and without MSCs. Tissue samples were cultured under hypoxia (5%) in standard culture media for 4 weeks. Cell viability, histological assessment of matrix deposition, calcium formation, and cell phenotype analysis using immunohistochemistry for NP matrix and bone markers. Results. Following injection of B-gel into tissue explants following culture for 4 weeks, cells were visualized within the regions of the B-gel. Demonstrating that native cells were able to migrate into regions of B-gel. Increased collagen deposition was seen in tissue explants injected with Bgel, with increased collagen type I and X but decreased collagen type II staining in explants injected with Bgel. Tissue explants, in the absence of Bgel, showed limited calcium deposition, which was increased in B-gel injected explants. Furthermore, disc cells increased expression of bone markers (alkaline phosphatase & osteocalcin), but decreased NP matrix (Aggrecan and Collagen type II) following Bgel injection. Conclusion. This system could have potential to support spinal fusion via direct injection into the disc. Conflict of interest: C Le Maitre & C Sammon are inventors on the hydrogel discussed. Funding: This work was funded by GrowMed Tech Proof of Concept funding


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 15 - 15
1 Oct 2022
Compte R Freidin M Williams F
Full Access

Background. Intervertebral disc degeneration (DD) is a complex age-related condition that constitutes the main risk factor for disabling back pain. DD is assessed using different traits extracted from MR imaging (MRI), normally combined to give summary measures (e.g. Pfirmann score). The aetiology of DD is poorly understood and despite its high heritability (75%), the precise genetic predisposition is yet to be defined. Genome wide association study (GWAS) is used to discover genetic variants associated with a disease or phenotype. It tests variants across the whole genome. It requires large samples to provide adequate but unfortunately there is poor availability of spine imaging data due to the high cost of MRI. We have adopted new methods to examine different MRI traits independently and use the information of those traits to boost GWAS power using specialized statistical software for jointly analyse correlated traits. Methods/Results. We examined DD MRI features disc narrowing, disc bulge, disc signal intensity and osteophyte formation in the TwinsUK cohort who had undergone T2-weighted sagittal spine MRI. GWAS were performed on the four traits. MTAG software was used to boost single trait GWAS power using the information in the other trait GWAS. 9 different loci were identified. Conclusions. Preliminary results suggest genes GDF6, SP1/SP7 are associated with individual trait signal intensity. In addition, novel associated genes with potential for shedding new light on pathogenic mechanisms are identified. Additional cohorts will be included in the design as a replication to test reproducibility of the results. Conflicts of interest: No conflicts of interest. Sources of funding: Funded by Disc4All, EU Horizon 2020, MSCA-2020-ITN-ETN GA: 955735


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_9 | Pages 18 - 18
1 Oct 2022
Basatvat S Braun T Snuggs J Williams R Templin M Tryfonidou M Le Maitre C
Full Access

Backgrounds and aim. Low back pain resulting from Intervertebral disc (IVD) degeneration is a serious worldwide problem, with poor treatment options available. Notochordal (NC) cells, are a promising therapeutic cell source with anti-catabolic and regenerative effect, however, their behaviour in the harsh degenerate environment is unknown. Thus, we aimed to investigate and compare their physiological behaviour in in vitro niche that mimics the healthy and degenerated intervertebral disc environment. Methodology. Porcine NC cells were encapsulated in 3D alginate beads to maintain their phenotype then cultured in media to mimic the healthy and degenerate disc environment, together with control NC media for 1 week. Following which viability using PI and Calcein AM, RNA extraction and RT-PCR for NC cell markers, anabolic and catabolic genes analysed. Proteomic analysis was also performed using Digiwest technology. Results. A small increase in cell death was observed in degenerated media compared to standard and healthy media, with a further decrease seen when cultured with IL-1β. Whilst no significant differences were seen in phenotypic marker expression in NCs cultured in any media at gene level (ACAN, KRT8, KRT18, FOXA2, COL1A1 and Brachyury). Preliminary Digiwest analysis showed increased protein production for Cytokeratin 18, src and phosphorylated PKC but a decrease in fibronectin in degenerated media compared to standard media. Discussion. Studying the behaviour of the NCs in in vitro conditions that mimic the in vivo healthy or degenerate niche will help us to better understand their potential for therapeutic approaches. The initial work has been then translated to investigate the potential use of iPSCs differentiated into notochordal like cells as potential regenerative cell sources. Conflicts of interest: No conflicts of interest. Sources of funding: This project has received funding from the European Union Horizon 2020 research and innovation programme under grant agreement No 825925


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 42 - 42
1 Oct 2019
Grad S Wangler S Peroglio M Menzel U Benneker L Haglund L Sakai D Alini M
Full Access

Background and Purpose. Intervertebral disc (IVD) degeneration is a prominent cause of low back pain. IVD cells expressing angiopoietin-1 receptor Tie2 represent a progenitor cell population which decreases with progression of IVD degeneration. Homing of mesenchymal stem cells (MSCs) is a physiological mechanism aiming to enhance the regenerative capacity of the IVD. The purpose of this study was to assess the effect of MSC homing on the Tie2 positive IVD progenitor cell population, the IVD cell viability, and the proliferative phenotype of the IVD cells. Methods and Results. Human MSCs were isolated from bone marrow aspirates and labelled with fluorescent dye. Whole IVDs with endplates were harvested from bovine tails; MSCs were placed on the endplates. Human traumatic, degenerative and healthy IVD tissues were obtained from patients and organ donors. MSCs were added onto tissue samples. After 5 days, IVD cells were isolated. Percentages of Tie2 positive, DAPI positive (dead) and Ki-67 positive (proliferative) IVD cells were determined. MSC homing or co-culture significantly increased the proportion of Tie2 positive progenitor IVD cells in bovine and 7/10 human IVDs, decreased the fraction of dead IVD cells in bovine and 7/10 human IVDs, and induced a proliferative phenotype in bovine and 5/6 human IVDs. Conclusion. Stimulation of bovine and human IVDs by MSC homing resulted in an enhanced population of Tie2 positive IVD progenitor cells, induced a proliferative response and reduced IVD cell death. Hence, the interaction with recruited MSCs may contribute to an improved survival of IVD cells, helping to reverse or slow down an ongoing degenerative process. Conflicts of interest: The authors declare no conflicts of interest. Sources of funding: AO Foundation and AOSpine International


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 6 - 6
1 Feb 2018
Richardson S Hodgkinson T White L Shakesheff K Hoyland J
Full Access

Background. Stem cell therapy has been suggested as a potential regenerative strategy to treat IVD degeneration and GDF6 has been shown to differentiate adipose-derived stem cells (ASCs) into an NP-like phenotype. However, for clinical translation, a delivery system is required to ensure controlled and sustained GDF6 release. This study aimed to investigate the encapsulation of GDF6 inside novel microparticles (MPs) to control delivery and assess the effect of the released GDF6 on NP-like differentiation of human ASCs. Methods. GDF6 release from PLGA-PEG-PLGA MPs over 14 days was determined using BCA and ELISA. The effect of MP loading density on collagen gel formation was assessed through SEM and histological staining. ASCs were cultured in collagen hydrogels for 14 days with GDF6 delivered exogenously or via microspheres. ASC differentiation was assessed by qPCR for NP markers, glycosaminoglycan production (DMMB) and immunohistochemistry. Results. GDF6 release from MPs was controlled over 14 days equivalently to exogenous addition. SEM and histology confirmed that MPs were distributed throughout gels and that gel formation was not disrupted. In 3D cultures, GDF6 release from microspheres elicited equivalent ASC differentiation and NP-like matrix formation compared to exogenous delivery in media, indicating activity was not affected by MP encapsulation. Conclusions. This study demonstrates the effective encapsulation and controlled delivery of GDF6, which was able to maintain its activity and induce ASC differentiation into an NP-like phenotype and production of an NP-like ECM. Delivery of GDF6 microspheres in combination with ASCs is a promising strategy for IVD regeneration and treatment of back pain. Conflicts of interest. No conflicts of interest. Sources of funding. We would like to acknowledge UKRMP Acellular Hub, MRC, NIHR Musculoskeletal BRU and The Rosetrees Trust for funding this research


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 39 - 39
1 Feb 2018
Humphreys M Richardson S Hoyland J
Full Access

Background. Intervertebral disc degeneration is implicated as a major cause of chronic lower back pain. Current therapies for lower back pain are aimed purely at relieving the symptoms rather than targeting the underlying aberrant cell biology. As such focus has shifted to development of cell based alternatives. Notochordal cells are progenitors to the adult nucleus pulposus that display therapeutic potential. However, notochordal cell phenotype and suitable culture conditions for research or therapeutic application are poorly described. This study aims to develop a suitable culture system to allow comprehensive study of the notochordal phenotype. Methods & Results. Porcine notochordal cells were isolated from 6 week post natal discs using dissection and enzymatic digestion and cultured in vitro under different conditions: (1)DMEM vs αMEM (2)laminin-521, fibronectin, gelatin and untreated tissue culture plastic (3)2% 02 vs normoxia (4)αMEM (300 mOsm/L) vs αMEM (400 mOsm/L). Notochordal cells were cultured in alginate beads as a control. Adherence, cell viability, morphology and expression of known notochordal markers (CD24, KRT8, KRT18, KRT19 and T) were assessed throughout the culture period. Use of αMEM media and laminin-521 coated surfaces displayed the greatest cell adherence, viability and retention of notochordal cell morphology and gene expression, which was further enhanced through culture in hypoxia and hyperosmolar media mimicking the intervertebral disc niche. Conclusions. Assessment of the therapeutic potential of notochordal cells is potentially valuable to development of a cell based therapy for chronic lower back pain. Our model has provided a system in which notochordal cells can be studied extensively. Conflicts of Interest: None. Funding obtained from the Henry Smith Charity, London


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_10 | Pages 21 - 21
1 May 2017
Thorpe A Vickers L Sammon C Le Maitre C
Full Access

Background. Degeneration of the intervertebral disc (IVD) is a major cause of Low back pain. We have recently reported a novel, injectable liquid L-pNIPAM-co-DMAc hydrogel (NPgel), which promote differentiation of MSCs to nucleus pulposus (NP) cells without the need for additional growth factors. Here, we investigated the behaviour of hMSCs incorporated within the hydrogel injected into NP tissue. Methods. hMSCs were injected either alone or within NPgel, into bovine NP tissue explants and maintained at 5% O. 2. for up to 6wks. Media alone and acellular NPgel were also injected into NP explants to serve as controls. Cell viability was assessed by Caspase 3 immunohistochemistry and the phenotype of injected hMSC was assessed by histology and immunohistochemistry. Mechanical properties were also assessed via dynamic mechanical analysis (DMA). Results. No significant difference in the elastic modulus was observed between NPgel injected NP tissue and media injected controls. CFSe positive hMSCs were identified in all injected tissue samples and cell viability was maintained. Where hMSCs were delivered via NPgel, the hydrogel integrated with native NP tissue and cells producing NP matrix components: aggrecan; collagen type II and chondroitin sulphate. Conclusion. hMSC incorporated within L-pNIPAM-co-DMAc hydrogel and injected into NP explants, integrate with native NP tissue and promote differentiation towards the NP phenotype; thus potentially could be used to regenerate the NP as a treatment strategy for LBP. No conflict of interest. Funding: BMRC, MERI Sheffield Hallam University


Bone & Joint Research
Vol. 12, Issue 6 | Pages 387 - 396
26 Jun 2023
Xu J Si H Zeng Y Wu Y Zhang S Shen B

Aims

Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease.

Methods

We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 80 - 90
20 Jan 2023
Xu J Si H Zeng Y Wu Y Zhang S Liu Y Li M Shen B

Aims

Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive.

Methods

Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 17 - 17
1 Oct 2019
Snuggs J Thorpe A Partridge S Chiverton N Cole A Michael A Sammon C Le Maitre C
Full Access

Purpose of study and background. We have previously reported the development of injectable hydrogels for potential disc regeneration (NPgel) or bone formation which could be utilized in spinal fusion (Bgel). As there are multiple sources of mesenchymal stem cells (MSCs), this study investigated the incorporation of patient matched hMSCs derived from adipose tissue (AD) and bone marrow (BM) to determine their ability to differentiate within both hydrogel systems under different culture conditions. Methods and Results. Human fat pad and bone marrow derived MSCs were isolated from femoral heads of patients undergoing hip replacement surgery for osteoarthritis with informed consent. MSCs were encapsulated into either NPgel or Bgel and cultured for up to 6 weeks in 5% (NPgel) or 21% (Bgel) O. 2. Histology and immunohistochemistry was utilized to determine phenotype. Both fat and bone marrow derived MSCs, were able to differentiate into both cell lineages. NPgel culture conditions increased expression of matrix components such as collagen II and aggrecan and NP phenotypic markers FOXF1 and PAX1, whereas Bgel induced expression of collagen I and osteopontin, indicative of osteogenic differentiation. Conclusion. NPgel and Bgel were able to differentiate patient derived MSCs from different sources into both NP and osteogenic lineages, which may give rise to novel treatment strategies for IVD degeneration and spinal fusion, enabling choice for cell source according to patients' circumstances and needs. C Le Maitre and C Sammon hold a patent for the hydrogel described. Funded by MRC and Versus Arthritis


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 8 - 8
1 Oct 2019
Owen D Snuggs J Partridge S Sammon C Le Maitre C
Full Access

Introduction. We have developed a new synthetic hydrogel that can be injected directly into the intervertebral disc (IVD) without major surgery. Designed to improve fixation of joint prosthesis, support bone healing or improve spinal fusion, the liquid may support the differentiation of native IVD cells towards osteoblast-like cells cultured within the hydrogel. Here we investigate the potential of this gel system (Bgel) to induce bone formation within intervertebral disc tissue. Methods. IVD tissue obtained from patients undergoing discectomy, or cadaveric samples, were cultured within a novel explant device. The hydrogel was injected, with and without mesenchymal stem cells (MSCs), and cultured under hypoxia, to mimic the degenerate IVD environment, for 4 weeks. Explants were embedded to wax and native cellular migration into the hydrogel was investigated, together with cellular phenotype and matrix deposition. Results. Increased collagen deposition was seen in tissue explants injected with Bgel, with evidence of elevated native cell migration towards the hydrogel. Increased collagen staining was seen in explants injected with Bgel together with MSCs. Alizarin red staining was utilised to investigate calcium deposition. Tissue explants, in the absence of Bgel, showed limited calcium deposition. This was increased in hydrogel-treated samples, with large clumping regions in the tissue that was injected with Bgel and MSCs. Conclusion. The injection of our synthetic hydrogel into disc tissue explants increased the amount of collagen and calcium deposition. This was further enhanced by the incorporation of MSCs, suggesting the promotion of bone formation. Current work is investigating phenotypic markers for bone formation within these tissues. CS and CLM have a patent on the hydrogel system described in this abstract. Funded by EPSRC and Grow MedTech


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 22 - 22
1 Oct 2019
Snuggs J Thorpe A Hutson C Partridge S Chiverton N Cole A Sammon C Le Maitre C
Full Access

Purpose of study and background. IVD degeneration is a major cause of Low back pain. We have previously reported an injectable hydrogel (NPgel), which induces differentiation of human MSCs to disc cells and integrates with NP tissue following injection in vitro. However, the translation of this potential treatment strategy into clinic is dependent on survival and differentiation of MSCs into disc cells within the degenerate IVD. Here, we investigated the viability and differentiation of hMSCs incorporated into NPgel cultured under conditions mimicking the healthy and degenerate microenvironment of the disc. Methods and Results. MSCs were cultured in NP gel under 5% O. 2. in either: standard culture (DMEM, pH7.4); healthy disc (DMEM, pH7.1); degenerate disc (low glucose DMEM, pH6) or degenerate disc plus IL-1β. Following 4 weeks histological staining and immunohistochemical analysis investigated viability, ECM synthesis and matrix degrading enzyme expression. Here we have shown that viability and NP cell differentiation of MSCs incorporated within NPgel was mostly unaffected by treatment with conditions such as low glucose, low pH and the presence of cytokines, all regarded as key contributors to disc degeneration. In addition, the NPgel was shown to prevent MSCs from displaying a catabolic phenotype with low expression of degradative enzymes, highlighting the potential of NPgel to differentiate hMSCs and protect them from the degenerate disc microenvironment. Conclusion. The NPgel described here not only has the potential to provide mechanical support and deliver MSCs for regeneration of the IVD but also may simultaneously function to protect delivered hMSCs from the catabolic environment in the degenerate IVD. C Le Maitre and C Sammon hold a patent for the hydrogel described. Funded by MRC and Versus Arthritis