Fractures through the physis account for 18–30% of all paediatric fractures, leading to growth arrest in 5.5% of cases. We have limited knowledge to predict which physeal fractures result in growth arrest and subsequent deformity or limb length discrepancy. The purpose of this study is to identify factors associated with physeal growth arrest to improve patient outcomes. This prospective cohort study was designed to develop a clinical prediction model for growth arrest after physeal injury. Patients < 1 8 years old presenting within four weeks of injury were enrolled if they had open physes and sustained a physeal fracture of the humerus, radius, ulna, femur, tibia or fibula. Patients with prior history of same-site fracture or a condition known to alter bone growth or healing were excluded. Demographic data, potential prognostic indicators and radiographic data were collected at baseline, one and two years post-injury. A total of 167 patients had at least one year of follow-up. Average age at injury was 10.4 years, 95% CI [9.8,10.94]. Reduction was required in 51% of cases. Right-sided (52.5%) and distal (90.1%) fractures were most common. After initial reduction 52.5% of fractures had some form of residual angulation and/or displacement (38.5% had both). At one year follow-up, 34 patients (21.1%) had evidence of a bony bridge on plain radiograph, 10 (6.2%) had residual angulation (average 12.6°) and three had residual displacement. Initial angulation (average 22.4°) and displacement (average 5.8mm) were seen in 16/34 patients with bony bridge (48.5%), with 10 (30.3%) both angulated and displaced. Salter-Harris type II fractures were most common across all patients (70.4%) and in those with bony bridges (57.6%). At one year, 44 (27.3%) patients had evidence of closing/closed physes. At one year follow-up, there was evidence of a bony bridge across the physis in 21.1% of patients on plain film, and residual angulation and/or displacement in 8.1%. Initial angulation and/or displacement was present in 64.7% of patients showing possible evidence of growth arrest. The incidence of growth arrest in this patient population appears higher than past literature reports. However, plain film is an unreliable modality for assessing physeal bars and the true incidence may be lower. A number of patients were approaching skeletal maturity at time of injury and any growth arrest is likely to have less clinical significance in these cases. Further prospective long-term follow-up is required to determine the true incidence and impact of growth arrest