Purpose.
Meniscal cartilage provides joint stabilisation, load distribution, impact absorption and decreased friction in joints that have a complex movement such as the knee. If the meniscal cartilage degrades or is surgically removed, there is a strong probability, over time, of damage to the articular surface. The ability to regenerate damaged meniscal cartilage with an implanted device that replaces the biological equivalent would allow for joint stabilisation, robust movement and reduce the risk of damage to the articular cartilage. An implant with many of the characteristics of meniscus and with the ability to integrate correctly and firmly with the surrounding tissue, would be advantageous. Inclusion of
Disease modifying approaches are commonly applied in OA patients. An aging society with better life expectancies is increasing in Europe and the globe. Orthobiologics cover intraarticular hyaluronan injections and also cellular therapies. Cellular therapies range from
Degenerative disc disease, associated to low back pain, afflicts more than 50% of humans, and represents a major healthcare problem, especially for the pathology initiation. Current treatments range from conservative strategies to more invasive surgical techniques, such as disc removal and vertebral fusion. In the Intervertebral Disease (IVD) the nucleus pulposus (NP) degeneration is a key factor for the pathology initiation. Several tissue engineering approaches aiming to restore the appropriate NP cell (NPCs) and matrix content, were attempted by using adult stromal cells either from bone marrow or adipose tissue, chondrocytes, notochordal cells and more recently also pluripotent stem cells. However, none was fully satisfactory since the NP acid and a-vascularized environment appeared averse to the implanted heterologous cells. Several studies demonstrated the efficacy of platelet derivatives such as
Abstract. Background. Lateral and medial epicondylitis, more commonly known as Tennis and Golfer's elbow, can cause chronic pain and significant functional impairment in working-age patients. For patients with refractory epicondylitis,
The goal of surgery for osteochondral lesions is to regenerate the damaged cartilage with ideally hyaline cartilage. The current gold standard treatment is bone marrow stimulation (BMS) by microfracture. In reality however BMS typically results in the generation of fibrocartilage. Orthobiologics including bone marrow aspirate,
The aim of this study was to evaluate the trochlear bone and cartilaginous regeneration of rabbits using a composite based on
Introduction.
Introduction. Ostochondral lesion of the knee is a common cause of chronic knee pain. Arthroscopic treatment with subcondral microfracture is a widespread technique leading to noticeable improvement of knee function and pain. To improve the effectiveness of this treatment options, we thought to add intra (PRF) or post-operative (PRP) growth factors.
For degenerative osteoarthritis of the knees, a variety of non-surgical management options have been tried from time to time. Medical management, chondroprotective agents, disease modifying drugs, viscosupplimentation etc. to name a few. Arthroscopic knee lavage with saline also has shown good results, with the effect of cleaning the debries from the joint. Growth Factors Rich Plasma (GFRP) or
Summary Statement. An autologous thrombin activated 3-fold PRP, mixed with a biphasic calcium phosphate at a 1mL:1cc ratio, is beneficial for early bone healing in older age sheep. Introduction. The management of bone defects continues to present challenges. Upon activation, platelets secrete an array of growth factors that contribute to bone regeneration. Therefore, combining
Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of bone marrow derived mesenchymal stem cells combined with platelet rich fibrin on osteochondral defect repair and articular cartilage regeneration in a canine model. Osteochondral defects were created on the medial femoral condyles of 12 adult male mixed breed dogs. They were either treated with stem cells seeded on platelet rich fibrin or left empty. Macroscopic and histological evaluation of the repair tissue was conducted after four, 16 and 24 weeks using the International Cartilage Repair Society macroscopic and the O’Driscoll histological grading systems. Results were reported as mean and standard deviation (Objectives
Methods
After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP). Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing.Objectives
Methods
In order to ensure safety of the cell-based therapy for bone
regeneration, we examined BM cells obtained from a total of 13 Sprague-Dawley (SD) green
fluorescent protein transgenic (GFP-Tg) rats were culture-expanded
in an osteogenic differentiation medium for three weeks. Osteoblast-like
cells were then locally transplanted with collagen scaffolds to
the rat model of segmental bone defect. Donor cells were also intravenously infused
to the normal Sprague-Dawley (SD) rats for systemic biodistribution.
The flow cytometric and histological analyses were performed for
cellular tracking after transplantation.Objectives
Methods