Advertisement for orthosearch.org.uk
Results 1 - 20 of 21
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 135 - 135
1 Nov 2021
Calafiore F Giannetti A Mazzoleni MG Ronca A Taurino F Mandoliti G Calvisi V
Full Access

Introduction and Objective

Platelet-Rich-plasma (PRP) has been used in combination with stem cells, from different sources, with encouraging results both in vitro and in vivo in osteochondral defects management. Adipose-derived Stem Cells (ADSCs) represents an ideal resource for their ease of isolation, abundance, proliferation and differentiation properties into different cell lineages. Furthermore, Stem Cells in the adipose tissue are more numerous than from other sources. Aim of this study was to evaluate the potential of ADSCs in enhancing the effect of arthroscopic mesenchymal stimulation combined with infiltration of PRP.

Materials and Methods

The study includes 82 patients. 41 patients were treated with knee arthroscopy, Steadman microfractures technique and intraoperative PRP infiltration, Group A. In the Group B, 41 patients were treated knee arthroscopy, Steadman microfractures and intraoperative infiltration of PRP and ADSCs (Group B). Group A was used as a control group. Inclusion criteria were: Age between 40 and 65 years, Outerbridge grade III-IV chondral lesions, Kellegren-Lawrence Grade I-II. Patient-reported outcome measures (PROMs) evaluated with KOOS, IKDC, VAS, SF-12 were assessed pre-operatively and at 3 weeks, 6 months, 1-year post-operative. 2 patients of Group A and 3 patients of Group B, with indication of Puddu plate removal after high tibial osteotomy (HTO), underwent an arthroscopic second look, after specific informed consent obtained. On this occasion, a bioptic sample was taken from the repair tissue of the chondral lesion previously treated with Steadman microfractures.


Bone & Joint Research
Vol. 8, Issue 1 | Pages 32 - 40
1 Jan 2019
Berger DR Centeno CJ Steinmetz NJ

Objectives. Platelet-rich plasma (PRP) is being used increasingly often in the clinical setting to treat tendon-related pathologies. Yet the optimal PRP preparations to promote tendon healing in different patient populations are poorly defined. Here, we sought to determine whether increasing the concentration of platelet-derived proteins within a derivative of PRP, platelet lysate (PL), enhances tenocyte proliferation and migration in vitro, and whether the mitogenic properties of PL change with donor age. Methods. Concentrated PLs from both young (< 50 years) and aged (> 50 years) donors were prepared by exposing pooled PRP to a series of freeze-thaw cycles followed by dilution in plasma, and the levels of several platelet-derived proteins were measured using multiplex immunoassay technology. Human tenocytes were cultured with PLs to simulate a clinically relevant PRP treatment range, and cell growth and migration were assessed using DNA quantitation and gap closure assays, respectively. Results. Platelet-derived protein levels increased alongside higher PL concentrations, and PLs from both age groups improved tenocyte proliferation relative to control conditions. However, PLs from aged donors yielded a dose-response relationship in tenocyte behaviour, with higher PL concentrations resulting in increased tenocyte proliferation and migration. Conversely, no significant differences in tenocyte behaviour were detected when increasing the concentration of PLs from younger donors. Conclusion. Higher PL concentrations, when prepared from the PRP of aged but not young donors, were more effective than lower PL concentrations at promoting tenocyte proliferation and migration in vitro. Cite this article: D. R. Berger, C. J. Centeno, N. J. Steinmetz. Platelet lysates from aged donors promote human tenocyte proliferation and migration in a concentration-dependent manner. Bone Joint Res 2019;8:32–40. DOI: 10.1302/2046-3758.81.BJR-2018-0164.R1


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 30 - 30
17 Apr 2023
Muthu S
Full Access

Platelet-rich plasma (PRP) has been demonstrated to benefit a variety of disciplines. But there exists heterogeneity in results obtained due to lack of standardization of the preparation protocols employed in them. We aim to identify and standardize a preparation protocol for PRP with maximum recovery of platelets to obtain reproducible results across studies. Blood samples were collected from 20 healthy volunteers. The double spin protocol of PRP preparation was analyzed for variables such as centrifugal acceleration, time, and volume of blood processed and final product utilized. The final PRP prepared was investigated for platelet recovery, concentration, integrity, and viability. We noted maximum platelet recovery (86-99%) with a mean concentration factor of 6-times baseline, with double centrifugation protocol at 100xg and 1600xg for 20 minutes each. We also noted that 10 ml of blood in a 15 ml tube was the ideal volume of blood to be processed to maximize platelet recovery. We demonstrated that the lower 1/3rd is the ideal volume to be utilized for clinical application. We did not note a loss of integrity or viability of the platelets in the final product from the above-said protocol. Preparation of PRP by the double spin protocol of 10 ml of blood at 100xg and 1600xg for 20 minutes each in a 15ml tube and using the lower 1/3rd of the final product demonstrated consistent high platelet recovery (86-99%) and concentration (6x) without disturbing the platelet integrity or viability


We performed this systematic overview on the overlapping meta-analyses that analyzed autologous platelet-rich plasma (PRP) as an adjuvant in the repair of rotator cuff tears and identify the studies which provide the current best evidence on this subject and generate recommendations for the same. We conducted independent and duplicate electronic database searches in PubMed, Web of Science, Scopus, Embase, Cochrane Database of Systematic Reviews, and the Database of Abstracts of Reviews of Effects on September 8, 2021, to identify meta-analyses that analyzed the efficacy of PRP as an adjuvant in the repair of rotator cuff tears. Methodological quality assessment was made using Oxford Levels of Evidence, AMSTAR scoring, and AMSTAR 2 grades and used the Jadad decision algorithm to generate recommendations. 20 meta-analyses fulfilling the eligibility criteria were included. The AMSTAR scores of the included studies varied from 6–10 (mean:7.9). All the included studies had critically low reliability in their summary of results due to their methodological flaws according to AMSTAR 2 grades. The initial size of the tear and type of repair performed do not seem to affect the benefit of PRPs. Among the different preparations used, leucocyte poor (LP)-PRP possibly offers the greatest benefit as a biological augment in these situations. Based on this systematic overview, we give a Level II recommendation that intra-operative use of PRPs at the bone-tendon interface can augment the healing rate, reduce re-tears, enhance the functional outcomes and mitigate pain in patients undergoing arthroscopic rotator cuff repair


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 62 - 62
2 Jan 2024
Platania V Tavernaraki N Gontika I Fragiadaki E Triantopoulou N Papadaki H Alpantaki K Vidaki M Chatzinikolaidou M
Full Access

Biofabrication is a popular technique to produce personalized constructs for tissue engineering. In this study we combined laponite (Lap), gellan gum (GG) with platelet-rich plasma (PRP) aiming to enhance the endothelial regeneration through the synergistic effects of their individual properties. Laponite has the ability to form porous three-dimensional networks mimicking the extracellular matrix structure, and PRP delivery of growth factors stimulates the endothelial cell proliferation and migration, offering a composite bioink for cell growth and support. The sustained release of these growth factors from the GG-laponite-PRP composite material over time provides a continuous source of stimulation for the cells, leading to more effective tissue engineering strategies for endothelial tissue regeneration. Four blend compositions comprising 1% w/v GG and 0.5 or 1% w/v Lap and 25% v/v PRP were combined with Wharton jelly mesenchymal stem cells (WJ-MSCs) and bioprinted into vessel-like structures with an inner diameter of 3 mm and a wall thickness of 1 mm. Stress/strain analysis revealed the elastomeric properties of the hydrogels with Young modulus values of 10 MPa. Increasing the Lap concentration led to a non-significant decrease of swelling ratio from 93 to 91%. Live/dead assay revealed cell viability of at least 76%, with the 0.5%Lap-GG viability exceeding 99% on day 21. Gradual increase of glycosaminoglycans accumulation and collagen production indicate promotion of ECM formation. The expression and membranous localization of PECAM-1 from day 7 and the granular intracellular localization of vWF after 2 weeks demonstrate in vitro endothelial functionality. In vivo subcutaneous implantation indicated the absence of any adverse immunological reactions. The results reveal the expression of both vWF and PECAM-1 by WJ-MSCs entrapped in all four construct compositions with significantly higher expression of vWF in the presence of PRP


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 84 - 84
2 Jan 2024
Tashmetov E Saginova D Kamyshanskiy Y Saginov A Koshanova A
Full Access

Various approaches have been implemented to enhance bone regeneration, including the utilization of autologous platelet-rich plasma and bone morphogenetic protein-2. The objective of this study was to evaluate the impact of Marburg Bone Bank-derived bone grafts in conjunction with platelet-rich plasma (PRP), recombinant human bone morphogenetic protein-2 (rhBMP-2), and zoledronic acid (ZA) on osteogenesis within rabbit bone defects. Methodology. Bone defects (5mm in diameter) were created in the femurs of 96 male rabbits. The animals were allocated into five groups: (1) bone graft + PRP (BG + PRP), (2) bone graft + 5μg rhBMP-2 (BG + rhBMP-2), (3) bone graft + 5μg ZA (BG + ZA), (4) bone graft + 10μg rhBMP-2 + 5μg ZA (BG + rhBMP-2 + ZA), and (5) bone graft (BG). Marburg Bone Bank-processed human femoral head allografts were utilized for bone grafting. The rabbits were euthanized at 14-, 30-, and 60-days post-surgery, and their femurs underwent histopathological and histomorphometric assessments. Results. Histomorphometric analysis revealed significantly enhanced de novo osteogenesis within the bone allografts in the BG + PRP and BG + rhBMP-2 groups compared to the BG, BG + ZA, and BG + rhBMP-2 + ZA groups at 14 and 30 days (p < 0.05). However, on day 60, the BG + rhBMP-2 group exhibited elevated osteoclastic activity (early resorption). The local co-administration of ZA with thermally treated grafts impeded both bone graft resorption and new bone formation within the bone defect across all time points. The addition of ZA to BG + rhBMP-2 resulted in diminished osteogenic activity compared to the BG + rhBMP-2 group (p < 0.000). Conclusion. The study findings indicated that the combination of PRP and rhBMP-2 with Marburg bone grafts facilitates early-stage osteogenesis in bone defect healing. Incorporating ZA into the thermally treated bone graft hinders both graft resorption and de novo bone formation


Bone & Joint Research
Vol. 5, Issue 12 | Pages 602 - 609
1 Dec 2016
Muto T Kokubu T Mifune Y Inui A Sakata R Harada Y Takase F Kurosaka M

Objectives. Triamcinolone acetonide (TA) is widely used for the treatment of rotator cuff injury because of its anti-inflammatory properties. However, TA can also produce deleterious effects such as tendon degeneration or rupture. These harmful effects could be prevented by the addition of platelet-rich plasma (PRP), however, the anti-inflammatory and anti-degenerative effects of the combined use of TA and PRP have not yet been made clear. The objective of this study was to determine how the combination of TA and PRP might influence the inflammation and degeneration of the rotator cuff by examining rotator cuff-derived cells induced by interleukin (IL)-1ß. Methods. Rotator cuff-derived cells were seeded under inflammatory stimulation conditions (with serum-free medium with 1 ng/ml IL-1ß for three hours), and then cultured in different media: serum-free (control group), serum-free + TA (0.1mg/ml) (TA group), serum-free + 10% PRP (PRP group), and serum-free + TA (0.1mg/ml) + 10% PRP (TA+PRP group). Cell morphology, cell viability, and expression of inflammatory and degenerative mediators were assessed. Results. Exposure to TA significantly decreased cell viability and changed the cell morphology; these effects were prevented by the simultaneous administration of PRP. Compared with the control group, expression levels of inflammatory genes and reactive oxygen species production were reduced in the TA, PRP, and TA+PRP groups. PRP significantly decreased the expression levels of degenerative marker genes. Conclusions. The combination of TA plus PRP exerts anti-inflammatory and anti-degenerative effects on rotator cuff-derived cells stimulated by IL-1ß. This combination has the potential to relieve the symptoms of rotator cuff injury. Cite this article: T. Muto, T. Kokubu, Y. Mifune, A. Inui, R. Sakata, Y. Harada, F. Takase, M. Kurosaka. Effects of platelet-rich plasma and triamcinolone acetonide on interleukin-1ß-stimulated human rotator cuff-derived cells. Bone Joint Res 2016;5:602–609. DOI: 10.1302/2046-3758.512.2000582


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 92 - 92
2 Jan 2024
Forteza-Genestra MA Antich-Rosselló M Ráez-Meseguer C Ramis-Munar G Sangenís AT Calvo J Gayà A Monjo M Ramis JM
Full Access

Osteoarthritis (OA) is a degenerative disease that lacks regenerative treatment options. Current research focuses on mesenchymal stem cells (MSCs) and Platelet-Rich Plasma (PRP) as regenerative therapies, but extracellular vesicles (EVs) have shown to be more advantageous. This study compares the regenerative potential of human umbilical cord MSC-derived EVs (cEVs) and platelet-derived EVs (pEVs) in ex vivo and in vivo OA models. In the ex vivo study, OA conditions were induced in human cartilage explants, which were then treated either with pEVs or cEVs. Results showed a higher content of DNA and collagen in the pEVs group compared to control and cEVs groups, suggesting that pEVs could be a potential alternative to cEVs. In the in vivo study, an OA model was established in the knee joints of rats through MIA (monoiodoacetate) injection and then treated either with pEVs or cEVs. Results showed that pEVs-treated knee joints had better subchondral bone integrity and greater OA reversion, particularly in female rats, indicating that pEVs are a viable regeneration treatment for OA and outperform cEVs in terms of efficacy. Overall, the study demonstrates the potential of EVs as a regenerative treatment for OA, with pEVs showing promising results in both ex vivo and in vivo models. The use of pEVs in clinical practice could provide a faster path to translation due to the established use of platelet concentrates in therapeutics. However, further studies are needed to fully evaluate the potential of pEVs for OA treatment and to elucidate the mechanisms behind their regenerative effects. Acknowledgments: The authors thank Dr Fernando Hierro (UIB) for their technical contribution with TEM, Mª Trinidad García (UIB) for the access to radioactivity facilities, Aina Arbós (IUNICS) for her contribution in the histology staining, María Tortosa (IdISBa) for her assistance with the animal care and ADEMA School of Dentistry for the access to the cone beam computed tomography (CBCT). Funding: This research was funded by Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, co-funded by the ESF European Social Fund and the ERDF European Regional Development Fund (MS16/00124; CP16/00124), PROGRAMA JUNIOR del proyecto TALENT PLUS, construyendo SALUD, generando VALOR (JUNIOR01/18), financed by the sustainable tourism tax of the Balearic Islands; the Direcció General d'Investigació and Conselleria d'Investigació, Govern Balear (FPI/2046/2017); the Mecanisme de Recuperació i Resiliència, intended to execute research projects of «Noves polítiques públiques per a un mercat de treball dinàmic, resilient i inclusiu», collected in Pla de Recuperació, Transformació i Resiliència, financed by European Union-Next Generation EU and driven by SOIB and Conselleria de Fons Europeus, Universitat i Cultura i la Conselleria de Model Econòmic, Turisme i Treball (NG0421) and the grant SYN20/03 from IdISBa


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_14 | Pages 5 - 5
1 Dec 2022
Lombardo MDM Mangiavini L Peretti GM
Full Access

Menisci are crucial structures for knee homeostasis: they provide increase of congruence between the articular surfaces of the distal femur and tibial plateau, bear loading, shock absorption, lubrication, and proprioception. After a meniscal lesion, the golden rule, now, is to save as much meniscus as possible: only the meniscus tissue which is identified as unrepairable should be excised and meniscal sutures find more and more indications. Several different methods have been proposed to improve meniscal healing. They include very basic techniques, such as needling, abrasion, trephination and gluing, or more complex methods, such as synovial flaps, meniscal wrapping, or the application of fibrin clots. Basic research of meniscal substitutes has also become very active in the last decades. The features needed for a meniscal scaffold are: promotion of cell migration, it should be biomimetic and biocompatible, it should resist forces applied and transmitted by the knee, it should slowly biodegrade and should be easy to handle and implant. Several materials have been tested, that can be divided into synthetic and biological. The first have the advantage to be manufactured with the desired shapes and sizes and with precise porosity dimension and biomechanical characteristics. To date, the most common polymers are polylactic acid (PGA); poly-(L)-lactic acid (PLLA); poly- (lactic-co-glycolic acid) (PLGA); polyurethane (PU); polyester carbon and polycaprolactone (PCL). The possible complications, more common in synthetic than natural polymers are poor cell adhesion and the possibility of developing a foreign body reaction or aseptic inflammation, leading to alter the joint architecture and consequently to worsen the functional outcomes. The biological materials that have been used over time are the periosteal tissue, the perichondrium, the small intestine submucosa (SIS), acellular porcine meniscal tissue, bacterial cellulose. Although these have a very high biocompatibility, some components are not suitable for tissue engineering as their conformation and mechanical properties cannot be modified. Collagen or proteoglycans are excellent candidates for meniscal engineering, as they maintain a high biocompatibility, they allow for the modification of the porosity texture and size and the adaptation to the patient meniscus shape. On the other hand, they have poor biomechanical characteristics and a more rapid degradation rate, compared to others, which could interfere with the complete replacement by the host tissue. An interesting alternative is represented by hydrogel scaffolds. Their semi-liquid nature allows for the generation of scaffolds with very precise geometries obtained from diagnostic images (i.e. MRI). Promising results have been reported with alginate and polyvinyl alcohol (PVA). Furthermore, hydrogel scaffolds can be enriched with growth factors, platelet-rich plasma (PRP) and Bone Marrow Aspirate Concentrate (BMAC). In recent years, several researchers have developed meniscal scaffolds combining different biomaterials, to optimize the mechanical and biological characteristics of each polymer. For example, biological polymers such as chitosan, collagen and gelatin allow for excellent cellular interactions, on the contrary synthetic polymers guarantee better biomechanical properties and greater reliability in the degradation time. Three-dimensional (3D) printing is a very interesting method for meniscus repair because it allows for a patient-specific customization of the scaffolds. The optimal scaffold should be characterized by many biophysical and biochemical properties as well as bioactivity to ensure an ECM-like microenvironment for cell survival and differentiation and restoration of the anatomical and mechanical properties of the native meniscus. The new technological advances in recent years, such as 3D bioprinting and mesenchymal stem cells management will probably lead to an acceleration in the design, development, and validation of new and effective meniscal substitutes


Bone & Joint Research
Vol. 5, Issue 2 | Pages 37 - 45
1 Feb 2016
Roh YH Kim W Park KU Oh JH

Objectives. This study was conducted to evaluate the cytokine-release kinetics of platelet-rich plasma (PRP) according to different activation protocols. Methods. Two manual preparation procedures (single-spin (SS) at 900 g for five minutes; double-spin (DS) at 900 g for five minutes and then 1500 g for 15 minutes) were performed for each of 14 healthy subjects. Both preparations were tested for platelet activation by one of three activation protocols: no activation, activation with calcium (Ca) only, or calcium with a low dose (50 IU per 1 ml PRP) of thrombin. Each preparation was divided into four aliquots and incubated for one hour, 24 hours, 72 hours, and seven days. The cytokine-release kinetics were evaluated by assessing PDGF, TGF, VEGF, FGF, IL-1, and MMP-9 concentrations with bead-based sandwich immunoassay. Results. The concentration of cytokine released from PRP varied over time and was influenced by various activation protocols. Ca-only activation had a significant effect on the DS PRPs (where the VEGF, FGF, and IL-1 concentrations were sustained) while Ca/thrombin activation had effects on both SS and DS PRPs (where the PDGF and VEGF concentrations were sustained and the TGF and FGF concentrations were short). The IL-1 content showed a significant increase with Ca-only or Ca/thrombin activation while these activations did not increase the MMP-9 concentration. Conclusion. The SS and DS methods differed in their effect on cytokine release, and this effect varied among the cytokines analysed. In addition, low dose of thrombin/calcium activation increased the overall cytokine release of the PRP preparations over seven days, relative to that with a calcium-only supplement or non-activation. Cite this article: Professor J. H. Oh. Cytokine-release kinetics of platelet-rich plasma according to various activation protocols. Bone Joint Res 2016;5:37–45. doi: 10.1302/2046-3758.52.2000540


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 7 - 7
1 Nov 2021
Trivanovic D Volkmann N Stoeckl M Tertel T Schlierf B Kreuzahler T Giebel B Rudert M Herrmann M
Full Access

Introduction and Objective. The early pro-inflammatory hematoma phase of bone healing is characterized by platelet activation followed by growth factor release. Bone marrow mesenchymal stromal cells (MSC) play a critical role in bone regeneration. However, the impact of the pro-inflammatory hematoma environment on the function of MSC is not fully understood. We here applied platelet-rich plasma (PRP) hydrogels to study how platelet-derived factors modulate functional properties of MSC in comparison to a non-inflammatory control environment simulated by fibrin (FBR) hydrogels. Materials and Methods. MSC were isolated from acetabular bone marrow of patients undergoing hip arthroplasty. PRP was collected from pooled apheresis thrombocyte concentrates. The phenotype of MSC was analyzed after encapsulation in hydrogels or exposure with platelet-derived factors with regards to gene expression changes, cell viability, extracellular vesicle (EV) release and immunomodulatory effects utilizing cellular and molecular, flow cytometry, RT-PCR, western blot and immunofluorescence stainings. Results. Our results showed that encapsulation of MSC in PRP induced changes in cell metabolism increasing lactate production and reducing mitochondria membrane potential. This was followed by significantly decreased mTOR phosphorylation and differential gene regulation. While PRP-released factors could support EV-biogenesis and immunoregulation-related gene expression, FBR hydrogel reduced CD63+ and CD81+ EV release by MSC. In co-cultures with mitogen stimulated PBMC, pre-exposure of MSC with PRP reduced the proliferation rate and frequency of peripheral blood CD4. +. and favored the persistence of FOXP3. +. regulatory T lymphocytes (32±4.7% compared to 9±2.3% in control co-cultures where MSC were exposed to FBR). Conclusions. Our data indicate that exposure of MSC with a hematoma environment causes metabolic adaptation of MSC followed by increased immune regulatory functions, which in turn might contribute to resolution of inflammation required for successful bone healing


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 95 - 95
1 Dec 2020
Russo F Ambrosio L Peroglio M Wangler S Guo W Grad S Alini M Vadalà G Papalia R Denaro V
Full Access

The use of stem cells transplanted into the intervertebral disc (IVD) is a promising regenerative approach to treat intervertebral disc degeneration (IDD). The aim of this study was to assess the effect of a hydrogel composed of hyaluronic acid (HA) and platelet-rich plasma (PRP) loaded with human mesenchymal stem cells (hMSCs), on IVD extracellular matrix synthesis and nucleus pulposus (NP) marker expression in a whole IVD culture model. HA was blended with batroxobin (BTX), a gelling agent activated in presence of PRP to construct a hydrogel. Bovine IVDs (n=25) were nucleotomised and filled with 1×10. 6. or 2×10. 6. hMSCs suspended in ∼150 mL of the PRP/HA/BTX hydrogel. IVDs harvested at day 0 and nucleotomised IVDs with no hMSCs and/or hydrogel were used as controls. hMSCs alone or encapsulated in the hydrogel were also cultured in well plates to examine the effect of the IVD microenvironment on hMSCs. After 1 week, tissue structure, scaffold integration and gene expression of anabolic (collagen type I, collagen type II and aggrecan), catabolic (matrix metalloproteinase 3 – MMP-3 –, MMP-13 and a disintegrin and metalloproteinase with thrombospondin motifs 4) and NP cell (cytokeratin 19, carbonic anhydrase 12, cluster of differentiation 24) markers were assessed. Histological analysis showed a good integration of the scaffold within the NP area with cell repopulation. At the gene expression level, the hMSC-loaded hydrogels demonstrated to increase disc cell anabolic and catabolic marker expression and promoted hMSC differentiation towards a NP cell phenotype. This study demonstrated that the HA/PRP/BTX may represent a valid carrier for hMSCs being capable of stimulating cell activity and NP marker expression as well as achieving a good integration with the surrounding tissues


Bone & Joint Research
Vol. 6, Issue 4 | Pages 231 - 244
1 Apr 2017
Zhang J Yuan T Zheng N Zhou Y Hogan MV Wang JH

Objectives. After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP). Methods. Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing. Results. Histological analysis showed well organised arrangement of collagen fibres and proteoglycan formation in the wounded ATEs in the KGN-PRP group. Furthermore, immunohistochemical analysis revealed fibrocartilage formation in the KGN-PRP-treated ATEs, evidenced by the presence of both collagen I and II in the healed ATE. Larger positively stained collagen III areas were found in both PRP and saline groups than those in the KGN-PRP group. Chondrocyte-related genes, SOX9 and collagen II, and tenocyte-related genes, collagen I and scleraxis (SCX), were also upregulated by KGN-PRP. Moreover, mechanical testing results showed higher ultimate tensile strength in the KGN-PRP group than in the saline control group. In contrast, PRP treatment appeared to have healed the injured ATE but induced no apparent formation of fibrocartilage. The saline-treated group showed poor healing without fibrocartilage tissue formation in the ATEs. Conclusions. Our results show that injection of KGN-PRP induces fibrocartilage formation in the wounded rat ATEs. Hence, KGN-PRP may be a clinically relevant, biological approach to regenerate injured enthesis effectively. Cite this article: J. Zhang, T. Yuan, N. Zheng, Y. Zhou, M. V. Hogan, J. H-C. Wang. The combined use of kartogenin and platelet-rich plasma promotes fibrocartilage formation in the wounded rat Achilles tendon entheses. Bone Joint Res 2017;6:231–244. DOI: 10.1302/2046-3758.64.BJR-2017-0268.R1


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 26 - 26
1 Nov 2018
Bastos R do Amaral RJFC Mathias M Andrade R Bastos R Balduino A Schott V Rodeo S Mendes JE
Full Access

Intra-articular injections of human mesenchymal stromal cells (MSCs) and platelet-rich plasma (PRP) have been intensively investigated as therapies for knee osteoarthritis (OA) with positive outcomes. In this work we evaluated weather a combination of the treatments (MSCs + PRP) would be beneficial compared to MSCs alone (MSCs) and standard corticosteroid injection (Control group). Forty seven patients (24 males and 23 females; 53.3 ± 10.7 years old) with radiographic symptomatic knee OA (Dejour grades II–IV) were randomized to receive intra-articular injections of MSCs (n = 16), MSCs + PRP (n = 14) or corticosteroid (n=17). MSCs were obtained after mononuclear cells separation from bone marrow aspiration collected from both posterior iliac crests using Sepax automated closed system and expanded in culture until reaching the number of 4 × 10. 7. PRP was obtained by double-centrifugation of whole blood according to a protocol developed in house. After 12 months follow-up, the MSCs and MSCs+PRP groups achieved higher percentages of expected improvement when comparing to the corticosteroid group for the KOOS-symptoms, pain, function and daily living, domains and global score. For the population older or equal to 60 years old the MSCs+PRP group showed significant superiority for the KOOS-ADL domain at 12 months. Cytokines quantification evidenced anti-inflammatory aspects of the treatments. This work evidences the safety and efficacy of intra-articular injection of MSCs for the treatment of early knee OA, with greater improvement with PRP addition particularly to the older population


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 101 - 101
1 Jan 2017
Bottegoni C Gigante A
Full Access

The objective of this study was to evaluate the safety and the effect of platelet-rich plasma (PRP) intra-articular injections obtained from blood donors (homologous PRP) on elderly patients with early or moderate knee osteoarthritis (OA) who are not candidates for autologous PRP treatment. A total of 60 symptomatic patients, aged 65–86 years, affected by hematologic disorders and early or moderate knee OA, were treated with 5 ml of homologous PRP intraarticular injections every 14 days for a total of three injections. Clinical evaluations before the treatment, and after 2 and 6 months were performed by International Knee Documentation Committee (IKDC), Knee injury and Osteoarthritis Outcome Score (KOOS) and Equal Visual Analogue Scale (EQ VAS) scores. Adverse events and patient satisfaction were recorded. No severe complications were noted during the treatment and the follow-up period. A statistically significant improvement from basal evaluation to the 2-month follow-up visit was observed, whereas a statistically significant worsening from the 2-month to the 6-month follow-up visit was showed. The overall worst results were observed in patients aged 80 years or over and in those affected by minor bone attrition. It was found that 90% of patients were satisfied at the 6-month evaluation. Homologous PRP has an excellent safety profile but offers only a short-term clinical improvement in selected elderly patients with knee OA who are not candidates for autologous PRP treatment. Increasing age and developing degeneration result in a decreased potential for homologous PRP injection therapy. Further studies are needed to confirm these findings


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 59 - 59
1 Jul 2014
Gigante A Cianforlini M Busilacchi A Manzotti S Mattioli Belmonte M
Full Access

Summary Statement. This experimental study showed that platelet rich fibrin matrix can improve muscle regeneration and long-term vascularization without local adverse effects. Introduction. Even though muscle injuries are very common, few scientific data on their effective treatment exist. Growth Factors (GFs) may have a role in accelerating muscle repair processes and a currently available strategy for their delivery into the lesion site is the use of autologous platelet-rich plasma (PRP). The present study is focused on the use of Platelet Rich Fibrin Matrix (PRFM), as a source of GFs. Materials and Methods. Bilateral muscular lesions were created on the longissimus dorsi muscle of Wistar rats. One side of the lesion was filled with a PRFM while the contralateral was left untreated (controls). Animals were sacrificed at 5, 10, 40 and 60 days from surgery. Histological, immunohistochemical and histomorphometric analyses were performed to evaluate muscle regeneration, neovascularization, fibrosis and inflammation. The presence of metaplasic zones, calcifications and heterotopic ossification were also assessed. Results. PRFM treated muscles exhibited an improved muscular regeneration, an increase in neovascularization, and a slight reduction of fibrosis compared with controls. No differences were detected for inflammation. Metaplasia, ossification and heterotopic calcification were not detected. Conclusions. This preliminary morphological experimental study shows that PRFM use can improve muscle regeneration and long-term vascularization. Since autologous blood products are safe, PRFM may be a useful and handily product in clinical treatment of muscle injuries


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 171 - 171
1 Jul 2014
Papalia R Vadalà G Franceschi F Franceschetti E Zampogna B Maffulli N Denaro V
Full Access

Introduction. Rotator cuff healing after an arthroscopic repair is discussible because of the high incidence of failures. Among biologic augmentations currently used, platelet-rich plasma (PRP) is one of the most applied, supposed to enhance and accelerate the healing process in different musculoskeletal disorders. However, the evidence supporting its successful administration is still lacking, especially in the field of the rotator cuff repair. Our purpose is to clarify if the recovery is accelerated and the integrity of repaired construct is increased in patients undergoing PRP injections after arthroscopic repair of the rotator cuff. Patients & Methods. Thirty-eight patients with full-thickness rotator cuff tears have been enrolled after they had been informed about the use of PRP and the timing of its application postoperatively. Seventeen patients underwent arthroscopic rotator cuff repair and PRP injections (3 injections at 10 days each other), 21 underwent arthroscopic rotator cuff repair without PRP injections. Outcomes were assessed preoperatively, at 3, 6, 12, and minimum 16 months after surgery (average 17.7 +/− 1.7 months). Constant system, the University of California at Los Angeles (UCLA) system and a Visual Analogue Scale (VAS) scale were used; range of motion and strength in all planes were also assessed. The healing of the repair was assessed at magnetic resonance imaging at a minimum follow up of 6 months from surgery. All patients had the same rehabilitation protocol. Results. Platelet-rich plasma gel application after to arthroscopic rotator cuff tear repairs did not accelerate recovery with respect to pain, range of motion, strength, functional scores, or overall satisfaction as compared with conventional repair at any time point. There was no difference between the 2 groups after 3, 6, 12, months and at final follow up. The follow-up MRI showed no significant difference in the healing rate of the rotator cuff tear. In addition, magnetic resonance imaging, at a minimum of 6 months after surgery, demonstrated a retear rate of 23.5 % in the PRP group and 19% in the conventional group, there was no statistical significance between the groups (P = .658). Discussion/Conclusion. Although PRP application after arthroscopic repair of the rotator cuff has no effects on clinical recovery and structural integrity, it reduces the postoperative occurrence of shoulder stiffness. Further studies should support these findings


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 22 - 22
1 Jul 2014
Garvican E Cree S Bull L Smith R Dudhia J
Full Access

Summary Statement. Transportation media and injection protocol have implications for the viability of MSCs used for intra-lesional treatment of tendon injuries. Every effort should be made to implant cells within 24h of laboratory re-suspension, using a needle bore larger than 21G. Introduction. Intra-lesional implantation of autologous mesenchymal stem cells (MSCs) has resulted in significant improvements in tendon healing in experimental animal models. Intra-tendinous injection of MSCs into naturally-occurring equine tendon injuries has been shown to be both safe and efficacious. 1. and these protocols can assist in the translation to the human. Efficient transfer of cells from the laboratory into the tissue requires well validated techniques for transportation and implantation. The aim of this study was to determine the influence of transport media and injection procedure on cellular damage. Methods. Bone marrow derived MSCs (n=3 horses) were prepared and expanded as described. 1. Cells were suspended in 0.5mL of experimental media at 2.5×10. 6. cells/mL and stored at 4–8°C for 24, 48 and 72h. Experimental media were: bone marrow aspirate (BMA); cell culture media (DMEM); equine serum; equine plasma; isotonic saline; hyaluronic acid (HA); platelet-rich plasma (PRP) and frozen (in 90% serum, 10% DMSO). In addition, cells suspended in DMEM were injected through a 19G, 21G or 23G needle and cell viability, proliferation and apoptosis were analysed using trypan blue, alamarBlue® and Annexin-V assays respectively. Results. There was no significant difference in overall viability at 24h storage in any media, however cell death was most rapid when cells were suspended in BMA, PRP and serum. Viability was greatest at all time points when cells were frozen. Cell proliferation was similar following storage for 24 and 72h in all media, except for 24h in serum, wherein proliferation was enhanced. There was no significant decrease in viability immediately following injection but 21G and 23G needles resulted in a marked increase in apoptotic cells compared to 19G and non-injected controls after 24h when re-seeded for culture. All needle gauges resulted in a marked decrease in cell proliferation immediately post-injection with recovery by 2h post-injection. Conclusions. Although there is, as yet, no guidance on the storage of MSCs, it has been suggested that in vitro storage of hematopoietic stem or progenitor cells should not exceed 2h. 2. This suggestion is impractical both for current equine therapeutic use and when considering future, commercial applications of MSC therapy in humans, because of the necessity to transport the cells from a remote licensed facility to the clinic. Our data suggest an upper limit of 24h for transportation, whereas for transportation of greater duration than 24h, cells should ideally be frozen, to maximise viability. An increased number of dead cells potentially has two adverse consequences; first, a reduced efficacy and second, the presence of dead cell debris may induce inflammation. While the first can be compensated for by higher cell numbers, this compounds the problems of the second. This study reinforces the importance of limiting the delay between preparation of cells for shipment from the laboratory and implantation in the clinic and suggests that an injection procedure while not causing immediate cell death can cause significant delayed cell death if small bore needles are used


Objectives

Platelet-rich fibrin matrix (PRFM) has been proved to enhance tenocyte proliferation but has mixed results when used during rotator cuff repair. The optimal PRFM preparation protocol should be determined before clinical application. To screen the best PRFM to each individual’s tenocytes effectively, small-diameter culture wells should be used to increase variables. The gelling effect of PRFM will occur when small-diameter culture wells are used. A co-culture device should be designed to avoid this effect.

Methods

Tenocytes harvested during rotator cuff repair and blood from a healthy volunteer were used. Tenocytes were seeded in 96-, 24-, 12-, and six-well plates and co-culture devices. Appropriate volumes of PRFM, according to the surface area of each culture well, were treated with tenocytes for seven days. The co-culture device was designed to avoid the gelling effect that occurred in the small-diameter culture well. Cell proliferation was analyzed by water soluble tetrazolium-1 (WST-1) bioassay.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 277 - 283
1 May 2017
Yoshikawa M Nakasa T Ishikawa M Adachi N Ochi M

Objectives

Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine.

Methods

Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs).