Advertisement for orthosearch.org.uk
Results 1 - 20 of 47
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 81 - 81
1 Oct 2022
Hvistendahl MA Bue M Hanberg P Kaspersen AE Schmedes AV Stilling M Høy K
Full Access

Background. Surgical site infection following spine surgery is associated with increased morbidity, mortality and increased cost for the health care system. The reported pooled incidence is 3%. Perioperative antibiotic prophylaxis is a key factor in lowering the risk of acquiring an infection. Previous studies have assessed perioperative cefuroxime concentrations in the anterior column of the cervical spine with an anterior surgical approach. However, the majority of surgeries are performed in the posterior column and often involve the lumbar spine. Accordingly, the objective was to compare the perioperative tissue concentrations of cefuroxime in the anterior and posterior column of the same lumbar vertebra using microdialysis in an experimental porcine model. Method. The lumbar vertebral column was exposed in 8 female pigs. Microdialysis catheters were placed for sampling in the anterior column (vertebral body) and posterior column (posterior arch) within the same vertebra (L5). Cefuroxime (1.5 g) was administered intravenously over 10 min. Microdialysates and plasma samples were continuously obtained over 8 hours. Cefuroxime concentrations were quantified by Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry. Microdialysis is a catheter-based pharmacokinetic tool, that allows dynamic sampling of unbound and pharmacologic active fraction of drugs e.g., cefuroxime. The primary endpoint was the time with cefuroxime above the clinical breakpoint minimal inhibitory concentration (T>MIC) for Staphylococcus aureus of 4 µg/mL as this has been suggested as the best predictor of efficacy for cefuroxime. The secondary endpoint was tissue penetration (AUC. tissue. /AUC. plasma. ). Results. Mean T>MIC 4 µg/mL (95% confidence interval) was 123 min (105–141) in plasma, 97 min (79–115) in the anterior column and 93 min (75–111) in the posterior column. Tissue penetration (95% confidence interval) was incomplete for both the anterior column 0.48 (0.40–0.56) and posterior column 0.40 (0.33–0.48). Conclusions. Open lumbar spine surgery often involves extensive soft tissue dissection, stripping and retraction of the paraspinal muscles which may impair the local blood flow exposing the lumbar vertebra to postoperative infections. A single intravenous administration of 1.5 g cefuroxime resulted in comparable T>MIC between the anterior and posterior column of the lumbar spine. Mean cefuroxime concentrations decreased below the clinical breakpoint MIC for S. aureus of 4 µg/mL after 123 min (plasma), 97 min (anterior column) and 93 min (posterior column). This is shorter than the duration of most lumbar spine surgeries, and therefore alternative dosing regimens should be considered in posterior open lumbar spine surgeries lasting more than 1.5 hours


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 194 - 194
1 May 2012
Sciadini M
Full Access

Operative approaches to the acetabulum are generally classified into anterior, posterior, extensile or combined approaches. The choice of approach depends upon the fracture pattern and the amount of relative displacement affecting the anterior and posterior bony structures. Occasionally, extensile or combined surgical approaches are indicated for the treatment of complex fracture patterns with extensive involvement of both the anterior and posterior acetabular anatomy. However, it is believed that these approaches may be associated with higher complication rates than more limited surgical approaches. The ilioinguinal approach described by Letournel is routinely employed in the treatment of anterior column, anterior wall, anterior column/posterior hemi- transverse and certain associated both-columns, transverse and T-type fractures. The utility of this approach is sometimes limited by difficulty in visualising, reducing and applying instrumentation to the quadrilateral plate and posterior column components of these fractures. A surgical approach described by Stoppa in 1989—and later extended to acetabular indications by Cole and Bolhofner—can be used, often in combination with the lateral window of the standard ilioinguinal approach, to effectively treat the same range of fractures as an ilioinguinal approach. Access to the quadrilateral plate and certain displaced posterior column fracture lines is enhanced by this approach—possibly eliminating the need for combined or extensile approaches in certain cases. A retrospective study undertaken at our institution demonstrated that anatomic articular reduction was achieved in 14 of 17 complex acetabular fractures treated via a Stoppa approach. All fractures in the study had at least 5 mm of posterior column displacement preoperatively


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_14 | Pages 17 - 17
1 Mar 2013
Mostert P Snyckers C
Full Access

Purpose of the study. Percutanous acetabular surgery is a new and developing technique in fixation of acetabulum fractures. The most common screw used is the anterior column screw that traverses anterograde or retrograde through the anterior column of the acetabulum. Standard height and width calculations derived from CT scans do not take the trajectory of the screw into consideration. They have been shown to exaggerate the available safe bone corridor for screw passage. Posterior column screws can be placed in a retrograde fashion via the ischial tuberosity to fixate posterior column. Limited international data is available and no studies to date have been conducted on the South African population. This study assesses the anterior and posterior acetabular columns of South African individuals and ascertains the safe bone corridor sizes. Methods. Pelvic CT-scans of 100 randomly selected patients were reviewed. Specific computer software was used to virtually place anterior screws through the anterior acetabular column, in its clinical trajectory. Specific entry points inferior to the pubic tubercles significantly changed the relation of the screw trajectory to the mid- column isthmus and were incorporated in the measurement of the anterior column. All the available lengths and diameters were measured and averages were calculated for males and females. Results. On average, males have longer and larger diameter anterior columns. The entry point on the pubic tubercle has a significant impact on the relative diameter at the mid- column. Not all commercially available cannulated screw diameters are safe to place into the anterior column. Conclusion. Although the international literature shows that percutaneous anterior column fixation is of value for early mobilisation after fractures, intimate knowledge of the local data regarding the available safe corridors for screw passage is limited. This study shows the safe bone corridors that can be used to avoid breaching the cortex during screw insertion. It also recommends safe screw diameters. NO DISCLOSURES


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 110 - 110
1 May 2019
Abdel M
Full Access

Pelvic discontinuity is defined as a separation of the ilium superiorly from the ischiopubic segment inferiorly. In 2018, the main management options include the following: 1) hemispheric acetabular component with posterior column plating, 2) cup-cage construct, 3) pelvic distraction, and 4) custom triflange construct. A hemispheric acetabular component with posterior column plating is a good option for acute pelvic discontinuities. However, healing potential is dependent on host's biology and characteristic of the discontinuity. The plate should include 3 screws above and 3 screws below the discontinuity with compression in between. In addition, the hemispherical acetabular component should have at least 50% host bone contact with 3–4 screws superior and 2–3 screws inferior to the discontinuity. On the other hand, a cup-cage construct can be used in any pelvic discontinuity. This includes a highly porous acetabular component placed on remaining host bone. Occasionally, highly porous metal augments are used to fill the remaining bone defects. A supplemental cage is placed over the acetabular component, spanning the discontinuity from the ilium to the ischium. A polyethylene liner is then cemented into place with antibiotic-loaded bone cement. Rarely, pelvic distraction may be needed. With this technique, pelvic stability is obtained via distraction of the discontinuity by elastic recoil of the pelvis and by fixing the superior hemipelvis and inferior hemipelvis to a highly porous metal cup or augment with screws, thereby unitizing the superior and inferior aspects of the pelvis. In essence, the cup acts as a segmental replacement of the acetabulum, with healing occurring to the cup or augment, resulting in a unitised hemipelvis. Frequently, the discontinuity itself does not achieve bony healing. Finally, custom triflange constructs are being utilised with increasing frequency. Triflange cups are custom-designed, porous and/or hydroxyapatite coated, titanium acetabular components with iliac, ischial, and pubic flanges. Rigid fixation promotes healing of the discontinuity and biologic fixation of the implant. It requires a CT scan, dedicated preoperative design, and fabrication costs


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 97 - 97
1 Aug 2017
Lachiewicz P
Full Access

Using the Mayo Clinic definition (>62mm in women and >66mm in men), the “jumbo acetabular component” is the most successful method for acetabular revisions now, even in hips with severe bone loss. There are numerous advantages: surface contact is maximised; weight-bearing is distributed over a large area of the pelvis; the need for bone grafting is reduced; and usually, hip center of rotation is restored. The possible disadvantages of jumbo cups include: may not restore bone stock; may ream away posterior column or wall; screw fixation required; the possibility of limited bone ingrowth and late failure; and a high rate of dislocation due to acetabular size:femoral head ratio. The techniques for a successful jumbo revision acetabular component involve: sizing-“reaming” of the acetabulum, careful impaction to achieve a “press-fit”, and multiple screw fixation. We recommend placement of an ischial screw in addition to dome and posterior column screw fixation. Cancellous allograft is used for any cavitary defects. The contra-indications for a jumbo acetabular cup are: pelvic dissociation; inability to get a rim fit; and inability to get screw fixation. If stability cannot be achieved with the jumbo cup alone, then use of augment(s), bulk allograft, or cup-cage construct should be considered. Using titanium fiber-metal mesh components, we reported the 15-year survival of 129 revisions. There was 3% revision for deep infection and only 3% revision for aseptic loosening. There were 13 reoperations for other reasons: wear, lysis, dislocation, femoral loosening, and femoral fracture fixation. The survival was 97.3% at 10 years, but it dropped to 82.8% at 15 years. Late loosening of this fiber metal mesh component is likely related to polyethylene wear and loss of fixation. Dislocation is the most common complication of jumbo acetabular revisions, approximately 10%, and these are multifactorial in etiology and often require revision. Based on our experience, we now recommend use of an acetabular component with an enhanced porous coating (tantalum), highly crosslinked polyethylene, and large femoral heads or dual mobility for all jumbo revisions


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 62 - 62
1 Feb 2015
Lachiewicz P
Full Access

Using the Mayo Clinic definition (>62mm in women and >66mm in men), the “jumbo acetabular component” is the most commonly used method for acetabular revisions now. There are numerous advantages: surface contact is maximised; weight-bearing is distributed over a large area of the pelvis; the need for bone grafting is reduced; and usually, hip center of rotation is restored. The possible disadvantages, or caveats, of jumbo cups include: may not restore bone stock; may ream away posterior column or wall; screw fixation required; the possibility of limited bone ingrowth and late failure; and a high rate of dislocation due to acetabular size:femoral head ratio. The techniques for a successful jumbo revision acetabular component involve: sizing-“reaming” of the acetabulum, careful impaction to achieve a “press-fit”, and multiple screw fixation. We recommend placement of an ischial screw in addition to dome and posterior column screw fixation. Cancellous allograft is used for any cavitary defects. The contraindications for a jumbo acetabular cup are: pelvic dissociation; inability to get a rim fit; inability to get screw fixation; and the presence of <50% living host bone. If stability cannot be achieved with the jumbo cup alone, then use of augment(s), bulk allograft, or cup-cage construct should be considered. Our results with the jumbo acetabular cups in revision arthroplasty have been reported. Using predominantly titanium fiber-metal mesh components, we reported the 15-year survival of 129 revisions. There was 3% revision for deep infection and only 3% revision for aseptic loosening. There were 13 reoperations for other reasons: wear, lysis, dislocation, femoral loosening, and femoral fracture fixation. The survival was 97.3% at 10 years, but it dropped to 82.8% at 15 years. Late loosening of this fiber metal mesh component is likely related to polyethylene wear and loss of fixation. Dislocation is the most common complication of jumbo acetabular revisions, approximately 10%, and these are multifactorial in etiology and often require revision. Based on our experience, we now recommend use of an acetabular component with an enhanced porous coating (tantalum), highly cross-linked polyethylene, and large femoral heads for all jumbo revisions


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 63 - 63
1 May 2013
Haidukewych G
Full Access

Pelvic discontinuity remains one of the most difficult reconstructive challenges during acetabular revision. Bony defects are extremely variable and remaining bone quality may be extremely poor. Careful pre-operative imaging with plain radiographs, oblique views, and CT scanning is recommended to improve understanding of the remaining bone stock. It is wise to have several options available intra-operatively including metal augments, jumbo cups, and cages. Various treatment options have been used with variable success. The principles of management include restoration of acetabular stability by “connecting” the ilium to the ischium, and by (hopefully) allowing some bony ingrowth into a porous surface to allow longer-term construct stability. Posterior column plates can be useful to stabilise the pelvis, and can supplement a trabecular metal uncemented acetabular component. Screws into the dome and into the ischium are used to span the discontinuity. More severe defects may require so-called “cup-cage” constructs or trabecular metal augmentation distraction techniques. The most severe defects typically necessitate custom triflange components. Triflange constructs allow broad based contact with remaining bone stock, and can span surprisingly large defects. Recent cost analyses have shown that custom triflange constructs are comparable to cup-cage-augment reconstructions. The results of these various solutions to manage pelvic discontinuity is extremely variable, however, it is fair to conclude that constructs that allow some bony ingrowth have demonstrated improved survivorship when compared to historical treatments such as bulk allografts protected by cages. The author prefers a posterior column plate and a trabecular metal cup for simple discontinuities, a cup-cage for larger defects, and a custom triflange for the most severe defects. Pre-operative imaging is critical to guide this decision-making, and careful attention to detail is important to obtain a stable, durable construct


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 172 - 172
1 Dec 2013
Simon P Diaz M Schwartz D Santoni B Frankle M
Full Access

Introduction:. The complex 3D geometry of the scapula and the variability among individuals makes it difficult to precisely quantify its morphometric features. Recently, the scapular neck has been recognized as an important morphometric parameter particularly due to the role it plays in scapular notching, which occurs when the humeral component of a reverse shoulder arthroplasty (RSA) prosthesis engages the posterior column of the scapula causing mechanical impingement and osseous wear. Prosthetic design and positioning of the glenoid component have been accepted as two major factors associated with the onset of notching in the RSA patient population. The present image-based study aimed to develop an objective 3D approach of measuring scapular neck, which when measured pre-operatively, may identify individuals at risk for notching. Materials and Methods:. A group of 81 subjects (41 M, 69.7 ± 8.9 yrs.; 40 F, 70.9 ± 8.1 yrs.) treated with RSA were evaluated in this study. The 3D point-cloud of the scapular geometry was obtained from pre-operative computed tomography (CT) scans and rendered in Mimics. Subsequently, a subject-specific glenoid coordinate system was established, using the extracted glenoid surface of each scapula as a coordinate reference. The principal component analysis approach was used to establish three orthogonal coordinate axes in the geometric center of the glenoid. Utilization of glenoid-specific reference planes (glenoid, major axis, and minor axis plane) were selected in order to remove subjectivity in assessing “true” anterior/posterior and profile views of the scapula. The scapular neck length was defined as the orthogonal distance between the glenoid surface and the point on the posterior column with the significant change of curvature (Fig. 1). In addition, the angle between the glenoid plane, area center of the glenoid, and the point of significant change of the curvature were assessed (Fig. 2). This new parameter was developed to serve as a predictive critical value for the occurrence of notching. The incidence of notching increases as the value of the notching angle decreases. In order to evaluate relationships between glenoid and scapular neck, the glenoid width and height was also measured at the glenoid plane. Results:. Glenoid neck length and notching angle within the population were normally distributed with mean values of 7.8 ± 2.3 mm and 19.6 ± 4.8°, respectively (Fig. 3). No gender difference was found (p = 0.676). In one subject, a glenoid neck length of less than 1 mm was measured with the notching angle less than 2.5°. No association between glenoid neck length and glenoid size were identified (vs. glen. height r. 2. = 0.001, and vs. glen. width r. 2. = 0.05). Conclusion:. The present study reported on the scapular neck length and notching angle as measureable morphometric parameters that follow a normal distribution throughout the population and that are not correlated to the subject's glenoid size. Pre-operative acquisition of these novel and unique CT-based measurements may promote more appropriate RSA prosthesis selection to account for subject-specific anatomy in an effort to avoid scapular notching. Inferior placement of a baseplate or lateralization of glenoid component center of rotation (either biologically or mechanically) both serves to theoretically increase the notching angle


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 60 - 60
1 May 2013
Haddad F
Full Access

The principles of acetabular reconstruction include the creation of a stable acetabular bed, secure prosthetic fixation with freedom of orientation, bony reconstitution, and the restoration of a normal hip centre of rotation with acceptable biomechanics. Acetabular impaction grafting, particularly with cemented implants, has been shown to be a reliable means of acetabular revision. Whilst our practice is heavily weighted towards cementless revision of the acetabulum with impaction grafting, there is a large body of evidence from Tom Slooff and his successors that cemented revision with impaction grafting undertaken with strict attention to technical detail is associated with excellent long terms results in all ages and across a number of underlying pathologies including dysplasia and rheumatoid arthritis. We use revision to a cementless hemispherical porous-coated acetabular cup for most isolated cavitary or segmental defects and for many combined deficiencies. Morsellised allograft is packed in using chips of varied size and a combination of impaction and reverse reaming is used in order to create a hemisphere. There is increasing evidence for the use of synthetic grafts, usually mixed with allograft, in this setting. The reconstruction relies on the ability to achieve biological fixation of the component to the underlying host bone. This requires intimate host bone contact, and rigid implant stability. It is important to achieve host bone contact in a least part of the dome and posterior column – when this is possible, and particularly when there is a good rim fit, we have not found it absolutely necessary to have contact with host bone over 50% of the surface. Once the decision to attempt a cementless reconstruction is made, hemispherical reamers are used to prepare the acetabular cavity. Sequentially larger reamers are used until there is three-point contact with the ilium, ischium and pubis. Acetabular reaming should be performed in the desired orientation of the final implant, with approximately 200 of anteversion and 400 of abduction (or lateral opening). Removing residual posterior column bone should be avoided. Reaming to bleeding bone is desirable. Morsellised allograft is inserted and packed and/or reverse reamed into any cavitary defects. This method can also be applied to medial wall uncontained defects by placing the graft onto the medial membrane or obturator internus muscle, and gently packing it down before inserting the cementless acetabular component. Either the reamer heads or trial cups can be used to trial prior to choosing and inserting the definitive implant. The fixation is augmented with screws in all cases. Incorporation of the graft may be helped by the use of autologous bone marrow. Cementless acetabular components with impaction grafting should not be used when the host biology does not allow for stability or for bone ingrowth. This includes the severely osteopenic pelvis, pelvic osteonecrosis after irradiation, tumours, and metabolic bone disorders. They should also not be used in the presence of pelvic discontinuity unless the structure of the pelvic ring has been restored with a plate, or specialised materials/porous metals are used. The challenge of reconstituting the acetabulum depends on the degree and type of bone loss. The principles of maximising host bone-implant contact and implant stability have borne fruit in our experience with cementless revision. The advantages of bone grafting in acetabular reconstruction include the ability to restore bone stock, to rebuild a normal hip center and hip biomechanics and to increase bone stock for future revisions


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVII | Pages 23 - 23
1 May 2012
Magill P McGarry J Queally J Morris S McElwain J
Full Access

Introduction. Acetabular fractures are a challenging problem. It has been published that outcome is dependent upon the type of fracture, the reduction of the fracture and concomitant injuries. The end-points of poor outcome include avascular necrosis of the femoral head, osteoarthritis. However, we lack definitive statistics and so counselling patients on prognosis could be improved. In order to achieve this, more outcome studies from tertiary referral centres are required. We present the first long term follow up from a large tertiary referral Centre in Ireland. Methods. We identified all patients who were ten years following open reduction and internal fixation of an acetbular fracture in our centre. We invited all of these patients to attend the hospital for clinical and radiographic follow-up. As part of this, three scoring systems were completed for each patient; the Short-form 36 health survey (SF36), the Merle d'Aubigné score and the Short Musculoskeletal Functional Assessment (SMFA). Results. The data represents one years activity at a new tertiary referral unit. We idenfied a total of 44 patients who were ten years following ORIF of acetabular fractures in our unit. 21 patients (48%) replied to written invitation and attended the hospital for clinical and radiographic follow-up. A further 7 patients were contacted by telephone and interviewed to guage their rehabilitation. 3 patients had passed away. The remaining 13 patients were not contactable. Of those who attended in person for follow-up; 18 were male and 3 were female. The mean age at follow-up was 40.5 years (Range 27-60). In terms of fracture pattern epidemiology, 43% of patients sustained posterior column and wall fractures, 29% posterior wall, 14% posterior column alone, 9.5% transverse with posterior wall and 9.5% bicolumnar. 2 patients in the follow-up group had total hip replacements. Of the remaining patients the overall mean SF36 score was 78.8% (SD 16.4). The mean SMFA was 14.1% (SD 5). The mean Merle d'Aubigné score was 14.9 (SD 3.2) with 63% graded as good or excellent. Comparison of outcome between sub-groups according to fracture clasification showed no significant difference. Traumatic sciatic nerve injury was sustained by four patients in the follow-up group and all patients continued to complain of ongoing weakness. Of the patients who were contacted via telephone, 2 had total hip replacements. The remaining 5 reported no significant problems with their hips and cited this as the reason for not attending follow-up. Conclusion. Overall the outcome of the patients was more favourable than expected. This was supported by the results of the clinical scoring systems. In some patients this also appeared to be despite poor radiographic findings. Our observations suggest that concomitant injuries, especially sciatic nerve injury have a profound negative influence on the patients' ability to fully rehabilitate. These data provide a valuable tool for the trauma surgeon in providing the patient with an educated prognosis


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 65 - 65
1 Jun 2018
Engh C
Full Access

Porous-coated acetabular hemispherical components have proven successful in all but the most severe revision acetabular defects. A revision jumbo porous coated component has been defined as a cup with minimum diameter of 66mm in men and 62mm in women. In published studies this size cup is used in 14–39% of acetabular revisions. The advantages of this technique are ease of use, most deficiencies can be treated without structural graft, host bone contact with the porous surface is maximised, and the hip center is generally normal. Jumbo cups are typically used in Paprosky Type 2, 3A, and many 3B defects. Requirements for success include circumferential acetabular exposure, an intact posterior column, and much of the posterior wall. The cup should be stable with a press-fit between the ischium and anterior superior acetabulum with the addition of some superior lateral support. Additional support is provided with multiple dome or rim screws. Survivorship of the metal shell with revision for any reason has been reported to be 80%-96% at time frames from 15–20 years. The most common post-operative complication is dislocation


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 116 - 116
1 May 2019
Lewallen D
Full Access

The direct lateral (or anterolateral) approaches to the hip for revision THA involve detachment of the anterior aspect of the gluteus medius from the trochanter along with a contiguous sleeve of the vastus lateralis. Anterior retraction of this flap of gluteus medius and vastus lateralis and simultaneous posterior retraction of the femur creates an interval for division of gluteus minimus and deeper capsular tissues and exposure of the joint. To enhance reattachment of this flap of the anterior portion of the gluteus medius and vastus lateralis back to the trochanter, an oblique wafer of bone can be elevated along with the muscle off of the anterolateral portion of the trochanter. This bony wafer prevents suture pull out when large nonabsorbable sutures are used around or through the fragment and passed into the bone of the trochanteric bed for reattachment during closure. To prevent excessive splitting proximally into the gluteus medius muscle (and resulting damage to the superior gluteal nerve), it is often helpful to extend the muscle split further distally down into the vastus lateralis. This combined with careful elevation of the gluteal muscles off of the ilium (instead of splitting them) helps provide excellent and safe exposure of the entire rim of the acetabulum and access to the supracetabular region for bone grafting, acetabular augment placement and even fixation of the flanges of a cage. A simple method for posterior column plating via the anterolateral approach involves contouring of the distal end of the plate around the base of the ischium at the inferior edge of the socket. When an extended osteotomy of the femur is needed to correct deformity, remove a well-fixed implant or cement, the “extensile” variation of this same surgical approach involves a Wagner style (lateral to medial) osteotomy of the greater trochanter and proximal femur. The anterior portion of the femur after it is osteotomised is elevated as a separate segment while maintaining the soft tissue attachments to the bone as much as possible to aid osteotomy healing. After implant or cement removal, this approach gives excellent direct access to the distal femur for placement of a long stem revision femoral component without bone-implant conflict proximally because of the bow of the femur. The anterolateral approach (and extensile variants detailed above) can be used routinely and safely in the full range of revision THA procedures, or it can be employed selectively, if desired, in cases at increased risk for dislocation


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 67 - 67
1 Jun 2018
Gonzalez Della Valle A
Full Access

Uncontained acetabular defects with loss of superior iliac and posterior column support (Paprosky 3) represent a reconstructive challenge as the deficient bone will preclude the use of a conventional hemispherical cup. Such defects can be addressed with large metallic constructs like cages with and without allograft, custom tri-flange cups, and more recently with trabecular metal augments. An underutilised alternative is impaction bone grafting, after creating a contained cavitary defect with a reinforcement mesh. This reconstructive option delivers a large volume of bone while using a small-size socket fixed with acrylic cement. Between 2005 and 2014, 21 patients with a Paprosky 3B acetabular defect were treated with cancellous, fresh frozen impaction grafting supported by a peripheral reinforcement mesh secured to the pelvis with screws. A cemented all-polyethylene cup was used. Pre-operative diagnosis was aseptic loosening (15 cemented and 6 uncemented). The femoral component was revised in 10 patients. Post-operative course consisted of 3 months of protected weight bearing. Patients were followed clinically and radiographically. One patient had an incomplete post-operative sciatic palsy. After a mean follow up of 47 months (13 to 128) none of the patients required re-revision of the acetabular component. One asymptomatic patient presented with aseptic loosening 9 years post-operatively. Hardware failure was not observed. All patients had radiographic signs of graft incorporation and bone remodeling. There were no dislocations. The early and mid-term results of revisions of large acetabular defects with this technique are encouraging. Reconstitution of hip center of rotation and bone stock with the use of a small-size implant makes this technique an attractive option for large defects. Longer follow-up is needed to assess survivability


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 112 - 112
1 Apr 2019
Farrier A Manning W Moore L Avila C Collins S Holland J
Full Access

INTRODUCTION. The cup component of modern resurfacing systems are often coated creating a cementless press-fit fixation in the acetabulum based on surgical under-reaming, also enabling osseoconduction/integration. Due to the higher density of cortical bone along the antero-superior and postero-inferior regions of the acetabulum, the greatest forces occur between the anterior and posterior columns of the pelvis. This produces pinching of the implant that can result in deformation of the cup. Metal shell/modularpress-fit acetabular cups are susceptible to substantial deformation immediately after implantation. This deformation may affect the lubrication, producing point loading and high friction torques between the head and the cup that increase wear and may lead to head clamping and subsequent cup loosening. We sought to test a novel ceramic on ceramic (CoC) hip resurfacing system that should allay any concerns with the Adverse Reaction to Metal Debris associated with metal on metal (MoM) resurfacing devices. AIM. We sought to quantify the deformation of a novel CoC hip-resurfacing cup after implantation, using a standard surgical technique in a cadaveric model, and compare to the MoM standard. We also assessed if the design clearances proposed for this CoC hip resurfacing implant are compatible with the measured deformations, allowing for an adequate motion of the joint. METHODS. The pelvis from four fresh frozen cadavers were placed into the lateral position. One surgeon with extensive experience in hip resurfacing surgery (JH) prepared all the pelvises for implantation using a posterior approach to the joint and sequential reaming of the acetabulum to 1mm below the implant outer diameter. The acetabulum components were then impacted into the prepared pelvis. We used four ceramic and four metal implants of equal and varying size. (2 × (40/46mm, 44/50mm, 50/56mm, 52/58mm)). The acetabulum cup bearing surface diameter and deformation was measured using a GOM-ATOS optical high precision 3D scanner. 3-Dimensional measurements were taken pre-implantation, immediately after and at 30 minutes following implantation. Two techniques were used to analyse the 3D images: by maximum inscribed diameter and by radial segments. These were compared to the known articulating surface clearance values. RESULTS. The diameter of the cups in both metal and ceramic systems was reduced after implantation when analysing by maximum inscribed diameter and by radial segments. This deformation was maintained at 30 minutes. We can infer there is no significant bone stress relaxation effect following implantation. On ceramic cups, the deformation was larger in larger sizes. However, the 44/50 (the second smallest cup) deformed the least. Despite this, the difference in deformation between these two sizes is minimal. The deformation of sizes 50/56 and 52/58 was equivalent. For the metal cups, there was not a clear correlation between the cup size and the deformation. The largest cup size had the same deformation as the smallest size. CONCLUSIONS. The deformation following implantation of the cup component in a ceramic acetabulum resurfacing behave similarly to a metal implant. Cup deformation measured after implantation is minimal when compared to the minimum design clearance in both systems


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 56 - 56
1 Apr 2017
Engh C
Full Access

Porous-coated acetabular hemispherical components have proven successful in all but the most severe revision acetabular defects. A revision jumbo porous coated component has been defined as cup with minimum diameter of 66 mm in men and 62 mm in women. In published studies this size cup is used in 14–39% of acetabular revisions. The advantages of this technique are ease of use, most deficiencies can be treated without structural graft, host bone contact with the porous surface is maximised, and the hip center is generally normal. Jumbo cups are typically used in Paprosky type 2, 3A, and many 3B defects. Requirements for success include circumferential acetabular exposure, an intact posterior column, and much of the posterior wall. The cup should be stable with a press-fit between the ischium and anterior superior acetabulum with the addition of some superior lateral support. Additional support is provided with multiple dome or rim screws. Survivorship of the metal shell with revision for any reason has been reported to be 80%-96% at time frames from 15–20 years. The most common post-operative complication is dislocation


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 103 - 103
1 Aug 2017
Gross A
Full Access

The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique: The acetabular bed is prepared. If there is less medial bone stock than 2mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilisation, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments. Augments are fixed with at least two screws. The interface between the cup and the augments should be stable, but some surgeons place a very thin layer of cement between the augment and cup so micromotion does not occur while ingrowth is occurring. We have used trabecular metal augments in 46 acetabular revisions in conjunction with a trabecular metal cup. Thirty-four cases have at least 2 years follow-up with an average of 64.5 months. There have been 4 cup loosenings with 3 re-revisions


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 98 - 98
1 Nov 2016
Engh C
Full Access

Porous-coated acetabular hemispherical components have proven successful in all but the most severe revision acetabular defects. A revision jumbo porous coated component has been defined as a cup with minimum diameter of 66 mm in men and 62 mm in women. In published studies this size cup is used in 14% – 39% of acetabular revisions. The advantages of this technique are ease of use, most deficiencies can be treated without structural graft, host bone contact with the porous surface is maximised, and the hip center is generally normal. Jumbo cups are typically used in Paprosky type 2, 3A, and many 3B defects. Requirements for success include circumferential acetabular exposure, an intact posterior column, and much of the posterior wall. The cup should be stable with a press-fit between the ischium and anterior superior acetabulum with the addition of some superior lateral support. Additional support is provided with multiple dome or rim screws. Survivorship of the metal shell with revision for any reason has been reported to be 80% – 96% at time frames from 15 – 20 years. The most common post-operative complication is dislocation


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 114 - 114
1 Nov 2016
Gross A
Full Access

The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique: The acetabular bed is prepared. If there is less medial bone stock than 2 mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilization, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments. Augments are fixed with at least two screws. The interface between the cup and the augments should be stable, but some surgeons place a very thin layer of cement between the augment and cup so micromotion does not occur while ingrowth is occurring. We have used trabecular metal augments in 46 acetabular revisions in conjunction with a trabecular metal cup. Thirty-four cases have at least 2 years follow-up with an average of 64.5 months. There has been 4 cup loosenings with 3 re-revisions


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 127 - 127
1 Apr 2017
Gross A
Full Access

The indications for cementless acetabular fixation have been broadened because our data supports the use of trabecular metal cups even when there's limited bleeding host bone contact. Trabecular metal augments have allowed us to use cementless cups when there is segmental loss of bone. Surgical Technique: The acetabular bed is prepared. If there is less medial bone stock than 2 mm, then morselised allograft is impacted by reverse reaming. When reaming is complete and less than 50% bleeding host bone is available for cup stabilization, then a trabecular metal cup is indicated. Trabecular augments are used if the trabecular cup trial is not stable, or if it is uncovered by 40% or more. The conventional augments come in different sizes to accommodate the diameter of the cup and the size of the defect. Larger defects are addressed with anterior and posterior column augments, and superior defects with figure of seven augments. Augments are fixed with at least two screws. The interface between the cup and the augments should be stable, but some surgeons place a very thin layer of cement between the augment and cup so micromotion does not occur while ingrowth is occurring. We have used trabecular metal augments in 46 acetabular revisions in conjunction with a trabecular metal cup. Thirty-four cases have at least 2 years follow-up with an average of 64.5 months. There has been 4 cup loosenings with 3 re-revisions. Our most up to date data is 101 cases with an average follow-up of 3 years. There has been one infection that underwent a two stage revision. There are 4 loose cups – 3 revised


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 62 - 62
1 Dec 2016
Della Valle AG
Full Access

Uncontained acetabular defects with loss of superior iliac and posterior column support (Paprosky 3B) represent a reconstructive challenge as the deficient bone will preclude the use of a conventional hemispherical cup. Such defects can be addressed with large metallic constructs like cages with and without allograft, custom tri-flange cups, and more recently with trabecular metal augments. An underutilised alternative is impaction bone grafting, after creating a contained cavitary defect with a reinforcement mesh. This reconstructive option delivers a large volume of bone while using a small-size socket fixed with acrylic cement. Between 2006 and 2014, sixteen patients with a Paprosky 3B acetabular defect were treated with cancellous, fresh frozen impaction grafting supported by a peripheral reinforcement mesh secured to the pelvis with screws. A cemented all polyethylene cup was used. Preoperative diagnosis was aseptic loosening (10 cemented and 6 non-cemented). The femoral component was revised in 9 patients. Postoperative course consisted of 3 months of protected weight bearing. Patients were followed clinically and radiographically. One patient had an incomplete postoperative sciatic palsy. After a mean follow up of 40 months (24 to 104) none of the patients required re-revision. One asymptomatic patient presented with aseptic loosening 9 years postoperatively. Hardware failure was not observed. All patients had radiographic signs of graft incorporation and bone remodeling. There were no dislocations. The early and mid-term results of revisions for large acetabular defects with this technique are encouraging. Reconstitution of hip center of rotation and bone stock with the use of a small-size implant make this technique an attractive option for these large defects. Longer follow-up is needed to assess survivability