Over the last decade stemless shoulder arthroplasty has become increasingly popular. However, stability of metaphyseal loading humeral components remains a concern. This study aimed to assess the stability of the Affinis stemless humeral component using Radiostereometric analysis (RSA). Patients underwent total shoulder arthroplasty via a standardised technique with a
Aims. Osseointegrated prosthetic limbs allow better mobility than socket-mounted prosthetics for lower limb amputees. Fractures, however, can occur in the residual limb, but they have rarely been reported. Approximately 2% to 3% of amputees with socket-mounted prostheses may fracture within five years. This is the first study which directly addresses the risks and management of periprosthetic osseointegration fractures in amputees. Methods. A retrospective review identified 518 osseointegration procedures which were undertaken in 458 patients between 2010 and 2018 for whom complete medical records were available. Potential risk factors including time since amputation, age at osseointegration, bone density, weight, uni/bilateral implantation and sex were evaluated with multiple logistic regression. The mechanism of injury, technique and implant that was used for fixation of the fracture, pre-osseointegration and post fracture mobility (assessed using the K-level) and the time that the prosthesis was worn for in hours/day were also assessed. Results. There were 22 periprosthetic fractures; they occurred exclusively in the femur: two in the femoral neck, 14 intertrochanteric and six subtrochanteric, representing 4.2% of 518 osseointegration operations and 6.3% of 347 femoral implants. The vast majority (19/22, 86.4%) occurred within 2 cm of the proximal tip of the implant and after a fall. No fractures occurred spontaneously. Fixation most commonly involved dynamic hip screws (10) and reconstruction plates (9). No osseointegration implants required removal, the K-level was not reduced after fixation of the fracture in any patient, and all retained a K-level of ≥ 2. All fractures united, 21 out of 22 patients (95.5%) wear their osseointegration-mounted prosthetic limb longer daily than when using a socket, with 18 out of 22 (81.8%) reporting using it for ≥ 16 hours daily. Regression analysis identified a 3.89-fold increased risk of fracture for females (p = 0.007) and a 1.02-fold increased risk of fracture per kg above a mean of 80.4 kg (p = 0.046). No increased risk was identified for bilateral implants (p = 0.083), time from amputation to osseointegration (p = 0.974), age at osseointegration (p = 0.331), or bone density (g/cm2, p = 0.560; T-score, p = 0.247; Z-score, p = 0.312). Conclusion. The risks and sequelae of periprosthetic fracture after
Proper preoperative planning benefits fracture reduction, fixation, and stability in tibial plateau fracture surgery. We developed and clinically implemented a novel workflow for 3D surgical planning including patient-specific drilling guides in tibial plateau fracture surgery. A prospective feasibility study was performed in which consecutive tibial plateau fracture patients were treated with 3D surgical planning, including patient-specific drilling guides applied to standard off-the-shelf plates. A postoperative CT scan was obtained to assess whether the screw directions, screw lengths, and plate position were performed according the preoperative planning. Quality of the fracture reduction was assessed by measuring residual intra-articular incongruence (maximum gap and step-off) and compared to a historical matched control group.Aims
Methods
We present our results of cementless total hip arthroplasty with a tapered, rectangular stem made of titanium-aluminum-niobium alloy. This implant is used since 1979 with only minor modifications. The design of the femoral component achieves primary stability through precision rasping and
Single focal grade IV cartilage lesion in the knee has a poor healing capacity. Instead these lesions often progress to severe and generalized osteoarthritis that may result in total knee replacement. Current treatment modalities aim at biological repair and, although theoretically appealing, the newly formed tissue is at the best cartilage-like, often fibrous or fibrocartilaginous. This at the expense of sophisticated laboratory resources, delicate surgery and strict compliance from patients. An alternative may be small implants of biomaterial inserted to replace the damaged cartilage. We investigated the response of the opposing tibia cartilage to a metallic implant inserted at different depth into the surrounding cartilage level. Methods. The medial femoral condyle of both knees of 12 sheep, 70–90kg, 2 year of age and from the same breeder, was operated. A metallic implant with an articulating surface of 316L stainless steel, diameter of 7mm, HA plasma sprayed
BACKGROUND. Many patients who underwent a THA, report a feeling of more “physiological” hip and of faster recovery when bigger heads are used. The aim of this study is to evaluate the walking recovery of patients after THA with different head diameters by the means of gait analysis. MATERIALS AND METHODS. A prospective, randomized, blind study was conducted on 60 patients operated by THA at our Institution. Inclusion criteria were: primary hip arthritis, women, age between 55 and 70 years. Exclusion criteria were: other problems influencing walking ability (previous operations of the lower limbs, spine disorders, knee or controlateral hip arthritis). The same uncemented stem, same uncemented
Introduction. Due to the commercial launch of newly developed ceramic-on-metal (COM) bearings, we compared the deformation and stresses in the liner with ceramic-on-ceramic (COC), metal-on-metal (MOM) as well as ceramic-on-polyethylene (COP) bearings using a finite-element (FE)-model, analyzing a variety of head size and implant position. Liner deformation in terms of change in inner diameter as well as peak stresses were evaluated. Methods. The FE-model consisting of a commercial THR, the proximal femur and a section of the hemipelvis was created based on our previously published approach. Static load and muscle forces were applied according to the maximum load during gait. Polyethylene was modelled using a nonlinear definition with isotropic hardening, cobalt-chromium was modelled elastic-plastic and ceramic was modelled linear-elastic. Validity of the model was checked using an experimental setup with artificial bone and strain gauges located at the rim of the liner. Implant material (COM vs. COC vs. MOM vs. COP), head size (28 mm vs. 36 mm) and cup position (45° inclination/15° anteversion vs. 60° incl./0° antev.) were varied. Results. The experimental validation showed high correlation between strain measurements and FE-results. Liner deformation was evaluated by change in diameter at different levels. Change in head size had a high influence on cup deformation in COM, COC and MOM bearings, most possibly due to decreased liner thickness using bigger heads. Differences in MOM, COC and COM liner deformation were only in sub-micrometer range and not further evaluated. Evaluation of von Mises stress and minimum principal stress showed high differences between the bearing couples, implant positions and head sizes. COM liner stress was less sensitive to the steep cup position, but principal stress amounts were about ten times higher than in polyethylene liners. Thereby, MOM liners developed about 13 % less peak stress than COM. COC liners showed 11 % to 16 % higher stresses than COM. In accordance with published results, bigger head size correlated with lower principal stresses in the liner. Also, bigger heads were less sensitive to steep cup positions. Discussion. Deformation of the liner in total hip replacement has an important influence on lubrication, wear and clinical long-term success. The deformation occurring during intraoperative impaction and
Introduction. A recent review of the literature on metal-on-metal total hip arthroplasties (THA) revealed the lack of comparative clinical studies with a sufficient sample size and the inclusion of patient-reported outcomes as well as patient activity levels. Methods. We conducted a prospective cohort study including all metal-on-metal and conventional polyethylene (PE)-ceramic THAs with an uncemented cup (Morscher
Currently, periprosthetic fractures are excluded from the American Society for Bone and Mineral Research (ASBMR) definition of atypical femoral fracture (AFFs). This study aims to report on a series of periprosthetic femoral fractures (PFFs) that otherwise meet the criteria for AFFs. Secondary aims were to identify predictors of periprosthetic atypical femoral fractures (PAFFs) and quantify the complications of treatment. This was a retrospective case control study of consecutive patients with periprosthetic femoral fractures between 2007 and 2017. Two observers identified 16 PAFF cases (mean age 73.9 years (44 to 88), 14 female patients) and 17 typical periprosthetic fractures in patients on bisphosphonate therapy as controls (mean age 80.7 years (60 to 86, 13 female patients). Univariate and multivariate analysis was performed to identify predictors of PAFF. Management and complications were recorded.Aims
Patients and Methods
Our aim in this pilot study was to evaluate the fixation of, the bone remodelling around, and the clinical outcome after surgery of a new, uncemented, fully hydroxyapatite-coated, collared and tapered femoral component, designed specifically for elderly patients with a fracture of the femoral neck. We enrolled 50 patients, of at least 70 years of age, with an acute displaced fracture of the femoral neck in this prospective single-series study. They received a total hip replacement using the new component and were followed up regularly for two years. Fixation was evaluated by radiostereometric analysis and bone remodelling by dual-energy x-ray absorptiometry. Hip function and the health-related quality of life were assessed using the Harris hip score and the EuroQol-5D. Up to six weeks post-operatively there was a mean subsidence of 0.2 mm (−2.1 to +0.5) and a retroversion of a mean of 1.2° (−8.2° to +1.5°). No component migrated after three months. The patients had a continuous loss of peri-prosthetic bone which amounted to a mean of 16% (−49% to +10%) at two years. The mean Harris hip score was 82 (51 to 100) after two years. The two-year results from this pilot study indicate that this new, uncemented femoral component can be used for elderly patients with osteoporotic fractures of the femoral neck.
Osteochondral injuries, if not treated adequately, often lead
to severe osteoarthritis. Possible treatment options include refixation
of the fragment or replacement therapies such as Pridie drilling,
microfracture or osteochondral grafts, all of which have certain
disadvantages. Only refixation of the fragment can produce a smooth
and resilient joint surface. The aim of this study was the evaluation
of an ultrasound-activated bioresorbable pin for the refixation of
osteochondral fragments under physiological conditions. In 16 Merino sheep, specific osteochondral fragments of the medial
femoral condyle were produced and refixed with one of conventional
bioresorbable pins, titanium screws or ultrasound-activated pins.
Macro- and microscopic scoring was undertaken after three months. Objectives
Methods