Aims. The extended wait that most patients are now experiencing for hip and knee arthroplasty has raised questions about whether reliance on waiting time as the primary driver for prioritization is ethical, and if other additional factors should be included in determining surgical priority. Our
Prolonged waits for hip and knee arthroplasty have raised questions about the equity of current approaches to waiting list prioritization for those awaiting surgery. We therefore set out to understand key stakeholder (patient and surgeon) preferences for the prioritization of patients awaiting such surgery, in order to guide future waiting list redesign. A combined qualitative/quantitative approach was used. This comprised a Delphi study to first inform which factors patients and surgeons designate as important for prioritization of patients on hip and knee arthroplasty waiting lists, followed by a discrete choice experiment (DCE) to determine how the factors should be weighed against each other. Coefficient values for each included DCE attribute were used to construct a ‘priority score’ (weighted benefit score) that could be used to rank individual patients waiting for surgery based on their respective characteristics.Aims
Methods
Aims. Restarting planned surgery during the COVID-19 pandemic is a clinical and societal priority, but it is unknown whether it can be done safely and include high-risk or complex cases. We developed a Surgical
Introduction. Despite improvement in implants and surgical techniques up to 20% of Total Knee Arthroplasty TKA patients continue to report dissatisfaction. The ATTUNE Knee System was designed to provide better patellar tracking and stability through the mid-range of flexion and therefore improve patient outcomes and satisfaction. Aims. The aims of this study were to assess patient outcomes in a consecutive series of ATTUNE TKA and ensure early results were comparable to other TKA systems in Australia. Methods. Between September 2014 and December 2015, 332 ATTUNE TKR's were implanted locally. All patients in our learning curve from case 1 were included. Mean follow-up was 2.6 years (range: 2.0–3.2). Revision, complications and postoperative ROM was collected. Patient reported outcome was measured using the Multi-Attribute Arthritis
Background. Delay in access to primary total hip (THA) arthroplasty continues to pose a substantial burden to patients and society in publicly funded healthcare systems. The majority of strategies to decrease wait times have focused on the time from surgical consult to surgery, however a large proportion of total wait time for these patients is the time from primary care referral to surgical consultation.
The COVID-19 pandemic has caused unprecedented disruption to elective orthopaedic services. The primary objective of this study was to examine changes in functional scores in patients awaiting total hip arthroplasty (THA), total knee arthroplasty (TKA), and unicompartmental knee arthroplasty (UKA). Secondary objectives were to investigate differences between these groups and identify those in a health state ‘worse than death’ (WTD). In this prospective cohort study, preoperative Oxford hip and knee scores (OHS/OKS) were recorded for patients added to a waiting list for THA, TKA, or UKA, during the initial eight months of the COVID-19 pandemic, and repeated at 14 months into the pandemic (mean interval nine months (SD 2.84)). EuroQoL five-dimension five-level health questionnaire (EQ-5D-5L) index scores were also calculated at this point in time, with a negative score representing a state WTD. OHS/OKS were analyzed over time and in relation to the EQ-5D-5L.Aims
Methods
Acute bone and joint infections in children are serious, and misdiagnosis can threaten limb and life. Most young children who present acutely with pain, limping, and/or loss of function have transient synovitis, which will resolve spontaneously within a few days. A minority will have a bone or joint infection. Clinicians are faced with a diagnostic challenge: children with transient synovitis can safely be sent home, but children with bone and joint infection require urgent treatment to avoid complications. Clinicians often respond to this challenge by using a series of rudimentary decision support tools, based on clinical, haematological, and biochemical parameters, to differentiate childhood osteoarticular infection from other diagnoses. However, these tools were developed without methodological expertise in diagnostic accuracy and do not consider the importance of imaging (ultrasound scan and MRI). There is wide variation in clinical practice with regard to the indications, choice, sequence, and timing of imaging. This variation is most likely due to the lack of evidence concerning the role of imaging in acute bone and joint infection in children. We describe the first steps of a large UK multicentre study, funded by the National Institute for Health Research, which seeks to integrate definitively the role of imaging into a decision support tool, developed with the assistance of individuals with expertise in the development of clinical prediction tools. Cite this article:
With resumption of elective spine surgery services in the UK following the first wave of the COVID-19 pandemic, we conducted a multicentre British Association of Spine Surgeons (BASS) collaborative study to examine the complications and deaths due to COVID-19 at the recovery phase of the pandemic. The aim was to analyze the safety of elective spinal surgery during the pandemic. A prospective observational study was conducted from eight spinal centres for the first month of operating following restoration of elective spine surgery in each individual unit. Primary outcome measure was the 30-day postoperative COVID-19 infection rate. Secondary outcomes analyzed were the 30-day mortality rate, surgical adverse events, medical complications, and length of inpatient stay.Aims
Methods
Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care. Cite this article:
The aim of this study is to develop a core set of outcome domains that should be considered and reported in all future trials of childhood limb fractures. A four-phase study was conducted to agree a set of core outcome domains. Identification of candidate outcome domains were identified through systematic review of trials, and outcome domains relevant to families were identified through semi-structured interviews with 20 families (parent-child pairing or group). Outcome domains were prioritized using an international three-round Delphi survey with 205 panellists and then condensed into a core outcome set through a consensus workshop with 30 stakeholders.Aims
Methods
High-quality clinical research in children’s orthopaedic surgery
has lagged behind other surgical subspecialties. This study used
a consensus-based approach to identify research priorities for clinical
trials in children’s orthopaedics. A modified Delphi technique was used, which involved an initial
scoping survey, a two-round Delphi process and an expert panel formed
of members of the British Society of Children’s Orthopaedic Surgery.
The survey was conducted amongst orthopaedic surgeons treating children
in the United Kingdom and Ireland.Aims
Methods