Osteoarthritis (OA) is a chronic degenerative joint disorder that affects millions of people. There are currently no therapies that reverse or repair cartilage degradation in OA patients. Link N (DHLSDNYTLDHDRAIH) is a naturally occurring peptide that has been shown to increase both collagen and
Osteoarthritis (OA) is a multifactorial debilitating disease that affects over four million Canadians. Although the mechanism(s) of OA onset is unclear, the biological outcome is cartilage degradation. Cartilage degradation is typified by the progressive loss of extracellular matrix components - aggrecan and type II collagen (Col II) – partly due to the up-regulation of catabolic enzymes - aggrecanases a disintegrin and metalloprotease with thrombospondin motifs (ADAMTS-) 4 and 5 and matrix metalloproteinases (MMPs). There is currently no treatment that will prevent or repair joint damage, and current medications are aimed mostly at pain management. When pain becomes unmanageable arthroplastic surgery is often performed. Interest has developed over the presence of calcium crystals in the synovial fluid of OA patients, as they have been shown to activate synovial fibroblasts inducing the expression of catabolic agents. We recently discovered elevated levels of free calcium in the synovial fluid of OA patients and raised the question on its role in cartilage degeneration. Articular cartilage was isolated from 5 donors undergoing total hip replacement. Chondrocytes were recovered from the cartilage of each femoral head or knee by sequential digestion with Pronase followed by Collagenase and expanded in DMEM supplemented with 10% heat-inactivated FBS. OA and normal human articular chondrocytes (PromoCell, Heidelberg, Germany) were transferred to 6-well plates in culture medium containing various concentrations of calcium (0.5, 1, 2.5, and 5 mM CaCl2), and IL-1β. Cartilage explants were prepared from the same donors and included cartilage with the cortical bone approximately 1 cm2 in dimension. Bovine articular cartilage explants (10 months) were used as a control. Explants were cultured in the above mentioned media, however, the incubation period was extended to 21 days. Immunohistochemistry was performed on cartilage explants to measure expression of Col X, MMP-13, and alkaline phosphatase. The sulfated glycosaminoglycan (GAG, predominantly aggrecan) content of cartilage was analyzed using the 1,9-dimethylmethylene blue (DMMB) dye-binding assay, and aggregan fragmentation was determined by Western blotting using antibody targeted to its G1 domain. Western blotting was also performed on cell lysate from both OA and normal chondrocytes to measure aggrecan, Col II, MMP-3 and −13, ADAMTS-4 and −5. Ca2+ significantly decreased the
Calcification of the intervertebral disc (IVD) has been correlated with degenerative disc disease (DDD), a common cause of low back pain. The appearance of calcium deposits has been shown to increase with age, and its occurrence has been associated with several other disorders such as hyperparathyroidism, chondrocalcinosis, and arthritis. Trauma, vertebral fusion and infection have also been shown to increase the incidence of IVD calcification. The role of IVD calcification in the development DDD is unknown. Our preliminary data suggest that ionic calcium content and expression of the extracellular calcium-sensing receptor (CaSR), a G protein-coupled receptor (GPCR) and regulator of calcium homeostasis, are increased in the degenerated discs. However, its role in DDD remains unclear. IVD Cells: Bovine and normal human IVD cells were incubated in PrimeGrowth culture medium (Wisent Bioproducts, Canada; Cat# 319–510-CL, −S1, and S2) and supplemented with various concentrations of calcium (1.0, 1.5, 2.5, 5.0 mM), a CaSR agonist [5 µM], or IL-1β [10 ng/ml] for 7 days. Accumulated matrix protein was quantitated for aggrecan and type II collagen (Col II) by Western blotting. Conditioned medium was also collected from cells treated for 24h and measured for the synthesis and release of total
Large cartilage lesions in younger patients can be treated by fresh osteochondral allograft transplantation, a surgical technique that relies on stable initial fixation and a minimum chondrocyte viability of 70% in the donor tissue to be successful. The Missouri Osteochondral Allograft Preservation System (MOPS) may extend the time when stored osteochondral tissues remain viable. This study aimed to provide an independent evaluation of MOPS storage by evaluating chondrocyte viability, chondrocyte metabolism, and the cartilage extracellular matrix using an ovine model. Femoral condyles from twelve female Arcott sheep (6 years, 70 ± 15 kg) were assigned to storage times of 0 (control), 14, 28, or 56 days. Sheep were assigned to standard of care [SOC, Lactated Ringer's solution, cefazolin (1 g/L), bacitracin (50,000 U/L), 4°C storage] or MOPS [proprietary media, 22-25°C storage]. Samples underwent weekly media changes. Chondrocyte viability was assessed using Calcein AM/Ethidium Homodimer and reported as percent live cells and viable cell density (VCD). Metabolism was evaluated with the Alamar blue assay and reported as Relative Fluorescent Units (RFU)/mg. Electromechanical properties were measured with the Arthro-BST, a device used to non-destructively compress cartilage and calculate a quantitative parameter (QP) that is inversely proportional to stiffness.
The meniscus is comprised largely of type I collagen, as well as fibrochondrocytes and
Degenerative disc disease (DDD) is a common cause of lower back pain. Calcification of the intervertebral disc (IVD) has been correlated with DDD, and is especially prevalent in scoliotic discs. The appearance of calcium deposits has been shown to increase with age, and its occurrence has been associated with several other disorders such as hyperparathyroidism, chondrocalcinosis, and arthritis. Trauma, vertebral fusion and infection have also been shown to increase the incidence of IVD calcification. Our data indicate that Ca. 2+. and expression of the extracellular calcium-sensing receptor (CaSR) are significantly increased in mild to severely degenerative human IVDs. In this study, we evaluated the effects of Ca. 2+. and CaSR on the degeneration and calcification of IVDs. Human donor lumbar spines of Thompson grade 2, 3 and 4 through organ donations within 24 hs after death. IVD cells, NP and AF, were isolated from tissue by sequential digestion with Pronase followed by Collagenase. Cells were expanded for 7 days under standard cell culture conditions. Immunohistochemistry was performed on IVD tissue to validate the grade and expression of CaSR. Free calcium levels were also measured and compared between grades. Immunocytochemistry, Western blotting and RT-qPCR were performed on cultured NP and AF cells to demonstrate expression of CaSR, matrix proteins aggrecan and collagen, catabolic enzymes and calcification markers. IVD cells were cultured in increasing concentrations of Ca. 2+. [1.0-5.0 mM], CaSR allosteric agonist (cincalcet, 1 uM), and IL-1b [5 ng/mL] for 7 days. Ex vivo IVD organ cultures were prepared using PrimeGrowth Disc Isolation System (Wisent Bioproducts, Montreal, Quebec). IVDs were cultured in 1.0, 2.5 mM Ca. 2+. or with cinacalcet for 21 days to determine effects on disc degeneration, calcification and biomechanics. Complex modulus and structural stiffness of disc tissues was determined using the MACH-1 mechanical testing system (Biomomentum, Laval, Quebec). Ca. 2+. dose-dependently decreased matrix protein synthesis of
One out of nine Canadian males would suffer prostate cancer (PC) during his lifetime. Life expectancy of males with PC has increased with modern therapy and 90% live >10 years. However, 20% of PC-affected males would develop incurable metastatic diseases. Bone metastases (BM) are present in ~80% of metastatic PC patients, and are the most severe complication of PC, generating severe pain, fractures, spinal cord compression, and death. Interestingly, PC-BMs are mostly osteoblastic. However, the structure of this newly formed bone and how it relates to pain and fracture are unknown. Due to androgen antagonist treatment, different PC phenotypes develop with differential dependency on androgen receptor (AR) signaling: androgen-dependent (AR+), double negative (AR-) and neuroendocrine. How these phenotypes are related to changes in bone structure has not been studied. Here we show a state-of-the-art structural characterization of PCBM and how PC phenotypes are associated to abnormal bone formation in PCBM. Cadaveric samples (n=14) obtained from metastases of PC in thoracic or lumbar vertebrae (mean age 74yo) were used to analyze bone structure. We used micro-computed tomography (mCT) to analyze the three-dimensional structure of the bone samples. After imaging, the samples were sectioned and one 3mm thick section was embedded in epoxy-resin, ground and polished. Scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS) and quantitative backscattering electron (qBSE) imaging were used to determine mineral morphology and composition. Another section was used for histological analysis of the PC-affected bone. Collagen structure, fibril orientation and extracellular matrix composition were characterized using histochemistry. Additionally, we obtained biopsies of 3 PCBM patients undergoing emergency decompression surgery following vertebral fracture and used them for immunohistological characterization. By using mCT, we observed three dysmorphic bone patterns: osteolytic pattern with thinned trabecula of otherwise well-organized structures, osteoblastic pattern defined as accumulation of disorganized matrix deposited on pre-existing trabecula, and osteoblastic pattern with minimum residual trabecula and bone space dominated by accumulation of disorganized mineralized matrix. Comparing mCT data with patho/clinical parameters revealed a trend for higher bone density in males with larger PSA increase. Through histological sections, we observed that PC-affected bone, lacks collagen alignment structure, have a higher number of lacunae and increased amount of
Adolescent idiopathic scoliosis (AIS) is a poorly understood progressive curvature of the spine. The 3-dimmensionnal spinal deformation brings abnormal biomechanical stresses on the load-bearing organs. We have recently reported for the first time the presence of facet joint cartilage degeneration comparable to age-related osteoarthritis in scoliotic adolescents. To better understand the degenerative mechanisms and explore new therapeutic possibilities, we focused on Toll-like receptors (TLRs) which are germline-encoded pattern recognition receptors that recognize pathogens and endogenous proteins such as fragmented extracellular matrix components (alarmins) present in intervertebral discs (IVD) and articular cartilage. Once activated, they regulate the production pro-inflammatory cytokines, proteases and neurotrophins which can lead to matrix catabolism, inflammation and potentially pain. These mechanisms have however not been studied in the context of AIS or facet joints. Facet joints of AIS patients undergoing corrective surgery and of cadaveric donors (non-scoliotic) were collected from consenting patients or organ donors with ethical approval. Cartilage biopsies and chondrocytes were isolated using 3mm biopsy punches and collagenase type 2 digestion respectively. qPCR was used to assess gene expression of the degenerative factors (MMP3, MMP13, IL-1ß, IL-6, IL-8) The biopsies were cut into two equal halves, one was treated for 4 days with a TLR2 agonist (Pam2CSK4, Invivogen) in serum-free chondrocyte media while the other one was cultured in media alone. MMP3, MMP13, IL-6 and IL-8 ELISAs and DMMB assays were performed on the biopsy cultured media. The ex vivo cartilage was then fixed, cryosectionned and also stained with SafraninO-Fast Green dyes. Baseline gene expression levels of TLR1,−2,−4,−6 were all upregulated in scoliotic chondodryctes compared to non-scoliotic. Pearson correlation analysis revealed that all TLR1,−2,−4,−6 gene expression correlated strongly and significantly with degenerative markers (MMP3, MMP13, IL-6, IL-8) in scoliotic chondrocytes but not in non-scoliotic. (Figure 1) When monolayer facet joint chondrocytes were activated with Pam2CSk4, there was a significant upregulation in previously described degenerative markers, TLR2 and NGF, a potent neurotrophin. These findings were strengthened by protein secretion analysis of select markers such as MMP-3, −13, IL-6 and IL-8 which were all upregulated after TLR2 activation. The scoliotic biopsies which were treated with Pam2CSK4 had a significant loss of
Intervertebral discs (IVDs) degeneration is one of the major causes of back pain. Upon degeneration, the IVDs tissue become inflamed, and this inflammatory microenvironment may cause discogenic pain. Cellular senescence is a state of stable cell cycle arrest in response to a variety of cellular stresses including oxidative stress and adverse load. The accumulation of senescent IVDs cells in the tissue suggest a crucial role in the initiation and development of painful IVD degeneration. Senescent cells secrete an array of cytokines, chemokines, growth factors, and proteases known as the senescence-associated secretory phenotype (SASP). The SASP promote matrix catabolism and inflammation in IVDs thereby accelerating the process of degeneration. In this study, we quantified the level of senescence in degenerate and non-degenerate IVDs and we evaluated the potential of two natural compounds to remove senescent cells and promote overall matrix production of the remaining cells. Human IVDs were obtained from organ donors. Pellet or monolayer cultures were prepared from freshly isolated cells and cultured in the presence or absence of two natural compounds: Curcumin and its metabolite vanillin. Monolayer cultures were analyzed after four days and pellets after 21 days for the effect of senolysis. A cytotoxicity study was performed using Alamar blue assay. Following treatment, RNA was extracted, and gene expression of senescence and inflammatory markers was evaluated by real-time q-PCR using the comparative ΔΔCt method. Also, protein expression of p16, Ki-67 and Caspase-3 were evaluated in fixed pellets or monolayer cultures and total number of cells was counted on consecutive sections using DAPI and Hematoxylin.
Tungsten has been increasing in demand for use in manufacturing and recently, medical devices, as it imparts flexibility, strength, and conductance of metal alloys. Given the surge in tungsten use, our population may be subjected to elevated exposures. For instance, embolism coils made of tungsten have been shown to degrade in some patients. In a cohort of breast cancer patients who received tungsten-based shielding for intraoperative radiotherapy, urinary tungsten levels remained over tenfold higher 20 months post-surgery. In vivo models have demonstrated that tungsten exposure increases tumor metastasis and enhances the adipogenesis of bone marrow-derived mesenchymal stem cells while inhibiting osteogenesis. We recently determined that when mice are exposed to tungsten [15 ppm] in their drinking water, it bioaccumulates in the intervertebral disc tissue and vertebrae. This study was performed to determine the toxicity of tungsten on intervertebral disc. Bovine nucleus pulposus (bNP) and annulus fibrosus (bAF) cells were isolated from bovine caudal tails. Cells were expanded in flasks then prepared for 3D culturing in alginate beads at a density of 1×10. ∧. 6 cells/mL. Beads were cultured in medium supplemented with increasing tungsten concentrations in the form of sodium tungstate [0, 0.5, 5, 15 ug/mL] for 12 days. A modified GAG assay was performed on the beads to determine
An established rabbit model was used to preliminarily investigate the effect of acellular triphase, namely bone-cartilage-tendon, scaffold (ATS) sandwiched with autologous bone mesenchymal stem cells (BMSCs) sheets on tendon-bone interface healing. Bone, fibrocartilage and tendon tissue were harvested from the rabbits and sectioned into a book-type scaffold. The scaffolds were decellularized and their characterization was presented. BMSCs were isolated and co-cultured with the scaffolds to verify their cytocompatibility. BMSCs sheets were fabricated and inserted into the book page of the scaffold to construct an autologous BMSCs-sheets/book-type ATS complex. The complex was implated in the right knee of rabbits which operated standard partial patellectomy for TBI regeneration using Imaging, histological and biomechanical examinations. The bone, fibrocartilage and tendon tissue were sectioned into a book-type scaffold before decellularization. Then we decellularized the above tissue and mostly preserved their microstructure and composition of the natural extracellular matrix, including collagen and
R Appleyard, Murray Maxwell Biomechanics Lab, Royal North Shore Hospital, Sydney. The fundamental mechanisms that underlie tendon breakdown are ill understood. There is an emerging hypothesis that altered mechanical strain modulates the metabolism and/or phenotype of tenocytes, disrupting the balance of matrix synthesis and degradation, and that rupture then occurs through an abnormal tendon matrix. The critically regulated genes have not yet been determined. We have developed sheep model in sheep where both stress-deprived and over-stressed areas can be examined in the one tendon, to evaluate the pathological and molecular changes over time. We have also used ‘wild type’ and genetically modified mice to determine the role of specific enzymes and
Background. Continuous post-operative infusion of local anaesthetic solutions has been implicated as the causative factor in many cases of chondrolysis. Recent in-vitro studies have shown that even a single exposure to local anaesthetic can cause apoptosis and mitochondrial dysfunction leading to chondrocyte death. Glucosamine has been shown to have a protective and reparative effect on articular cartilage. Aims. To compare the effect of a single exposure of different local anaesthetic solutions on human articular cartilage and to investigate the protective and reparative effects of Glucosamine on articular cartilage exposed to 0.5% Bupivacaine. Methods. Chondral explants (n=354) were obtained from femoral heads of hip fracture patients undergoing hemiarthroplasty. Each specimen was exposed to one of 8 test solutions for one hour. The specimens were then incubated in culture medium containing radio-labelled 35-sulphur for 16 hours. The uptake of 35-S by each specimen was measured to give an estimate of
Purpose. Adenosine triphosphate (ATP) has been implicated as an autocrine/paracrine signal in the mechanotransduction pathway of chondrocytes. In this study, human chondrocytes in a 3D agarose scaffold were cultured with exogenous ATP in varying doses to determine its effect on extracellular matrix synthesis by the cells. Further experiments determined basal ATP release, ATP degradation and expression of P2Y1 and P2Y2 purinoreceptors by the cultured cell constructs. Method. Human chondrocytes were obtained by enzymatic digestion of cartilage samples obtained at the time of total joint arthroplasty. The chondrocytes were cultured in a 3D agarose scaffold using standard tissue culture techniques. Various concentrations of exogenous ATP were added to the cultures, along with the radioisotopes to assess matrix synthesis. The cultures were harvested after a 24 hr incubation and radioisotope incorporation was determined by scintillation counting to determine
Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. Quality of cartilaginous repair tissue following BMSC transplantation has been shown to correlate with functional outcome. Therefore, tissue-engineering variables, such as cell expansion environment and seeding density of scaffolds, are currently under investigation. The objectives of this study were to demonstrate chondrogenic differentiation of BMSCs seeded within a collagen I scaffold following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments, and assess the impact of seeding density on in vitro chondrogenesis. It was hypothesised that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seeding density of 10 million cells/cm3. Ovine BMSCs were isolated in a 2D environment by plastic adherence, expanded to passage two in flasks containing expansion medium, and seeded within collagen I scaffolds (6 mm diameter, 3.5 mm thickness and 0.115 ± 0.020 mm pore size; Integra LifeSciences Corp.) at densities of 50, 10, 5, 1, and 0.5 million BMSCs/cm3. For 3D isolation and expansion, bone marrow aspirates containing known quantities of mononucleated cells (BMNCs) were seeded on scaffolds at 50, 10, 5, 1, and 0.5 million BMNCs/cm3 and cultured in expansion medium for an equivalent duration to 2D expansion. All cell-scaffold constructs were differentiated in vitro in chondrogenic medium containing transforming growth factor-beta three for 21 days and assessed with RT-qPCR, safranin O staining, histological scoring using the Bern Score, collagen immunofluorescence, and glycosaminoglycan (GAG) quantification. Two dimensional-expanded BMSCs seeded at all densities were capable of
Osteoarthritis (OA) is a multifactorial disease that affects millions of Canadians. Although, there is not one specific mechanism that causes OA, the biological outcome is cartilage degradation. The articular cartilage in joints is composed primarily of the
Tendinopathy is one of the most common orthopaedic pathological conditions characterized by tendon degenerative changes. Excessive mechanical loading is considered as a major causative factor in the development of tendinopathy, but the mechanisms of pathogenesis remain unclear. High mobility group box-1 (HMGB1), a potent inflammatory mediator when released into the matrix, has been identified in the early stage tendinopathy patients. Since the release and contribution of HMGB1 in tendinopathy development due to mechanical overloading is unknown, we investigated the role of HMGB1 in tendinopathy using a mouse intensive treadmill running (ITR) model and injection of glycyrrhizin (GL), a specific inhibitor of HMGB1. A total of 48 mice were divided into four groups, Cage Control group: The animals were allowed to move freely in their cage, GL group: The animals were received daily IP injection of GL (50 mg/kg body weight) for 24 weeks, ITR group: The animals ran on treadmill at 15 meters/min for three h/ day, five days a week for 12 or 24 weeks, GL+ITR group: The animals ran the same protocol as that of ITR group plus daily IP injection of GL for 12 or 24 weeks. Six mice/group were sacrificed at 12 or 24 weeks and the Achilles and patellar tendon tissues were harvested and used for histochemical staining and immunostaining. Mechanical overloading induced HMGB1 released from the cell nuclei to the matrix (Fig. 1a, b) caused tendon inflammation (Fig. 1c, d) and led to tendon degenerative changes (Fig. 1e-j). After 12 weeks of ITR, the tendon tissue near the bone insertion site showed typical tendinopathic changes in cell shape, accumulation of glycosaminoglycans (GAG) (Fig. 1e, f), and increase in SOX-9 staining (Fig. 1g-j). After 24 weeks ITR, the distal site of Achilles tendon showed considerable changes in cell shape (Fig. 2A, g, arrows), which is round compared to more elongated in the control and GL groups (Fig. 2A, e, f). However, daily treatment with GL prior to ITR blocked the cell shape change (Fig. 2A, h) and, ITR induced extensive GAG accumulation in ITR group (Fig. 2B, bottom panel). Furthermore, GL inhibited ITR-induced expression of chondrogenic markers (SOX-9 and collagen II) in the tendons (Fig. 3). Our results showed that mechanical overloading-induced HMGB1 plays a critical role in the development of tendinopathy by initiating tendon inflammation and eventual degeneration characterized by the presence of chondrocyte-like cells, accumulation of
Developmental dysplasia of the hip (DDH) is a common risk factor of early osteoarthritis (OA), with insufficient coverage of the femoral head by the acetabulum which leads to excessive cartilage stresses in the hip joint. Knowledge of the molecular health of cartilage using MRI may diagnose and stage chondral disease, but more importantly allows for treatment stratification and prognostication. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a validated MRI technique for detecting early loss of
Intervertebral disc (IVD) degeneration plays a major role in low back pain which is the leading cause of disability. Current treatments in severe cases require surgical intervention often leading to adjacent segment degeneration. Injectable hydrogels have received much attention in recent years as scaffolds for seeding cells to replenish disc cellularity and restore disc properties and function. However, they generally present poor mechanical properties. In this study, we investigated several novel thermosensitive chitosan hydrogels for their ability to mimic the mechanical properties of the nucleus pulposus (NP) while being able to sustain the viability of NP cells, and retain
Introduction. Currently, there is a focus on the development of novel materials to articulate against cartilage. Such materials should either eliminate or delay the necessity of total joint replacement. While cobalt-chromium (CoCr) alloy is still a material of choice and used for hemi-arthroplasties, spacers, and repair plugs, alternative materials are being studied. Pyrolytic carbon (PyC) is a biocompatible material that has been available since the 1980s. It has been widely and successfully used in small joints of the foot and the hand, but its tribological effects in direct comparison to cobalt-chromium (CoCr) remain to be investigated. Methods. A four station simulator (Figure 1), mimicking joint load and motion, was used for testing. The simulator is housed in an incubator, which and provides the necessary environmental conditions for cartilage survival. Articular cartilage disks (14mm in diameter) were obtained from the trochleas of six to eight months old steer for testing and free-swelling controls. Disks (n=8 per material) were placed in porous polyethylene scaffolds within polypropylene cups and mounted onto the simulator to articulate against 28mm balls of either PyC or CoCr. Each ball was pressed onto the cartilage disk with 40N. In order to allow fluidal load support, the contact migrated over the biphasic cartilage with a 5.2 mm excursion. Concomitantly, the ball oscillated with ±30° at 1 Hz. Testing was conducted for three hours per day over 10 days in Mini ITS medium. Media samples were collected at the end of each three hour test. Upon test commencement, media was pooled (days 1, 4, 7, 10) and analyzed for